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Abstract: 
Burgers' equation is a well-known partial differential equation that arises in many areas such as fluid mechanics, non-
linear acoustics, gas dynamics, and traffic flow. This paper aims to discuss Burgers’ equation and its applications. We 
begin with the historical development of Burgers’ equation. We mainly focus on the study of traffic flow models where we 
use the inviscid version of Burger’ equation to model the flow. To this end, we discuss the classification of traffic flow 
models and some recent development of traffic flow models. 
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1.Introduction                                                            

Linear and non-linear partial differential equations 

(PDEs) are used to model different physical 

phenomena in science and engineering. Many simple 

and complex PDEs are developed to model real life 

problems which are also related to the engineering 

system. Different physical processes which play very 

significant roles in development, design and analysis 

of engineering system are explained by the PDEs. 

For various physical model we must have knowledge 

of flow of fluids. Water system of a city, blood 

carried throughout our bodies by arteries and veins, 

flow of car and vehicles on a road and gas dynamic 

are some physical processes which work on flow of 

fluids. In applied mathematics, Burgers’ equation 

occurs in the study of turbulence, gas-fluid 

dynamics, heat conduction and traffic flow 

problems. Our attention in this paper is to study 

traffic flow problems in the light of traffic models 

that are derived from Burgers’ Equation. One- way 

traffic flow is modelled by using inviscid Burgers’ 

equation. We first begin with Burgers’ equation. 

2. Burgers' Equation                                             

Burgers’ equation was first introduced by Henary  

 

 

 

Bateman [5] while describing the motion of viscous 

fluid in 1915. Precisely, Burgers' equation is  
∂u

∂t
+ 𝑢

∂u

∂x
= ν

∂2𝑢

∂x2                                        …(2.1) 

where u, x, t and 𝜈 are the velocity, spatial 

coordinate, time and kinematic viscosity 

respectively. If 𝜈 ≠ 0, then the equation is called 

viscous Burgers' equation and  

when 𝜈 =0, it is called inviscid Burgers' equation. 

The Burgers' equation is the non-linear convection-

diffusion equation which has convective term 𝑢
∂u

∂x
  

and diffusive term ν
∂2𝑢

∂x2.  

Burger developed this equation in 1948 to study the 

turbulence described by the interaction of two 

opposite effects of convection and diffusion. The 

Burgers' equation is parabolic with the viscous term 

and if the viscous term is not included then the 

equation is hyperbolic. The equation (2.1) is a non-

linear equation very similar to the Navier-Stokes 

equation. 

The Burgers’ equation is named for Johannes 

Martinus Burgers’ (1895-1981). Eberhard Hopf in 

1950 and Julian David Cole in 1951 independently 

introduced a transformation which convert Burgers’ 

equation into a linear heat equation and solved 

exactly for an arbitrary initial condition [9]. This 
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transformation is known as Cole-Hopf 

transformation. The Hopf-Cole transformation is 

𝑢(𝑥, 𝑡) = −2𝜈
𝑤𝑥

𝑤
 

where 𝑤 is a dependent variable satisfies the famous 

heat equation. 

∂w

∂t
= ν

∂2𝑤

∂x2
 

In 1972, Benton and Platzman [6] classified 35 

distinct solutions of one-dimensional Burgers’ 

equation with different initial conditions in tabular 

form. Engelberg[12] in 1998 studied the existence 

and the shock profile of the Burgers’ equation. He 

used Hopf-Cole transformation to show when shock 

like profiles exist. He also studied the decay of 

perturbations of shock-like profiles of the Burgers’ 

equation. Bogaevsky [8] found in 2004 that the 

matter accumulates in the shock discontinuities in 

inviscid solutions of the forced Burgers’ equation. 

Taku Ohwada [18] in 2009, proposed a numerical 

method to solve the Burgers’ equation by using 

diffusion equation. He also used Hopf-Cole 

transformation for an alternative basis of shock 

capturing scheme. The exact solution is given by:  

𝑢(𝑥, 𝑡) = [1 + exp [
2𝑥 − 𝑡

4𝜈
] 

1 + erf [
𝑥

√2𝜈𝑡
]

1 − erf [
𝑥 − 𝑡

√2𝜈𝑡
]
]

−1

 

Where, erf[𝑥] =
2

√𝜋
∫ exp(−𝑦2)𝑑𝑦 .

