Comparison of Energy of the Sitnikov's Restricted three Body Problem if the Primaries are Sources of Radiation, Oblate Spheroids and Triaxial Rigid Bodies

Raju Ram Thapa
Department of Mathematics, P.G. Campus, T.U., Biratnagar, Nepal
E-mail: thaparajuram@yahoo.com

ABSTRACT

The paper establishes the energy of Sitnikov's restricted three body problem when the primaries are source of radiations, oblate spheroids and triaxial rigid bodies. The effect of source of radiations, oblate spheroids and triaxial rigid bodies with their corresponding equation of motions has been studied. The equation of motions of third body is used to calculate the required energy of the infinitesimal body.

Keywords: Infinitesimal mass; oblateness; radiation; triaxial rigid bodies.

INTRODUCTION

The three body problem has two primaries of equal masses and these two move in circular orbits and elliptic orbits around their centre of mass studied by Sitnikov (1960). The third body, infinitesimal mass is moving along a line which is perpendicular to the plane of primaries and passing through centre of mass of the primaries.

If two primaries are taken to be the sources of radiation then due to which the distance between the primaries will be increased and which is supposed to ‘a’ when a > 1. Thus both the primaries are at equal distances a/2 from the centre of mass.

But if the primaries are oblate spheroid in shape then due to their oblateness the primaries will not be equidistant from their center of mass. To keep the primaries equidistant from the centre of mass of the primaries, the following conditions are to be imposed:

(i) Principal axes of the oblate bodies should be parallel to the synodic axes.

(ii) The masses of both the primaries should be equal.

If we consider both the primaries are of masses m₁ and m₂ to be axis symmetric bodies with one of its axes as the axis of symmetry then equatorial plane coincident with the plane of motion. Let (O, XYZ) be the inertial frame of reference. Here, the line joining m₁ and m₂ is taken as the x-axis and ‘O’ their centre of mass as origin. The line passing through ‘O’ and perpendicular to the line joining m₁ and m₂ is taken as the y-axis and z-axis is taken according to right handed coordinate system. Let us consider a synodic system of coordinates (O, xyz) initially coincident (at t = 0) with the inertial system (O, XYZ) and rotating with angular velocity ‘n’ about z-axis (the Z-axis coincides with the z-axis). Let the coordinate of the mass m₃ be (x, y, z) at time t referred to the rotating frame of reference (O, xyz). We also assume that initially the principal axis of the body m₃ is parallel to the synodic axis (O, x₃y₃z₃) and one of the axes of symmetry be perpendicular to the plane of motion. Since the body m₃ is moving around ‘O’ without rotation with the same angular velocity ‘n’ as that of the synodic axes, therefore, the principal axes of the body with mass m₃ at P₃ will remain parallel to the synodic axis throughout the motion.

It is applied to compare the energy of Sitnikov's restricted problem of three bodies when primaries are
source of radiations, oblate spheroids and triaxial rigid bodies.

**Equations of Motion and Energy**

Now following Thapa and Hassan (2013), the equation of motion of the third particle \( m_3 \) if primaries are sources of radiation can be written as

\[
\begin{align*}
\frac{dz}{dt} &= -\frac{Gm_1 m_3 (1 - p)}{r_1^3} \frac{1}{r_1^2} - \frac{Gm_2 m_3 (1 - p)}{r_2^3} \frac{1}{r_2^2} \\
\end{align*}
\]

The potential Energy of the system is given by

\[
v(z) = -\frac{2Gm_1 (1 - p)}{\sqrt{z^2 + a_1^2/4}}
\]

where \( m_1 = m_2 = m \) and \( G \) is the constant of gravitation.

