Mysteries of Eigenvalues, Eigenvectors \& their Applications in the Diagonalization of a Matrix \& in the Cayley-Hamilton Theorem to Find the Matrix Inverse

Kamalmani Baral
Pulchowk Campus, Institute of Engineering Tribhuvan University
Corresponding email: kamalmanib@yahoo.com

Abstract

In this paper we deal with eigenvalues and eigenvectors (E-values \& E-vectors) in diagonalizating a square matrix and in the Cayley-Hamilton theorem used to find the inverse of a given square matrix.

1. Introduction

 (A- $\lambda \mathrm{I})$ i.e.

$$
\left[\begin{array}{cccccc}
a_{11}-\lambda & a_{12} & \ldots & a_{1 j} \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda \ldots & a_{2 j} \ldots & \ldots & a_{2 n} \\
\ldots & & \ldots & \ldots & \ldots & \ldots \\
a_{i 1} & a_{i 2} & \ldots & a_{i j}-\lambda \ldots & \ldots & a_{i n} \\
\ldots & & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n j} & \ldots & a_{n n}-\lambda
\end{array}\right]
$$

is called the characteristic matrix of A . If the determinant of this characteristic matrix of A is taken and equated to zero i.e.

$$
\begin{equation*}
|A-\lambda \boldsymbol{I}|=0 \tag{i}
\end{equation*}
$$

i.e.

$$
\left\lvert\, \begin{array}{cclcc}
a_{11}-\lambda & a_{12} \ldots & a_{1 j} \ldots & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda . . & a_{2 j} \ldots & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{i 1} & a_{i 2} \ldots & a_{i j}-\lambda \ldots & \ldots & a_{i n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} \ldots & a_{n j} & \ldots & a_{n n}-\lambda
\end{array}=0\right.
$$

i.e.
$\lambda^{n}+p_{1} \lambda^{\mathrm{n}-1}+\ldots+\mathrm{p}_{\mathrm{n}}=0$
(ii)
it is called the characteristic equation of A. This equation naturally has n roots, so these n-roots of λ are called the characteristic roots, latent roots, or eigenvalues of A.

Again, if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{i} j}\right]_{\mathrm{n} \times \mathrm{n}}$ is a square matrix of order n and $X=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right]$ is a column vector which is transformed by A into its scalar multiple such that

$$
\begin{equation*}
\mathrm{AX}=\lambda \mathrm{X} \tag{iii}
\end{equation*}
$$

And if I is the unit matrix of the same order then (iii) can be written as
$A X=\lambda I X$
or

$$
\begin{equation*}
(\mathrm{A}-\lambda \mathrm{I}) \mathrm{X}=0 \tag{iv}
\end{equation*}
$$

which is called the characteristic matrix equation and this equation (iv) represents n homogeneous equations:

$$
\begin{gathered}
\left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}+\ldots+a_{2 n} x_{n}=0 \\
\ldots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+\left(a_{n n}-\lambda\right) x_{n}=0
\end{gathered}
$$

This system of n homogeneous linear equations will have a non-zero solution if $|\boldsymbol{A}-\boldsymbol{\lambda}|$ is singular i.e. $|\boldsymbol{A}-\boldsymbol{\lambda}|=0$. Moreover the roots of $(\mathrm{A}-\lambda \mathrm{I})=0$ gives the n -eigenvalues $\quad\left(\lambda_{1} \ldots\right.$
λ_{n}). To each eigenvalue of A , there corresponds a non-zero solution to the vector $X=\left[\begin{array}{l}x_{1} \\ \cdot \\ \cdot \\ \cdot \\ x_{n}\end{array}\right]$.
This vector X is called the eigenvector of A (corresponding to that particular eigenvalue of A). Note that the eigenvector corresponding to each eigenvalue is not unique. So any scalar multiple of the E-vector are also the E-vectors of A corresponding to those particular E-values of A.

