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Abstract: Providing service immediately after the arrival is rarely been used in 
practice. But there are some situations for which servers are more than the 
arrivals and no one has to wait to get served. In this model, arrival rate is 𝜆𝜆 which 
follows a Poisson process and service time is exponentially distributed with rate 
𝜇𝜇. We have assumed the finite capacity queueing model and only 𝑁𝑁 number of 
customers can get service. Customers more than 𝑁𝑁 arrivals are rejected. We 
derive the explicit formulas for the average number of customers in the system 
by using recursive method to solve the system of steady state equations. 
Numerical results relevant to the performance indices have been presented so as 
to validate the results. The optimal rates of service have also been obtained by 
using routine optimization technique. 
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1. Introduction 

Standing in a queue in front of the bank, supermarket and many other places is our day to day 
experience. It is not an easy task to line up for the service. There are some special situations in 
which arrivals get the service instantly. It is a rare practice in queueing theory but also it is in use 
for some special situations in which waiting in a queue may result non-bearable loss. Everyone in 
a queue wants to be served first though it is not always possible. The common rule for service in 
a queue is first come first served (FCFS). There are some queueing disciplines in which last 
comer gets the service at first but in this paper, we have derived a model for which no arrivals 
have to wait for the service. No customers are expected to wait because servers are fixed more 
than the customers. This type of queueing model is known as infinite server queueing model. We 
are discussing here the Markovian queueing model which follows the Poisson arrival with rate 𝜆𝜆 
and mean inter-arrival time is 𝜆𝜆 . Service time is distributed exponentially with rate 𝜇𝜇 so that 

mean service time is 𝜇𝜇 . We are proposing this model only for the finite number of customers. 
Number of customers more than 𝑁𝑁 will not be served. Another interest in this paper is to 
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1. Introduction 

Standing in a queue in front of the bank, supermarket and many other places is our day to day 
experience. It is not an easy task to line up for the service. There are some special situations in 
which arrivals get the service instantly. It is a rare practice in queueing theory but also it is in use 
for some special situations in which waiting in a queue may result non-bearable loss. Everyone in 
a queue wants to be served first though it is not always possible. The common rule for service in 
a queue is first come first served (FCFS). There are some queueing disciplines in which last 
comer gets the service at first but in this paper, we have derived a model for which no arrivals 
have to wait for the service. No customers are expected to wait because servers are fixed more 
than the customers. This type of queueing model is known as infinite server queueing model. We 
are discussing here the Markovian queueing model which follows the Poisson arrival with rate 𝜆𝜆 
and mean inter-arrival time is 𝜆𝜆 . Service time is distributed exponentially with rate 𝜇𝜇 so that 

mean service time is 𝜇𝜇 . We are proposing this model only for the finite number of customers. 
Number of customers more than 𝑁𝑁 will not be served. Another interest in this paper is to 

optimize the service rate for the given values of arrivals to get the revenue. We have used the 
formula for the total expected cost and the total expected revenue for the calculation of total 
expected profit. We have not considered the constraints for the optimization model therefore 
routine method of calculus has been used to find the maximum revenue assuming the fixed value 
of arrival rate.  

The paper is planned as follows: Section 2 describes the brief literature review. Section 3 
includes notations used in the model together with the mathematical derivation and formula for 
mean number of customers in the system. Mathematics for the optimization of service rate is 
presented in Section 4. Section 5 describes the numerical results and interpretations. Finally, 
Section 6 concludes the paper. 