The equation of motion of the infinitesimal mass \( m_3 \), is

\[
\frac{d^2 z}{dt^2} = -\frac{dv}{dz} = 2Gm_1 (1 - p) \left( \frac{1}{2} \right) \left( z^2 + \frac{a_1^2}{4} \right)^{-3/2} \cdot 2z
\]

\[
\therefore \frac{d^2 z}{dt^2} = \frac{-2Gm_1 (1 - p) z}{\left( z^2 + \frac{a_1^2}{4} \right)^{3/2}}
\]

Now we fix the time in such a way that \( G = 1 \) and we fix the unit of mass such that \( m_1 + m_2 = 2m = 1 \).

Thus the equation reduces to

\[
\frac{d^2 z}{dt^2} = (1 - p) z \frac{dz}{dt} = 0
\]

This is the cartesian equation of motion of \( m_3 \) in the Sinitikov circular restricted problem of three bodies.

\[
dz{z}{dt} + (1 - p) z \frac{dz}{dt} = 0
\]

\[
\Rightarrow \frac{1}{2} \frac{d}{dt} \left( z^2 + \frac{a_1^2}{4} \right) = 0
\]

Integration with respect to \( t \), we get

\[
\frac{1}{2} \left( \frac{dz}{dt} \right)^2 = \frac{(1 - p)}{\sqrt{z^2 + a_1^2/4}} \text{ constant}
\]

\[
\Rightarrow \frac{1}{2} \left( \frac{dz}{dt} \right)^2 = v(z) \text{ constant}
\]

Evidently the equation of motion is one dimensional.

The total energy of the system is

\[
E = \frac{1}{2} \left( \frac{dz}{dt} \right)^2 - \frac{1 - p}{\sqrt{z^2 + a_1^2/4}} = \text{ constant} = \frac{A}{2}
\]

**Time period**

We have from the energy equation

\[
\frac{1}{2} \left( \frac{dz}{dt} \right)^2 - \frac{q}{\sqrt{z^2 + a_1^2/4}} = -\frac{A}{2} = \text{ (Total Energy)}
\]

\[
\Rightarrow \left( \frac{dz}{dt} \right)^2 - \frac{2q}{\sqrt{z^2 + a_1^2/4}} = 2E
\]

We get

\[
\begin{align*}
\left( \frac{dz}{dt} \right)^2 &= -\frac{2q}{r} - A \\
\left( \frac{dz}{dt} \right)^2 &= 2q \left( \frac{1}{r} - \frac{A}{2q} \right)
\end{align*}
\]

Putting

\[
\begin{align*}
\frac{1}{2} \left( \frac{dz}{dt} \right)^2 &= -\frac{1}{u^2} - \frac{1}{u^2} \frac{du^*}{dt} \\
\Rightarrow \frac{1}{2} \left( \frac{du^*}{dt} \right)^2 &= 2q \left( 1 + \frac{a^* u^*}{2} \right) \left( u^* - \frac{A}{2q} \right)
\end{align*}
\]

Putting

\[
\begin{align*}
\frac{1}{2} \left( \frac{du^*}{dt} \right)^2 &= 2q \left( \frac{1 - (u^*)^2}{2} \right) \left( u^* - \frac{A}{2q} \right)
\end{align*}
\]

Putting

\[
\begin{align*}
\frac{1}{2} \left( \frac{dz}{dt} \right)^2 &= \frac{A}{2q} \left( u^* - \frac{A}{2q} \right)
\end{align*}
\]

or,

\[
\frac{1}{2} \left( \frac{dz}{dt} \right)^2 = 2q \left( \frac{2u}{a} \right) \left( 1 - u \right) \left( u - \frac{A}{2q} \right)
\]