𝑥

0
 

 Abazari and Borhanifar [1] applied differential 

transformation method to solve Burgers’ and 

coupled Burgers’ equation in 2010. They found that 

differential transformation method is exact and easy 

to apply. This method reduces the computational 

difficulties of the other methods. Khalifa et. al [15] 

in 2011 used spectral method to solve non-linear 

Burgers’ equation. They proposed Legendre 

polynomials as a basis for the space of solutions and 

it gives better results than others. Adegboyegun[2] in 

2013 applied Adomian's decomposition method to 

approximate solution of Burgers’ equation. He 

obtained an explicit solution for Burgers’ equation 

with low kinematic viscosity which was not exist 

before that. Ali Kurt et. al [16] discovered 

approximate analytical solution of time conformable 

fractional Burgers’ equation by using a homotopy 

analysis method in 2015. Ucar et. al [21] in 2017 

found the numerical solutions of the modified 

Burgers’ equation by finite difference method. The 

one-dimensional generalized Burgers’ equation 

𝑈𝑡 + 𝑈𝑝𝑈𝑥 − 𝜈 𝑈𝑥𝑥 = 0 

when  𝑝 = 2 the equation is known as the modified 

Burgers’ equation. They also discovered that the 

error norms 𝐿2 and 𝐿∞ are sufficiently small. We 

next discuss an application of  Burgers’ equation in 

traffic flow and its behaviour. 

3. Traffic Flow and its Behaviour                            

When we observe traffic flow from a distance, the 

flow of heavy traffic appears to be a fluid stream. As 

a result, by viewing traffic as an essentially one-

dimensional compressible fluid, a macroscopic 

theory of traffic may be created using hydrodynamic 

theory of fluids. In traffic flow individual vehicle 

behavior is ignored, and one is only concerned with 

the behavior of a group of vehicles. To handle 

vehicle number conservation on a route, the earliest 

traffic flow models began by developing the balance 

equation. In fact, the law of conservation of the 

number of vehicles on the road must be satisfied by 

all traffic flow models and theories. 

4. Traffic Models                                                    

Traffic models are used to understand the traffic 

behavior and to develop efficient traffic control 

plans. Different traffic conditions occur due to jams, 

accidents and sudden changes in traffic. Drivers’ 

reaction is due to forward conditions, which changes 

density and velocity of vehicles. Traffic flow models 

can be classified into macroscopic, microscopic and 

mesoscopic models. The macroscopic models are 

based on the assumption that there are large number 

of vehicles on the road, so these models are based on 

the aggregate behavior of the vehicles. Macroscopic 

models formulate the relationships between speed, 

density and flow of traffic. Macroscopic models 

describe the traffic as continuum flow. The 

microscopic traffic models describe all the 

components of traffic flow in details and interactions 
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between them. Microscopic models simulate single 

vehicle-driver unit. To describe the traffic, the 

microscopic models generally use the microscopic 

variables such as velocity, position and acceleration 

of individual vehicles. Microscopic models describe 

the behavior of individual vehicle. Mesoscopic 

traffic flow models were developed to fill the gap 

between macroscopic and microscopic models. It 

simulates models by calculating some elements 

macroscopically and some microscopically. 

Microscopic models forecast the traffic in more 

details than macroscopic models. The microscopic 

models are suitable for control system for road 

vehicles that automatically adjust the speed to 

maintain a safe distance from vehicle ahead. These 

models are used in different applications where the 

predictions of individual vehicles are necessary. But 

in the applications where fast computations are 

important rather than details, the macroscopic 

models are preferable. The applications such as 

management of traffic for large scale and evacuation 

planning require more realistic macroscopic models. 

The hybrid models are used in the applications which 

require detail information to cover a small area and 

fast computation to estimate over a long-time 

horizon. Few traffic flow models are listed as follows 

[19]: 

1. Equilibrium model:  

𝜌𝑡 + (𝜌𝑣)𝑥 = 0. 

2. Isotropic inviscid non-equilibrium model: 

   

 𝜌𝑡 + (𝜌𝑣)𝑥 = 0. 

𝑣𝑡 + 𝑣𝑣𝑥 +
𝐶2(𝜌)

𝜌
𝜌𝑥 =

𝑉𝑒(𝜌)−𝑣

𝑇
. 

3. Anisotropic inviscid non-equilibrium model: 

   

 𝜌𝑡 + (𝜌𝑣)𝑥 = 0. 

𝑣𝑡 + (𝑣 − 𝐶(𝜌))𝑣𝑥 = 0. 