For example, if $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ is a square matrix then the characteristic equation is

$$
|A-\lambda t|=0
$$

i.e. $\left[\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right]=0 \Rightarrow \lambda^{2}-4 \lambda+3=0 \Rightarrow \lambda=1$ or 3
which are the E-values of A. Again, if \int : is an E-vector then the corresponding matrix 11
equation is

$$
\begin{gather*}
(\mathrm{A}-\lambda \mathrm{I}) \mathrm{x}=0 \tag{v}\\
\text { i.e, }\left[\begin{array}{cc}
2-\lambda & 1 \\
1 & 2-\lambda
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
\end{gather*}
$$

(vi)

When $\lambda=1$ then (vi) reduces to

$$
\left.\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \Rightarrow \text { and } \begin{array}{l}
x+y=0 \\
x+y=0
\end{array}\right\}
$$

$($ No of LI solutions $=$ unknowns-rank $=2-1=1)$
If we assign $x=1$ then we get $y=-1$ so the E-vector is $\left[\begin{array}{r}1 \\ -1\end{array}\right]$ and the set of all E-vectors is $\left[\begin{array}{r}k_{1} \\ -k_{1}\end{array}\right]^{\prime}\left(k_{1} \neq 0\right)$. Similarly when $\lambda=3$ then (vi) give the E-vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and the set of all eigenvectors is $\left[\begin{array}{l}k_{2} \\ k_{2}\end{array}\right]^{\prime}\left(k_{2} \neq 0\right)$.

2. Application of E-values and E-vectors in the Diagonalization of a Square Matrix

Now we shed light on the reduction of a given square matrix into the diagonal form through the transforming matrix P to the diagonal from D .
It is clear that "If a square matrix $A=\left[a_{i j}\right]_{n \gg n}$ of order n has n linearly independent E-vectors then a matrix P can be found such that $\mathrm{P}^{-1} \mathrm{AP}$ is a diagonal matrix (whose diagonal elements are the same E-values)". For example, if we are given a matrix
$A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ then a transforming matrix P can be found such that $\mathrm{P}^{-1} \mathrm{AP}\left(=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right](=D)\right)$ which transforms A into the diagonal form $\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ whose diagonal elements are the same Evalues.
(Note that the sum of all diagonal elements of a given square matrix A is equal to the sum of all E-values of A).
Moreover, if $\mathrm{P}=\left[\begin{array}{ll}\mathrm{X}_{1} & \mathrm{X}_{2}\end{array}\right]$ be a column vector of the transforming matrix P of a given square matrix $A=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$. The E-values of A are 1 and 3 and the E-vectors corresponding to $\lambda=1$ and $\lambda=3$ are $\left[\begin{array}{r}1 \\ -1\end{array}\right]\left(=X_{1}\right)$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]\left(=X_{2}\right)$ respectively.
Then we make a new matrix $\mathrm{P}=\left[\mathrm{X}_{1} \mathrm{X}_{2}\right]=\left[\begin{array}{rr}1 & 1 \\ -1 & 1\end{array}\right]$
which is the transforming matrix which transforms A into the diagonal from (D) i.e.
$P^{-1} A P=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right](=\mathrm{D})$ which is the diagonal from D and the diagonal elements are the same E-values. This is the direct relation among the E-values, E-vectors, transforming matrix P and the diagonal form D of a given square matrix A which has a relation like a grandfather.
This relationship can be sketched/represented graphically as shown below.

This pictorial representation shows the deep relationship, among the E-values and the E-vectors of a given square matrix A .

3. Application of Cayley-Hamilton theorem in finding the inverse of a given square matrix

Here we show the application of the Cayley-Hamilton Theorem ($\mathrm{C}-\mathrm{H}$ theorem) to find the inverse of a given square matrix in simpler form. We know that the Cayley-Hamilton theorem states that "every square matrix A satisfies its own characteristic equation".
For, if $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$ is a square matrix of order n then its characteristic equation is

$$
|A-\lambda \boldsymbol{I}|=\mathrm{O}
$$

i.e.

$$
\begin{equation*}
\boldsymbol{\lambda}^{\mathrm{n}}+\mathrm{p}_{1} \boldsymbol{\lambda}^{\mathrm{n}-1}+\mathrm{p}_{2} \boldsymbol{\lambda}^{\mathrm{n}-1}+\ldots+\mathrm{p}_{\mathrm{n}}=0 \tag{vii}
\end{equation*}
$$

then by C-H theorem $A^{n}+p_{1} A^{n-1}+p_{2} A^{n-1}+\ldots+p_{n} I=0$
where I is the unit matrix of the same order. The inverse of the given square matrix A can be obtained directly by using this Cayley-Hamilton theorem. From the equation (viii)

$$
\mathrm{A}^{\mathrm{n}}+\mathrm{p}_{1} \mathrm{~A}^{\mathrm{n}-1}+\mathrm{p}_{2} \mathrm{~A}^{\mathrm{n}-1}+\ldots+\mathrm{p}_{\mathrm{n}} \mathrm{I}=0
$$