2. Brief Literature Review 

On arrival service for any customer in any queueing system is very difficult in practice. 
Queueing models of real life situations such as complex manufacturing system, transportation 
system, telecommunication system have to be tackled for the logical conclusion though they are 
expensive and hardly manageable. Increasing complexities of the queueing models, and vis- a- 
vis development of the techniques is due to the contributions of several researchers in the field. 
So, it is worthwhile to mention some of the works done on the line. Abidini et al. [1] studied a 
single-server multi-queue model for a vacation-type queueing system focusing mainly on queue 
length analysis. Ammar [2] derived expressions for the time dependent probabilities, mean and 
variance of the system size with some numerical illustrations to study the impatience customers 
and multiple vacations in a single server queueing system. Barache et al. [3] used 𝑀𝑀 𝑀𝑀 ∞  
queueing model to evaluate the stationary characteristics of the 𝐺𝐺𝐼𝐼 𝑀𝑀 ∞ queueing system and 
to observe the performance of the proposed model. Corral and Garcia [4] calculated maximum 
queue length during a fixed time interval using splitting methods and eigenvalue, eigenvector 
technique for an 𝑀𝑀 𝑀𝑀 𝑐𝑐 retrial queueing system. D’Auria [5] analysed 𝑀𝑀 𝐺𝐺 ∞ queue to study 
the stochastic decomposition formula for the number of customers in the system with some 
examples in random environment. Ghimire et al. [6] verified formulas for mean queue length and 
mean waiting time using generating function technique for the batch arrival of customers. 
Ghimire et al. [7] calculated various performance measures for finite capacity time dependent 
multi-server queueing model and verified the results graphically using simulation. Gullu [8] 
considered 𝑀𝑀 𝐺𝐺 ∞ queueing system for batch arrival in which same server serves the whole 
batch. Haviv and Oz [9] reviewed some existing observable queueing mechanisms where money 
transfers was taken into account concluding that the best ones are those in which customers have 
to make up their mind to join the queue without inspecting the queue length. Jiang et al. [10] 
dealt with a disaster 𝑀𝑀 𝐺𝐺  queue in a multi-phase random environment in which the system 
stops working suddenly and resumes after exponential repair time. Kumar et al. [11] derived an 
optimization model of an 𝑀𝑀 𝑀𝑀 𝑁𝑁 feedback queue with retention of reneged customers. 
Roijers et al. [12] obtained all moments and covariance for congestion periods of a 𝑀𝑀 𝑀𝑀 ∞ 
queue. Sah and Ghimire [13] studied transient Erlangian queueing system to calculate the 
different performance measures. Schweer and Wichelhaus [14] studied non-parametric 𝐺𝐺𝐼𝐼 𝐺𝐺 ∞ 
queueing system to estimate the service time distribution under partial information. Whitt [15] 
examined steady state infinite server queuing distribution where exponential service and 
sinusoidal arrival rate function is assumed. Wu et al. [16] examined the stability condition using 
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quasi-birth-and-death process for the optimization analysis of an unreliable multi-server queue 
with a controllable repair policy.  

3. Mathematical Model  

We derive the mathematical model of the problem by using the following notations:  

𝜆𝜆 = mean inter-arrival time  

𝜇𝜇  = mean service time  

𝐿𝐿𝑠𝑠 = mean number of customers in the system 
𝑊𝑊𝑠𝑠  = mean waiting time in the system 
𝐶𝐶𝑠𝑠 = cost of service per unit time 
𝐶𝐶ℎ  = unit holding cost per unit time 
𝐶𝐶𝐿𝐿 = cost associated with each lost unit 
𝑅𝑅 = revenue earned by providing service to a customer 
𝑇𝑇𝐸𝐸𝐶𝐶 = total expected cost per unit time of the system 
𝑇𝑇𝐸𝐸𝑅𝑅 = total expected revenue per unit time of the system 
𝑇𝑇𝐸𝐸𝑃𝑃 = total expected profit per unit time of the system 
 
A transient diagram is presented to establish the steady state balanced equations. Recursive 
method is used to solve the balanced equations to get mean number of customers in the system 
and the mean waiting time in the system. 

