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Abstract: In this short note, we exhibit an elementary deduction of the

_Nk
( ;) in terms of the

Borwein-Choi-Pigulla relation for log (1 + z) + Yp=1

Gauss hyper-geometric function.
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1. Introduction
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The researchers Borwein-Choi-Pigulla [3] employed continued fractions to obtain the following

identity [2]:

In this paper, we briefly discuss on the hyper-geometric expression of log (1 +z) + Y?Z]
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log (1+2)+ Y] ,Fi(n,1; n+1;,—-2), n=23,.. (1)

Here we show a simple deduction of (1) via the techniques of [4, 5] to convert a summation into
a hyper-geometric function.

2. Borwein-Choi-Pigulla Formula

We have the known Taylor series for the logarithm function:
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and it is simple to apply the techniques of [4, 5] to convert a summation into a Gauss hyper-
geometric function, in fact,

uy=1=& Uiern _ (k+2) (kt1) (72) , therefore, we have
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log(14+2)—z= ey Fi1(2, 1; 3;-2).

Similarly, from (2):
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and in general:
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in harmony with the result (1) due to Borwein-Choi-Pigulla.

As always, a formula for log leads correspondingly to one for arc tan [2]:
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arctanz — YRC3 - Y ——— 2h (n +% , L n+ %; —zz). (3)

3. Conclusion

Our procedure shows that the techniques of [4, 5] are very useful to translate a summation in
terms of hyper-geometric functions, and thus to give simple proofs for several important
formulae in the literature [1].
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