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Abstract: In this paper we deal with eigenvalues and eigenvectors (E-values & E-vectors) in  diagonalizating a 
square matrix and in the Cayley-Hamilton theorem used to find the inverse of a given square matrix.

1.  Introduction

If A [aij]n×n = 
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is a square matrix of order n then the matrix 

(A-λI) i.e.
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is called the characteristic matrix of A. If the determinant of this characteristic matrix of A is 
taken and equated to zero i.e. 

0=− IA λ (i)

i.e.
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 = 0

i.e. λn + p1λn-1 + … + pn = 0 (ii)

it is called the characteristic equation of A. This equation naturally has n roots, so these    n-roots 
of λ are called the characteristic roots, latent roots, or eigenvalues of A.

Again, if A = [aij]n×n is a square matrix of order n and 
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 is a column vector which is 

transformed by A into its scalar multiple such that

AX = λX (iii)

And if I is the unit matrix of the same order then (iii) can be written as

AX = λIX

or (A – λI) X = 0 (iv)

which  is  called  the  characteristic  matrix  equation  and  this  equation  (iv)  represents  n 
homogeneous equations:

(a11 – λ) x1 + a12x2 + … + a1n xn = 0

a21 x1 + (a22 - λ) x2 + … + a2n xn = 0

… … … … … … … … … … … …

an1 x1 + an2x2 + … + (ann – λ) xn = 0

This system of n homogeneous linear equations will have a non-zero solution if  IA λ−  is 

singular i.e. IA λ−  = 0. Moreover the roots of (A-λI) = 0 gives the n-eigenvalues     (λ1 … 

λn). To each eigenvalue of A, there corresponds a non-zero solution to the vector  
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This vector X is called the eigenvector of A (corresponding to that particular eigenvalue of A). 

Note that the eigenvector corresponding to each eigenvalue is not unique. So any scalar multiple 
of the E-vector are also the E-vectors of A corresponding to those particular E-values of A.
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For example, if 







=

21

12
A  is a square matrix then the characteristic equation is 

                                           0=− IA λ

i.e. 
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=0 ⇒ λ2 - 4λ+3=0⇒λ=1 or 3

which are the E-values of A. Again, if  
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X  is an E-vector then the corresponding matrix 

equation is

                      (A – λI) x = 0  (v)

          i.e,  
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(vi)

When λ = 1 then (vi) reduces to
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(No of LI solutions = unknowns-rank = 2-1=1)

If we assign x = 1 then we get y = -1 so the E-vector is  
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and the set of all E-vectors is 

).0(
   

1

/

1

1 ≠







−

k
k

k
. Similarly when  λ = 3 then (vi) give the E-vector  








1

1
 and the set of all 

eigenvectors is ).0( 2

/

2

2 ≠







k

k

k

2.   Application  of  E-values  and  E-vectors  in  the  Diagonalization  of  a 
Square Matrix
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Now we shed light on the reduction of a given square matrix into the diagonal form through the 
transforming matrix P to the diagonal from D.

It is clear that "If a square matrix nnijaA ×= ][ of order n has n linearly independent E-vectors 

then a matrix P can be found such that P-1AP is a diagonal matrix (whose diagonal elements are 
the same E-values)". For example, if we are given a matrix
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A  then a transforming matrix P can be found such that P-1AP 
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which transforms A into the diagonal form 







30

01
 whose diagonal elements are the same E-

values. 

(Note that the sum of all diagonal elements of a given square matrix A is equal to the sum of all 
E-values of A).

Moreover, if P = [X1 X2] be a column vector of the transforming matrix P of a given square 

matrix 
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A . The E-values of A are 1 and 3 and the E-vectors corresponding to λ=1 and 

λ=3 are 
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 (=X1)  and 
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1
 (=X2) respectively.