4. Isotropic viscous non-equilibrium model: 

   

 𝜌𝑡 + (𝜌𝑣)𝑥 = 0. 

𝑣𝑡 + 𝑣𝑣𝑥 +
𝐶2(𝜌)

𝜌
𝜌𝑥 =

𝑉𝑒(𝜌)−𝑣

𝑇
+ 𝜇𝑣𝑥𝑥. 

5. Anisotropic viscous non-equilibrium model: 

   

 𝜌𝑡 + (𝜌𝑣)𝑥 = 0. 

𝑣𝑡 + (𝑣 + 2𝛽𝐶(𝜌))𝑣𝑥 +
𝐶2(𝜌)

𝜌
𝜌𝑥 =

𝑉𝑒(𝜌)−𝑣

𝑇
+

𝜇(𝜌)𝑣𝑥𝑥. 

In this paper we study only those traffic models 

which evolved Burgers’ equation. 

5. Burgers Equation in Traffic Flow Models     

Traffic flow models have been developed since the 

beginning of the twentieth century. The first traffic 

model was presented by Bruce Greenshields [13] in 

1934 at thirteenth annual meeting of highway 

research board. After the development of the first 

model researchers developed many other models and 

simulation tools. They included different dynamics 

in the models and applied for the predictions of 

traffic conditions. The first model of traffic flow 

presented by Greenshields is based on the 

assumption that there is some relation between the 

distance between vehicles and their velocity [13]. 

The others models developed after that also based on 

the same assumption. A powerful relationship 

between fluid dynamics and traffic flow models is 

represented by the Burgers’ equation. Greenshields 

in 1935 presented the traffic flow model which 

relates density and speed of the vehicles at fourteenth 

annual meeting of highway research board. This 

model first time formed Burgers’ equation in the 

theory of traffic flow models. In this model 

Greenshields assumed that velocity 𝑣 only depends 

on density 𝜌. If density is minimum i.e., 𝜌 = 0 or the 

road is empty, then the velocity is maximum 

i.e., 𝑣 =  𝑣𝑚𝑎𝑥. If the density is maximum i.e 𝜌 = 

𝜌𝑚𝑎𝑥   or in heavy traffic, the velocity is zero i.e. 𝑣 =
 0. The density velocity relation is given by, 

𝑣(𝜌) = 𝑣𝑚𝑎𝑥 (1 −
𝜌

𝜌𝑚𝑎𝑥
)            … (3.1) 

The kinematic wave model which is the preliminary 

version of macroscopic model developed by 

Lighthill and Whitham [17] in 1955 and Richards in 

1956 is formed Burgers’ equation. They used density 

velocity relationship proposed by Greenshields. For 

traffic flow model traffic flow of vehicles on a road 

with only one lane considered. Let density of the 

vehicles (vehicles per kilometer) be 𝜌(𝑥, 𝑡) in 𝑥 ∈  ℝ 

and 𝑡 ≥ 0.  

Then the number of vehicles which are in the interval 

(𝑥1, 𝑥2) at time 𝑡 is 
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∫ 𝜌(𝑥, 𝑡)𝑑𝑥

𝑥2

𝑥1

 

The velocity of the vehicles in 𝑥 at time 𝑡 is 𝑣(𝑥, 𝑡). 

Then, the numbers of vehicles which pass through 𝑥 

at time 𝑡 is 

𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡) 

From the conservation law, the number of vehicles in 

the interval (𝑥1, 𝑥2)  changes according to the 

number of vehicles which enter or leave this interval 

is given by 

𝑑

𝑑𝑥
∫ 𝜌(𝑥, 𝑡)𝑑𝑥

𝑥2

𝑥1

= 𝜌(𝑥1, 𝑡)𝑣(𝑥1, 𝑡) − 𝜌(𝑥2, 𝑡)𝑣(𝑥2, 𝑡) 

Integrate above equation with respect to time and 

assume that 𝜌 and 𝑣 are regular functions, then 

∫ ∫ 𝜕𝑡 𝜌(𝑥, 𝑡)𝑑𝑥

𝑥2

𝑥1

𝑑𝑡

𝑡2

𝑡1

 

    = ∫ (𝜌(𝑥1, 𝑡)𝑣(𝑥1, 𝑡) −
𝑡2

𝑡1

𝜌(𝑥2, 𝑡)𝑣(𝑥2, 𝑡))𝑑𝑡 

 