Putting

\[
\begin{align*}
\frac{1}{2} \left( \frac{du^*}{dt} \right)^2 &= 2q \left( \frac{2u}{a} \right) \left( 1 - u \right) \left( u - \frac{A}{2q} \right)
\end{align*}
\]

or, \( A^* = 1 - 2k^2, 2k^2v^2 = 1 - u, u = 1 - 2k^2v^2 \)

\[
\frac{dv}{dt} = \frac{du}{dt}
\]
we get

$$\Rightarrow 16k^2v^3 \left( \frac{dv}{dt} \right) = \frac{16q}{a^3} (1-2k^2v^2)^4 (2k^2v)^4 (1-v^2)$$

$$\Rightarrow \left( \frac{dv}{dt} \right) = \frac{8q}{a^3} (1-2k^2v^2)^4 (1-k^2v^2) (1-v^2)$$

$$d \nu = \frac{2 \sqrt{2}q}{a^2} \frac{dv}{\sqrt{(1-v^2)(1-k^2v^2)}}$$

$$\Rightarrow \nu = \frac{2 \sqrt{2}q}{a^2} \int_0^1 \frac{dv}{\sqrt{(1-v^2)(1-k^2v^2)}}$$

Putting $v = \sin \theta \Rightarrow dv = \cos \theta d \theta$

$$t = \frac{2 \sqrt{2}q}{a^2} \int_0^\pi \frac{\cos \theta d \theta}{\sqrt{(1-2k^2 \sin^2 \theta)(1-k^2 \sin^2 \theta)}}$$

$$= \frac{2 \sqrt{2}q}{a^2} \int_0^\pi \frac{d \theta}{\sqrt{(1-2k^2 \sin^2 \theta)(1-k^2 \sin^2 \theta)}}$$

$$\approx \frac{6.771396637}{a^2} + 7.730049135 \left( \frac{aE}{1-p} \right)^2 + 0.1089727879 \left( \frac{aE}{1-p} \right)^2$$

$$T = \frac{\pi a}{\sqrt{2E}} \approx 4.118642867 \left( \frac{aE}{1-p} \right)^2 + 1.066179276 \left( \frac{aE}{1-p} \right)^2$$

Which gives periodicity of third body if primaries are sources of radiation.

**Equations of Motion and Energy**

Now following Thapa and Hassan (2014), the potential between two bodies $m_1$ and $m_2$ is given by

$$\Rightarrow \frac{GM_{m_1}}{r^4} \frac{GM_{m_2}}{r^4} \left[ a_1 + b_1 + c_1 \right]$$

$$\Rightarrow \frac{GM_{m_1}}{r^4} \frac{GM_{m_2}}{r^4} \left[ a_1 + b_1 + c_1 \right]$$

$$= \frac{8A}{a^3} - \frac{3A}{a^3}$$

$$\Rightarrow \frac{a_1}{a} = \frac{8A}{a}$$

$$\Rightarrow \frac{\lambda}{a} = \frac{8A}{a}$$

Taking the unit of length such that $a = 1$, in the Sitnikov restricted three body problem, the oblateness of the primaries of equal masses is given by $r = 1 + \frac{8A}{3}$

Now following Suraj and Hassan (2013) we can find the equation of motion of the third body as

$$\Rightarrow a \frac{d^2z}{dt^2} = \frac{-z}{(z^2 + r^2)^{3/2}} - \frac{9Az}{(z^2 + r^2)^{1/2}} + \frac{15Az^2}{(z^2 + r^2)^{3/2}}$$

$$\Rightarrow \frac{d^2z}{dt^2} = \frac{\frac{-z}{(z^2 + r^2)^{3/2}} - \frac{9Az}{(z^2 + r^2)^{1/2}} + \frac{15Az^2}{(z^2 + r^2)^{3/2}}}{(z^2)^{1/2} \left( \frac{8A}{3} \right)^{1/2}}$$

61
Comparison of Energy of the Sitnikov’s Restricted three Body Problem if the Primaries are Sources of Radiation, Oblate Spheroids...