 

Fig 1: Transition diagram 

Balanced equations are as follows: 

𝑁𝑁𝜆𝜆𝑃𝑃 𝜇𝜇𝑃𝑃           (1) 

 𝑁𝑁 −  𝜆𝜆𝑃𝑃 𝜇𝜇𝑃𝑃 𝑁𝑁𝜆𝜆𝑃𝑃 𝜇𝜇𝑃𝑃        (2) 

 𝑁𝑁 −  𝜆𝜆𝑃𝑃 𝜇𝜇𝑃𝑃  𝑁𝑁 −  𝜆𝜆𝑃𝑃 𝜇𝜇𝑃𝑃       (3) 

continuing this way, we have 

𝜆𝜆𝑃𝑃𝑁𝑁−  𝑁𝑁 −  𝜇𝜇𝑃𝑃𝑁𝑁− 𝜆𝜆𝑃𝑃𝑁𝑁− 𝑁𝑁𝜇𝜇𝑃𝑃𝑁𝑁         (4) 

𝜆𝜆𝑃𝑃𝑁𝑁− 𝑁𝑁𝜇𝜇𝑃𝑃𝑁𝑁           (5) 
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Solving these above equations 

                𝑃𝑃𝑖𝑖 𝑃𝑃  𝜆𝜆𝜇𝜇 
𝑖𝑖
 𝑁𝑁𝑖𝑖                   (6) 

Now, the probability normalizing conditions is   𝑃𝑃𝑖𝑖𝑁𝑁
𝑖𝑖  

Substituting the value of 𝑃𝑃𝑖𝑖  from equation (6) 

 𝑃𝑃  𝜆𝜆𝜇𝜇 
𝑖𝑖
 𝑁𝑁𝑖𝑖  

𝑁𝑁

𝑖𝑖
 

⟹ 𝑃𝑃
 𝜆𝜆

𝜇𝜇 
𝑁𝑁 

With this value of 𝑃𝑃  expression for 𝑃𝑃𝑖𝑖  is  

𝑃𝑃𝑖𝑖

 
  
   

𝜆𝜆
𝜇𝜇 

𝑖𝑖
 𝑁𝑁𝑖𝑖  

 𝜆𝜆
𝜇𝜇 

𝑁𝑁 ≤ 𝑖𝑖 ≤ 𝑁𝑁

otherwise

  

Let 𝐿𝐿𝑠𝑠 denote the average number of customers in the system then,  

𝐿𝐿𝑠𝑠  𝑖𝑖𝑃𝑃𝑖𝑖
𝑁𝑁

𝑖𝑖
 

After suitable simplification, we have 

𝐿𝐿𝑠𝑠
𝑁𝑁 𝜆𝜆
𝜇𝜇

 𝜆𝜆
𝜇𝜇 

 

In this model, we propose that no customer has to wait for the service. In this scenario, mean 
number of customers in the queue and mean waiting time in the queue are both zero. Mean 
waiting time in the system is almost the same as the average service time. 

𝑊𝑊𝑠𝑠 𝜇𝜇 .  

4. Optimization Model 

In this Section, we calculate the maximum service capacity per unit time for the total expected 
profit in the system. We use the MATLAB simulation to get the values of the maximum service 
rate per unit time for the different values of arrival rate per unit time.  

The total expected cost (TEC) per unit time of the system is given by 
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TEC = 𝜇𝜇𝐶𝐶𝑠𝑠 𝐶𝐶ℎ𝐿𝐿𝑠𝑠 𝐶𝐶𝐿𝐿𝜆𝜆𝑃𝑃𝑁𝑁  

= 𝜇𝜇𝐶𝐶𝑠𝑠 𝐶𝐶ℎ
𝑁𝑁 𝜆𝜆

𝜇𝜇

 𝜆𝜆
𝜇𝜇 

𝐶𝐶𝐿𝐿𝜆𝜆
 𝜆𝜆𝜇𝜇 

𝑁𝑁

 𝜆𝜆
𝜇𝜇 

𝑁𝑁   

Again, the total expected revenue (TER) per unit time of the system is given by 

TER = 𝑅𝑅𝜇𝜇 − 𝑃𝑃   

= 𝑅𝑅𝜇𝜇 −
 𝜆𝜆

𝜇𝜇 
𝑁𝑁  

Now, the total expected profit (TEP) is 

TEP = TER –TEC 

= 𝑅𝑅𝜇𝜇 −
 𝜆𝜆

𝜇𝜇 
𝑁𝑁 − 𝜇𝜇𝐶𝐶𝑠𝑠 − 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
𝜇𝜇

 𝜆𝜆
𝜇𝜇 
− 𝐶𝐶𝐿𝐿𝜆𝜆

 𝜆𝜆𝜇𝜇 
𝑁𝑁

 𝜆𝜆
𝜇𝜇 

𝑁𝑁  

= 𝑅𝑅𝜇𝜇 − 𝑅𝑅 𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝜇𝜇𝐶𝐶𝑠𝑠 − 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 − 𝐶𝐶𝐿𝐿

𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

From the point of view of optimization of the problem, the objective function is  

Maximize: TEP = 𝑅𝑅𝜇𝜇 − 𝑅𝑅 𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝜇𝜇𝐶𝐶𝑠𝑠 − 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 − 𝐶𝐶𝐿𝐿

𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁   

Differentiating TEP partially with respect to  𝜇𝜇, we have  


μ  = 𝑅𝑅 − 𝑅𝑅  𝑁𝑁   𝜇𝜇 𝜆𝜆 𝑁𝑁 𝜇𝜇𝑁𝑁−𝑁𝑁 𝜇𝜇𝑁𝑁  𝜇𝜇 𝜆𝜆 𝑁𝑁−

 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝐶𝐶𝑠𝑠 𝐶𝐶ℎ
𝑁𝑁 𝜆𝜆

 𝜇𝜇 𝜆𝜆 𝐶𝐶𝐿𝐿
𝑁𝑁 𝜆𝜆𝑁𝑁

 𝜇𝜇 𝜆𝜆 𝑁𝑁  

= 𝑅𝑅 − 𝑅𝑅𝜇𝜇𝑁𝑁   𝑁𝑁  −𝑁𝑁𝜇𝜇  𝜇𝜇 𝜆𝜆 −
 𝜇𝜇 𝜆𝜆 𝑁𝑁  − 𝐶𝐶𝑠𝑠 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 𝐶𝐶𝐿𝐿

𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

= 𝑅𝑅 − 𝑅𝑅 𝑁𝑁  𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁

𝑅𝑅𝑁𝑁𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝐶𝐶𝑠𝑠 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 𝐶𝐶𝐿𝐿

𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

Again differentiating partially with respect to 𝜇𝜇 


μ = −𝑅𝑅 𝑁𝑁    𝜇𝜇 𝜆𝜆 𝑁𝑁 𝑁𝑁 𝜇𝜇𝑁𝑁− −𝜇𝜇𝑁𝑁 𝑁𝑁  𝜇𝜇 𝜆𝜆 𝑁𝑁−

 𝜇𝜇 𝜆𝜆 𝑁𝑁  

𝑅𝑅𝑁𝑁   𝜇𝜇 𝜆𝜆 𝑁𝑁  𝑁𝑁  𝜇𝜇𝑁𝑁−𝜇𝜇𝑁𝑁  𝑁𝑁   𝜇𝜇 𝜆𝜆 𝑁𝑁
 𝜇𝜇 𝜆𝜆  𝑁𝑁   − 𝐶𝐶ℎ𝑁𝑁 𝜆𝜆

 𝜇𝜇 𝜆𝜆 − 𝐶𝐶𝐿𝐿𝑁𝑁 𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

  = −𝑅𝑅 𝑁𝑁   𝑁𝑁 𝜇𝜇𝑁𝑁− −𝜇𝜇𝑁𝑁 𝑁𝑁  𝜇𝜇 𝜆𝜆 −
 𝜇𝜇 𝜆𝜆 𝑁𝑁  𝑅𝑅𝑁𝑁   𝑁𝑁  𝜇𝜇𝑁𝑁−𝜇𝜇𝑁𝑁  𝑁𝑁   𝜇𝜇 𝜆𝜆 −

 𝜇𝜇 𝜆𝜆  𝑁𝑁   − 𝐶𝐶ℎ𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 −

𝐶𝐶𝐿𝐿𝑁𝑁 𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  
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 𝜆𝜆
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𝑁𝑁