= − ∫ ∫ 𝜕𝑥( 𝜌(𝑥, 𝑡)𝑣(𝑥, 𝑡))𝑑𝑥

𝑥2

𝑥1

𝑑𝑡

𝑡2

𝑡1

 

Here, 𝑥1,  𝑥2 ∈  ℝ and 𝑡1 , 𝑡2  >  0 are arbitrary, so we 

can conclude 

𝜌𝑡 + (𝜌𝑣)𝑥 = 0, 𝑥 ∈  ℝ,    𝑡 > 0           …(3.2) 

which is a partial differential equation, let the initial 

condition be 

𝜌(𝑥, 0) = 𝜌0(𝑥),  𝑥 ∈  ℝ           …(3.3) 

Then from relation (3.1), 

 

𝜌𝑡 + [𝑣𝑚𝑎𝑥𝜌 (1 −
𝜌

𝜌𝑚𝑎𝑥
)]

𝑥

= 0, 

𝑥 ∈  ℝ,    𝑡 > 0                …(3.4) 

 

The above equation is conservation law for the 

number of vehicles. Integrating (3.4) over 

𝑥 ∈  ℝ, gives 

𝑑

𝑑𝑡
 ∫ 𝜌 (𝑥, 𝑡)𝑑𝑥

ℝ

=  ∫ [𝑣𝑚𝑎𝑥𝜌(𝑥, 𝑡) (1 −
𝜌(𝑥, 𝑡)

𝜌𝑚𝑎𝑥
)] 𝑑𝑥

ℝ

= 0 

 

Therefore, the number of vehicles in ℝ is a constant 

for all 𝑡 ≥ 0. The equation (3.4) can be simplified by 

making it dimensionless form. Let 𝐿 and  𝜏 be the 

length and time respectively such that 𝑣𝑚𝑎𝑥 =
𝐿

𝜏
 . 

Introducing  

𝑥𝑠 =
𝑥

𝐿
,                                           𝑡𝑠 =

𝑡

𝜏
,                                   𝑢 = 1 −

2𝜌

𝜌𝑚𝑎𝑥

 

 

Then ,   

 𝜌 =
𝜌𝑚𝑎𝑥

2
 (1 − 𝑢) 

So,  

𝜕𝑡𝜌 =
1

𝜏
𝜕𝑡𝑠

[
𝜌𝑚𝑎𝑥

2
 (1 − 𝑢)] = −

𝜌𝑚𝑎𝑥

2𝜏
𝜕𝑡𝑠

𝑢 

 

and  

𝜕𝑥 [𝑣𝑚𝑎𝑥𝜌 (1 −
𝜌

𝜌𝑚𝑎𝑥
)]

=
1

𝐿
𝜕𝑥𝑠

[𝑣𝑚𝑎𝑥

𝜌𝑚𝑎𝑥

2
 (−𝑢)

1

2
(+𝑢)]

=  −
𝜌𝑚𝑎𝑥

2𝜏
𝜕𝑥𝑠

(
𝑢2

2
) 

By using (𝑥, 𝑡) instead of (𝑥𝑠, 𝑡𝑠), the equations 

(3.3) and (3.4) can be written as 

 

𝑢𝑡 + (
𝑢2

2
)

𝑥
= 0,                 𝑥 ∈  ℝ,    𝑡 > 0    … (3.5) 

𝑢(𝑥, 0) = 𝑢0(𝑥),                𝑥 ∈  ℝ          …(3.6) 

 

with 𝑢0(𝑥) = 1 −
2𝜌0

𝜌𝑚𝑎𝑥
 . If the road is empty (𝜌 = 0) 

then 𝑢 = 1 and in a tailback  (𝜌 = 𝜌𝑚𝑎𝑥) then 𝑢 =
−1. 

So, the Lighthill-Whitham-Richards Model (LWR) 

is 

𝜌𝑡 + (𝜌𝑣(𝜌)𝑥) = 0,           𝑣(𝜌) 

= 𝑣𝑚𝑎𝑥 (1 −
𝜌

𝜌𝑚𝑎𝑥
) ,      0 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥 

which can be simplified by the transformation 𝑢 = 1 −
2𝜌

𝜌𝑚𝑎𝑥
 to obtain 

𝑢𝑡 +
1

2
(𝑢2)𝑥 = 0 
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which is Inviscid Burgers Equation. 

The LWR model used the continuity equation and 

speed-density relation to present the traffic flow. 

