A Note on a Formula of Riordan Involving Harmonic Numbers

J. A. Alonso-Carreón¹, J. López-Bonilla¹*a, Gyan Bahadur Thapa²

¹ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México
²Department of Applied Sciences, Pulcowk Campus, Institute of Engineering Tribhuvan University, Nepal
*aCorresponding author: jlopezb@ipn.mx

Received: Oct 10, 2018 Revised: Dec 28, 2018 Accepted: Jan 2, 2019

Abstract: We employ Stirling numbers of the second kind to prove a relation of Riordan involving harmonic numbers.

Keywords: Stirling numbers, Geometric series, Riordan’s identity, Harmonic numbers.

1. Introduction

We know the Riordan’s relation [7]:

$$\sum_{k=1}^{n} \frac{x^k}{k} - H_n = \sum_{k=1}^{n} \left(\frac{1}{k} \right) \frac{(x-1)^k}{k}, \quad \forall x \in \mathbb{C},$$

(1)

for the harmonic numbers [6]:

$$H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

(2)

It is usual to show (1) employing the geometric series and the binomial theorem of Newton; we observe that Agoh [1] also obtained this identity of Riordan. In Section 2, we exhibit an alternative proof of (1) via Stirling numbers [6, 7].

2. Riordan’s formula

The generating function for the Stirling numbers of the second kind is given by [6]:

$$\sum_{r=k}^{\infty} \frac{x^r}{r!} S_r^{[k]} = \frac{1}{k!} \left(e^x - 1 \right)^k,$$

(3)

with the property [3, 2]:
A Note on a Formula of Riordan Involving Harmonic Numbers

J. A. Alonso-Carreón1, J. López-Bonilla1, Gyan Bahadur Thapa2

1ESIME-Zacatenco, Instituto Politécnico Nacional, Edif. 5, 1er. Piso, Col. Lindavista CP 07738, CDMX, México

2Department of Applied Sciences, Pulcowk Campus, Institute of Engineering Tribhuvan University, Nepal

aCorresponding author: jlopezb@ipn.mx

Received: Oct 10, 2018
Revised: Dec 28, 2018
Accepted: Jan 2, 2019

Abstract: We employ Stirling numbers of the second kind to prove a relation of Riordan involving harmonic numbers.

Keywords: Stirling numbers, Geometric series, Riordan’s identity, Harmonic numbers.

1. Introduction

We know the Riordan’s relation [7]:

\[
\sum_{k=1}^{n} k^r = \sum_{k=1}^{n} \binom{n}{k} (k - 1)! S_r^{[k]},
\]

then:

\[
\sum_{k=1}^{n} \frac{e^{kz}}{k} = \sum_{k=1}^{n} \frac{1}{k} \left(1 + \sum_{r=1}^{\infty} \frac{k^r z^r}{r!} \right) = H_n + \sum_{r=1}^{\infty} \frac{z^r}{r!} \sum_{k=1}^{n} k^{r-1},
\]

that is:

\[
\sum_{k=1}^{n} \frac{e^{kz}}{k} - H_n = \sum_{k=1}^{n} \binom{n}{k} (k - 1)! \sum_{r=1}^{\infty} \frac{z^r}{r!} S_r^{[k]} = \sum_{k=1}^{n} \binom{n}{k} \left(\frac{x}{k} - 1 \right)^k,
\]

where we can use \(x = e^z \) to deduce (1), q. e. d.

Our procedure is simple and shows the connection between the harmonic numbers and the Stirling numbers of the second kind [5]. For \(x = 0 \), the relation (1) implies the known expression of Euler [6]:

\[
H_n = \sum_{k=1}^{n} \binom{n}{k} \frac{(-1)^{k+1}}{k},
\]

Besides, from (1) is immediate the identity:

\[
\sum_{m=1}^{m} H_n = (m + 1) \sum_{k=1}^{m} \frac{x^k}{k} - \sum_{k=1}^{m} x^k - \sum_{k=1}^{m} \binom{m + 1}{k + 1} \frac{(x-1)^k}{k},
\]

where was applied the property \(\sum_{n=k}^{m} \binom{n}{k} = \binom{m + 1}{k + 1} \) [4]. The formula (6) with \(x = 0 \) and \(x = 1 \) implies [6]:

\[
\sum_{m=1}^{m} H_n = (m + 1) H_m - m = (m + 1) (H_{m+1} - 1) = \sum_{k=1}^{m} \binom{m + 1}{k + 1} \frac{(x-1)^k}{k}
\]

3. Conclusion

Our procedure to prove (1) shows the important relationship between the harmonic numbers and the Stirling numbers of the second kind, without the participation of geometric series and the Newton’s binomial theorem.
References