Now multiplying both sides by A^{-1}

$$
\begin{aligned}
& \text { we get } \mathrm{A}^{-1}\left(\mathrm{~A}^{\mathrm{n}}+\mathrm{p}_{1} \mathrm{~A}^{\mathrm{n}-1}+\ldots+\mathrm{p}_{\mathrm{n}} \mathrm{I}=\mathrm{A}^{-1} \cdot 0\right. \\
& \text { or } \quad \mathrm{A}^{\mathrm{n}-1}+\mathrm{p}_{1} \mathrm{~A}^{\mathrm{n}-2}+\ldots+\mathrm{p}_{\mathrm{n}-1} \mathrm{I}+\mathrm{A}^{-1} \cdot \mathrm{p}_{\mathrm{n}}=0 \\
\Rightarrow & \mathrm{~A}^{-1}=-\frac{1}{p^{n}}\left[A^{n-1}+p_{1} \cdot A^{n-2}+\ldots+p_{n-1} I\right]
\end{aligned}
$$

results in the inverse of a square matrix A. This is a very nice application of the Cayley-Hamilton theorem from which we get A^{-1} by a short and sweet method without using the lengthy formula

$$
A^{-1}=\frac{A d j . A}{|A|}(A \neq 0)
$$

which are nice applications of E-values \& E-vectors in the diagonalization of a matrix \& in the Cayley-Hamilton theorem.

Some common properties of E-values, E-vectors, transforming matrix \& diagonal form (matrix)

1. Any square matrix A and its transpose have the same E-values.
2.

The trace of the matrix equals to the sum of E-values of the same matrix.
i.e. $\left(a_{11}+a_{22}+\ldots+a_{n n}=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}\right)$
3. The determinant of the matrix A equals the product of E -values of A .
4. If $\left(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\right)$ are the n E-values of A then the E-values of $k A$ are $\left(k \lambda_{1}, k \lambda_{2}, \ldots k \lambda_{n}\right)$.
5. E-values of A^{-1} are $\frac{1}{\lambda_{4}}, \frac{1}{\lambda_{2}} \ldots \frac{1}{\lambda_{n}}$.
6. If λ is an E-value of a matrix A then $\frac{1}{\lambda}$ is an E-value of A^{-1}.
7. If $\left(\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\right)$ are the E-values of a square matrix A, then A^{m} has the E-values $\lambda_{1}^{n}, \lambda_{2}^{n}, \ldots \lambda_{n}^{n}$, where m is a positive integer.

Zero is an E-value of a square matrix A if and only if A is singular i.e. $|\boldsymbol{A}|=0$.
9. The E-values of a triangular matrix are just the diagonals elements of the matrix.
10. Two matrices $\mathrm{A} \& \mathrm{P}^{-1} \mathrm{AP}$ have the same E-values.

Eigen values of some special type of matrices

The E-values of the Hermitian matrix are real.
The E-values of a real symmetric matrix are all real.
Every E-value of a skew-Hermitian matrix is either 0 or a pure imaginary number.
The E-values of a unitary matrix are of unit modulus.
The E-values of an orthogonal matrix are of unit modulus.
If λ is an E-value of an orthogonal matrix A then $\frac{1}{\lambda}$ is also an E-value of A.

4. Conclusion

E-values, E-vectors have a nice application in the diagonalization of a square matrix and in the Cayley-Hamilton theorem used to find the matrix inverse and in all the endeavors of medical, engineering and social sciences.

REFERENCE

[1] Elementary Linear Algebra, Keith Matthews, Lecture notes and solutions from 1991 in PDF or post script
[2] Linear Algebra, Wolfram MathWorld.
[3] Linear Algebra, Wikipedia, the free encyclopedia.