But \( \left( 1 + \frac{8A}{3} \right)^3 = 1 + \frac{16A}{3} + 64A^2/9 \)

\( = 1 + \frac{16A}{3} \), neglecting \( A^2 \) containing term

\[ \Rightarrow \left( 1 + \frac{8A}{3} \right)^3 = 1 + \frac{16A}{3} = b, \text{ say} \]

the equation of motion becomes

\[ \frac{d^2z}{dt^2} = \left( \frac{z}{(z + b)^{3/2}} - \frac{9Az}{(z + b)^{5/2}} + \frac{15Az^3}{(z + b)^{7/2}} \right) \]

\[ \Rightarrow \frac{d^2z}{dt^2} = \left( \frac{z}{(z + b)^{3/2}} - \frac{9Az}{(z + b)^{5/2}} + \frac{15Az^3}{(z + b)^{7/2}} \right) = 0 \]

\[ \Rightarrow \frac{dz}{dt} \frac{dz}{dt} + 2z \frac{dz}{dt} \frac{dz}{dt} = \frac{18Az}{(z + b)^{5/2}} \frac{dz}{dt} - \frac{30Az^3}{(z + b)^{7/2}} \frac{dz}{dt} = 0 \]  \( \cdots (10) \)

We get,

\[ \frac{1}{2} \left( \frac{dz}{dt} \right)^2 = \frac{1}{\sqrt{z + b}} \left( \frac{z}{(z + b)^{3/2}} - \frac{9Az}{(z + b)^{5/2}} + \frac{15Az^3}{(z + b)^{7/2}} \right) \]

\[ \Rightarrow \frac{1}{2} \left( \frac{dz}{dt} \right)^2 = \frac{1}{\sqrt{z + b}} \left( \frac{3A}{(z + b)^{3/2}} - \frac{2Az}{(z + b)^{5/2}} - \frac{3Az^3}{(z + b)^{7/2}} \right) \]

\[ \Rightarrow \frac{1}{2} \left( \frac{dz}{dt} \right)^2 = \frac{1}{\sqrt{z + b}} \left( \frac{3A}{(z + b)^{3/2}} - \frac{2Az}{(z + b)^{5/2}} - \frac{3Az^3}{(z + b)^{7/2}} \right) \]

but \( b = 1 + \frac{16A}{3} \)

\[ b^5 = \frac{128A}{3} + 256A^2/9 \]

\[ = 1 + \frac{32A}{3} \]

We get,

\[ \frac{1}{2} \left( \frac{dz}{dt} \right)^2 = \left( \frac{3}{(z + b)^{3/2}} - \frac{16A}{3} \frac{z}{(z + b)^{5/2}} - \frac{2Az^3}{(z + b)^{7/2}} \right) \]

\[ \Rightarrow \frac{1}{2} \left( \frac{dz}{dt} \right)^2 = \left( \frac{3}{(z + b)^{3/2}} - \frac{16A}{3} \frac{z}{(z + b)^{5/2}} - \frac{2Az^3}{(z + b)^{7/2}} \right) \]

\[ \Rightarrow \frac{1}{2} \left( \frac{dz}{dt} \right)^2 = \left( \frac{3}{(z + b)^{3/2}} - \frac{16A}{3} \frac{z}{(z + b)^{5/2}} - \frac{2Az^3}{(z + b)^{7/2}} \right) \]

\[ \Rightarrow \frac{1}{2} \left( \frac{dz}{dt} \right)^2 + v(z) = \frac{\varepsilon}{2} \] \( \cdots (11) \)

Where potential energy \( v(z) \) can be written as,

\[ v(z) = -\left[ \frac{1}{\left( z^2 + b \right)^{3/2}} + \frac{A}{\left( z^2 + b \right)^{5/2}} \left( \frac{3 + 2z^3 + \frac{3z^3}{z^2 - b}}{\left( z^2 - b \right) \left( z^2 + b \right)^{3/2}} \right) \right] = \frac{\varepsilon}{2} \]

This is an expression for the potential energy of the system when \( b = 1 + \frac{16A}{3} \). Thus the total energy of the system is given by

\[ \varepsilon = \frac{1}{2} \left( \frac{dz}{dt} \right)^2 - \frac{1}{\left( z^2 + b \right)^{3/2}} + \frac{A}{\left( z^2 + b \right)^{5/2}} \left[ \frac{1}{(z^2 + b)^{3/2}} + \frac{1}{(z^2 + b)^{5/2}} \right] \]

\[ = \frac{1}{2} \left( \frac{dz}{dt} \right)^2 \]

\[ \cdots (12) \]

[\( \varepsilon \) = Constant]

Which gives total energy of the system if primaries are oblate spheroids.