 𝜆𝜆
𝜇𝜇 

𝑁𝑁   
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TER = 𝑅𝑅𝜇𝜇 − 𝑃𝑃   

= 𝑅𝑅𝜇𝜇 −
 𝜆𝜆

𝜇𝜇 
𝑁𝑁  

Now, the total expected profit (TEP) is 

TEP = TER –TEC 

= 𝑅𝑅𝜇𝜇 −
 𝜆𝜆

𝜇𝜇 
𝑁𝑁 − 𝜇𝜇𝐶𝐶𝑠𝑠 − 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
𝜇𝜇

 𝜆𝜆
𝜇𝜇 
− 𝐶𝐶𝐿𝐿𝜆𝜆

 𝜆𝜆𝜇𝜇 
𝑁𝑁

 𝜆𝜆
𝜇𝜇 

𝑁𝑁  

= 𝑅𝑅𝜇𝜇 − 𝑅𝑅 𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝜇𝜇𝐶𝐶𝑠𝑠 − 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 − 𝐶𝐶𝐿𝐿

𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

From the point of view of optimization of the problem, the objective function is  

Maximize: TEP = 𝑅𝑅𝜇𝜇 − 𝑅𝑅 𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝜇𝜇𝐶𝐶𝑠𝑠 − 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 − 𝐶𝐶𝐿𝐿

𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁   

Differentiating TEP partially with respect to  𝜇𝜇, we have  


μ  = 𝑅𝑅 − 𝑅𝑅  𝑁𝑁   𝜇𝜇 𝜆𝜆 𝑁𝑁 𝜇𝜇𝑁𝑁−𝑁𝑁 𝜇𝜇𝑁𝑁  𝜇𝜇 𝜆𝜆 𝑁𝑁−

 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝐶𝐶𝑠𝑠 𝐶𝐶ℎ
𝑁𝑁 𝜆𝜆

 𝜇𝜇 𝜆𝜆 𝐶𝐶𝐿𝐿
𝑁𝑁 𝜆𝜆𝑁𝑁

 𝜇𝜇 𝜆𝜆 𝑁𝑁  

= 𝑅𝑅 − 𝑅𝑅𝜇𝜇𝑁𝑁   𝑁𝑁  −𝑁𝑁𝜇𝜇  𝜇𝜇 𝜆𝜆 −
 𝜇𝜇 𝜆𝜆 𝑁𝑁  − 𝐶𝐶𝑠𝑠 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 𝐶𝐶𝐿𝐿

𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

= 𝑅𝑅 − 𝑅𝑅 𝑁𝑁  𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁

𝑅𝑅𝑁𝑁𝜇𝜇𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁 − 𝐶𝐶𝑠𝑠 𝐶𝐶ℎ

𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 𝐶𝐶𝐿𝐿

𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

Again differentiating partially with respect to 𝜇𝜇 


μ = −𝑅𝑅 𝑁𝑁    𝜇𝜇 𝜆𝜆 𝑁𝑁 𝑁𝑁 𝜇𝜇𝑁𝑁− −𝜇𝜇𝑁𝑁 𝑁𝑁  𝜇𝜇 𝜆𝜆 𝑁𝑁−

 𝜇𝜇 𝜆𝜆 𝑁𝑁  

𝑅𝑅𝑁𝑁   𝜇𝜇 𝜆𝜆 𝑁𝑁  𝑁𝑁  𝜇𝜇𝑁𝑁−𝜇𝜇𝑁𝑁  𝑁𝑁   𝜇𝜇 𝜆𝜆 𝑁𝑁
 𝜇𝜇 𝜆𝜆  𝑁𝑁   − 𝐶𝐶ℎ𝑁𝑁 𝜆𝜆

 𝜇𝜇 𝜆𝜆 − 𝐶𝐶𝐿𝐿𝑁𝑁 𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

  = −𝑅𝑅 𝑁𝑁   𝑁𝑁 𝜇𝜇𝑁𝑁− −𝜇𝜇𝑁𝑁 𝑁𝑁  𝜇𝜇 𝜆𝜆 −
 𝜇𝜇 𝜆𝜆 𝑁𝑁  𝑅𝑅𝑁𝑁   𝑁𝑁  𝜇𝜇𝑁𝑁−𝜇𝜇𝑁𝑁  𝑁𝑁   𝜇𝜇 𝜆𝜆 −