Then we make a new matrix P = [X1 X2] = 







− 11

11  

which is the transforming matrix which transforms A into the diagonal from (D) i.e.
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30

011 APP  (= D) which is the diagonal from D and the diagonal elements are the same 

E-values. This is the direct relation among the E-values, E-vectors, transforming matrix P and the 
diagonal form D of a given square matrix A which has a relation like a grandfather.

This relationship can be sketched/represented graphically as shown below.

EV
1
 (for λ

1
=1)EV

2
 (for λ

2
=3)

Matrix A= 
E-values λ

1
=1, λ

2
=3 

E vector for λ=1
E vector for λ=3

�

(Transforming matrix)
and 
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This pictorial representation shows the deep relationship, among the E-values and the E-vectors 
of a given square matrix A.

 

3.  Application of Cayley-Hamilton theorem in finding the inverse of a 
given square matrix

Here  we  show  the  application  of  the  Cayley-Hamilton  Theorem  (C-H  theorem)  to  find  the 
inverse of a given square matrix in simpler form.  We know that the Cayley-Hamilton theorem 
states that "every square matrix A satisfies its own characteristic equation".

For, if A = [aij]n×n is a square matrix of order n then its characteristic equation is

0=− IA λ

i.e. λ n + p1 λ n-1 + p2 λ n-1 +… + pn = 0           (vii)

then by C-H theorem   An + p1An-1 + p2An-1 +… + pn I = 0 (viii)

where I is the unit matrix of the same order. The inverse of the given square matrix A can be 
obtained directly by using this Cayley-Hamilton theorem. From the equation (viii)

                                  An + p1An-1 + p2An-1 +… + pn I = 0

Now multiplying both sides by A-1

                                                                  we get A-1 (An + p1An-1 + … + pn I = A-1.0

                                 or   An-1 + p1 An-2 + … + pn-1I + A-1 . pn = 0

                              ⇒    A–1 = [ ]IpApA
p

n
nn

n 1
2

1
1 ....

1
−

−− +++−

results in the inverse of a square matrix A. This is a very nice application of the Cayley-Hamilton 
theorem from which we get A-1 by a short and sweet method without using the lengthy formula 

)0(
.1 ≠=− A

A

AAdj
A

which are nice applications of E-values & E-vectors in the diagonalization of a matrix & in the 
Cayley-Hamilton theorem.

Some  common  properties  of  E-values,  E-vectors,  transforming  matrix  & 
diagonal form (matrix)

1. Any square matrix A and its transpose have the same E-values.

2. The trace of the matrix equals to the sum of E-values of the same matrix.

i.e. (a11 + a22 +…+ ann = λ1 + λ2 + … + λn)
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3. The determinant of the matrix A equals the product of E-values of A.

4. If (λ1, λ2 … λn) are the n E-values of A then the E-values of kA are (kλ1, kλ2, … kλn).

5. E-values of A-1 are 
nλλλ

1
...

1
,

1

21

.

6. If λ is an E-value of a matrix A then λ
1

 is an E-value of A-1.

7. If  (λ1,  λ2 …  λn )  are  the  E-values of  a  square matrix  A,  then Am has the E-values 

,,..., 21
m
n

mm λλλ where m is a positive integer.

8. Zero is an E-value of a square matrix A if and only if A is singular i.e. 0=A .

9. The E-values of a triangular matrix are just the diagonals elements of the matrix.

10. Two matrices A & P-1 AP have the same E-values.

Eigen values of some special type of matrices
1. The E-values of the Hermitian matrix are real.

2. The E-values of a real symmetric matrix are all real.

3. Every E-value of a skew-Hermitian matrix is either 0 or a pure imaginary number.

4. The E-values of a unitary matrix are of unit modulus.

5. The E-values of an orthogonal matrix are of unit modulus.

6. If λ is an E-value of an orthogonal matrix A then λ
1

 is also an E-value of A.

4. Conclusion
E-values, E-vectors have a nice application in the diagonalization of a square matrix and in the 
Cayley-Hamilton theorem used to find the matrix inverse and in all the endeavors of medical, 
engineering and social sciences.
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