This model assumes traffic flow in equilibrium. That 

is, it assumes that the speed and density values at any 

point in the flow at any time are according to the 

equilibrium relation [20]. This model has received 

attention of many researchers and critical analysis. 

The main analysis is that the vehicles are achieve 

new speeds when the density increases or decrease, 

that means acceleration or deceleration is infinite. 

This problem has addressed by higher order 

macroscopic models and generalized LWR models. 

Greenberg in 1959 assumed a logarithmic 

relationship between speed and density, that means it 

is assumed that the velocity of the vehicles can be 

very large for low densities. The main feature of this 

model is that this model can be derived analytically, 

but the main drawback of this model is that as density 

tends to zero, speed tends to infinity. This shows the 

inability of the model to predict the speeds 

at lower densities. The Greenberg Model is 

𝜌𝑡 + (𝜌𝑣(𝜌)𝑥) = 0,           𝑣(𝜌)

= 𝑣𝑚𝑎𝑥 ln
𝜌

𝜌𝑚𝑎𝑥
,      0 ≤ 𝜌 ≤ 𝜌𝑚𝑎𝑥 

This implies 

𝜌𝑡 − 𝑣𝑚𝑎𝑥(𝜌 ln 𝜌)𝑥 = 0 

 

To address the issue of infinite acceleration or 

deceleration in the LWR model, Payne proposed a 

high order traffic flow model in 1971 which is based 

on car flowing theory and traffic adjustments are due 

to driver response. Whitham proposed a similar 

traffic flow model in 1974, which is known as Payne-

Whitham (PW) model. It is based on the assumption 

that all vehicles have similar behavior, but in reality, 

the behavior of all vehicles is not same, so this model 

can lead to unrealistic results. The Payne-Whitham 

(PW) Model is 

 

𝜌𝑡 + (𝜌𝑣)𝑥 = 0,           
 (𝜌𝑣)𝑡 + [𝜌𝑣2 + 𝑝(𝜌)]𝑥 = 0 

 

But in 1994, Carlos F. Daganzo [11] showed that the 

high order modifications lead to fundamentally 

flawed model structure. These modifications can 

make the things worse. The PW model mimics the 

traffic flow as the flow of gas particles. Carlos also 

showed that the representation of traffic flow as a 

fluid in higher order models are not reasonable and 

lead to unrealistic results [11]. One of the 

macroscopic phenomena, traffic hysteresis was 

discussed by Zhang [25] in 1999. He proposed that if 

different parameters of traffic flow should be 

distinguished in obtaining fundamental relationships, 

only then the phase transition from one phase to other 

can correctly identified. Chowdhury et. al [10] in 

2000 found that, from a far distance, the traffic flow 

can be considered as an one dimensional 

compressible fluid. To correct the drawbacks of the 

PW model, Aw and Rascle proposed a modified 

model in 2000, which referred as AR model [4]. The 

Aw-Rascle Model is given by 

𝜌𝑡 + (𝜌𝑣)𝑥 = 0,          
 [𝜌𝑣 + 𝜌𝑝(𝜌)]𝑡 + [𝜌𝑣2 + 𝜌𝑣𝑝(𝜌)]𝑥 = 0 

The AR model avoids the gas like behavior, but it 

fails that in real life situations the velocity and 

density have limits. Aw et. al [3] in 2002 showed that 

Aw-Rascle model has been derived from 

microscopic model with a scaling in space and time 

for which the density and the velocity remain fixed. 

Xue Yu [23] in 2002, extended optimal velocity 

model of traffic flow to take into account the relative 

velocity. He used perturbation method to analysis the 

stability and density wave of traffic flow. In traffic 

flow the changing density wave from non-uniform to 

uniform distribution is described by the Burgers 

equation. YU and Zhou [24] in 2014 discussed the 

triangular shock wave determined by Burgers’ 

equation in the stable region with reductive 

perturbation method. Yacob et. al [22] applied 

inviscid Burgers’ equation to model traffic flow and 

solve one- way traffic flow by the method of linear 

system. In 2018 Hartono et. al [14] used multiple-

scale method to solve the same problem. N Binatari 

[7] found that homotopy perturbation method is more 

effective to solve Burgers’ equation with boundary 

condition in traffic flow 

problem. 

6. Conclusions                                                       

Various situations in traffic flow can be best 

described with the help of Burgers’ equation. We 

discussed the Burgers’ equation along with its 

applications in traffic flow and focused on the recent 
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development on the various forms of Burgers’ 

equation. 
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