 𝜇𝜇 𝜆𝜆  𝑁𝑁   − 𝐶𝐶ℎ𝑁𝑁 𝜆𝜆
 𝜇𝜇 𝜆𝜆 −

𝐶𝐶𝐿𝐿𝑁𝑁 𝑁𝑁 𝜆𝜆𝑁𝑁
 𝜇𝜇 𝜆𝜆 𝑁𝑁  

We have calculated the maximum number of service capacity for the different revenue and 
different arrival rates. If the arrival rate is 𝜆𝜆  and the revenue is to be 100, the maximum 
service capacity is approximately 42. Likewise, for the revenue to be 20, the maximum service 
capacity is approximately 15. This result indicates that more the revenue is more the profit will 
be, which is realistic in nature. 

Table 1: Optimal service rates for Cs=4, Ch=3, CL=8, N=3 

 

R 

𝜆𝜆  𝜆𝜆  𝜆𝜆  

𝜇𝜇∗ 𝜇𝜇∗ 𝜇𝜇∗ 

100 31.53 42.07 52.62 

70 25.48 34.02 42.56 

60 23.18 30.95 38.73 

50 20.67 27.61 34.56 

30 14.72 19.70 24.68 

20 10.94 14.69 18.43 

  

Table 1 shows the values of maximum service rates for the given values of arrivals to get the 
given revenue. We have taken three different values of 𝜆𝜆 so as to get the revenue and the 
maximum service rate. 

5. Numerical Results and Interpretations 

MATLAB simulation has been used to verify the model. Fig. 2 is the graph for mean number of 
customers against arrival rate which indicates that number of customers in the system increases 
for the bigger arrival rate. For the smallest arrival rate, the graph is close to the x-axis and for the 
higher service rate the number of requests decreases in the system. 
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Fig. 2: Arrival rate vs. mean number of customers in the system 

On the other hand, Fig. 3 is the graph for mean number of customers vs. service rate. We can see 
that, for more service rate there are less number of customers in the system. For less arrival rate, 
less number of customers and for more arrival rate more number of customers in the system has 
been observed indicating that the model we established is appropriate.  

The graph at the bottom is for the least arrival rate 6 which indicates the less number of 
customers in the system whereas the numbers of customers are gradually increasing in the other 
two graphs for the arrival rates 7 and 8 respectively. 

 

Fig. 3: Service rate vs. mean number of customers in the system 
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These two graphs obtained by using the MATLAB software are important to see the real 
applicability of the model in everyday life. Different values of arrival rate and service rate has 
been taken just to see the increased or decreased pattern of request in the system.  

 

Fig 4: Revenue vs. maximum service rate per unit time  

Fig. 4 is plotted revenue against maximum service rate per unit time. This shows that more 
revenue can be obtained if there is more service rate per unit time. It is seen from the different 
curves that for the more arrival rate service rate should be increased which finally results the 
more revenue. 

6. Conclusion 

In this model customers do not need to wait for the service. Though this type of queueing model 
is rarely seen in practice, it is an interesting part in the study of queueing theory. All the arrivals 
get the service at the time they come for service. We have calculated the average number of 
customers in the system and plotted the graph for it against arrival rate and service rate. It is the 
finite population queueing model so the arriving customers exceeding 𝑁𝑁 cannot get service. If the 
system capacity is considered unlimited the study becomes more interesting and challenging. 
Moreover, including customers’ behaviour like balking, reneging or jockeying makes the model 
more realistic.  

Providing service for the high class customers is one of the examples of this model. For an 
example, some of the telephone companies set number of towers so that no calls fail. During 
rescue operations, one server is supposed to rescue one individual. In some special occasions, 
restaurant prepares the menu at the table before the customers’ arrival. Moreover, some internet 
providers manage a very high speed for some special persons to avoid complain from them. The 
model under study can be experienced in processor sharing queueing system also where all the 
customers get the service at a time like wild animals share the same river. 
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