**Equations of Motion and Energy**

Now following Thapa (2015), we have the equation of motion of the third body of infinitesimal mass is

\[ \frac{dz}{dt^2} = \frac{(1 - \rho)z}{\left( z^2 + b \right)^{3/2}} - 3(2\sigma_1 - \sigma_2 + 2\sigma_2 - \sigma_2^3)z + 15(\sigma_1 + \sigma_2^3)z^3 \]

\[ \left( z^2 + \frac{a^2}{4} \right)^{3/2} \left( z^2 + \frac{a^2}{4} \right)^{3/2} \left( z^2 + \frac{a^2}{4} \right)^{3/2} \]

\[ \cdots (13) \]

\[ \text{or}, \quad \frac{dz^2}{dt^2} = \frac{(1 - \rho)z}{\left( z^2 + b \right)^{3/2}} - 3(\sigma_1 + \sigma_2^3)z^3 \]

when \( \alpha = 2\sigma_1 - \sigma_2 + 2\sigma_2 - \sigma_2^3 \).

If we multiply (13) by \( \frac{dz}{dt} \)

We get,

\[ \frac{2}{2} \frac{dx^2}{dt} \frac{dx^2}{dt} = \frac{20 - 3(\sigma_1 + \sigma_2^3)z}{4} + \frac{3a^2}{4} \]

\[ \left( z^2 + \frac{a^2}{4} \right)^{3/2} \left( z^2 + \frac{a^2}{4} \right)^{3/2} \left( z^2 + \frac{a^2}{4} \right)^{3/2} \]

\[ \cdots (13) \]

\[ \text{or}, \quad \frac{dz}{dt} \frac{dz}{dt} = \frac{(1 - \rho)z}{\left( z^2 + b \right)^{3/2}} - 3(\sigma_1 + \sigma_2^3)z^3 \]

\[ \left( z^2 + \frac{a^2}{4} \right)^{3/2} \left( z^2 + \frac{a^2}{4} \right)^{3/2} \left( z^2 + \frac{a^2}{4} \right)^{3/2} \]

If we substitute \( u^2 = z^2 + \frac{a^2}{4} \) and \( u \frac{dz}{dt} = \frac{dz}{dt} \) in the equation

We get,
\[ \frac{1}{2} \frac{d}{dt} \left( \frac{v}{r} \right)^2 = \frac{(1-p)5(\sigma_3 + \sigma_1)\sqrt{v^2 + \frac{R^2}{4}}}{4} \left( \frac{1}{4} \sqrt{v^2 + \frac{R^2}{4}} \right) \]

\[ a_1, a_3, b_1, b_3 \text{ be the length of semi axes of primaries parallel to } x \text{ and } z \text{ axes respectively and } R \text{ be the dimensional distance between them but if primaries are oblate spheroids then it depends on oblateness parameter } A = a^2 - c^2 / 10, \text{ which is taken from the equation} \]

\[ \omega = \frac{Gm_1m_3}{r^3} + \frac{GA(m_1 + m_2)}{r'} \]

\[ a \text{ and } c \text{ be length of semi-axes of primaries parallel to } x \text{ and } z \text{ axes respectively.} \]

**CONCLUSION**

The energy of third body depending on main variable \( z \), which is a constant quantity. It is a combination of both potential and kinetic energy. Due to the effect of the energy the third body can travel in its own path.

**ACKNOWLEDGEMENTS**

The author is greatly thankful to Prof. M.R. Hassan, Dept. of mathematics, S.M. College, Bhagalpur, T.M.B. University, India, for his unforgettable guidance.

**REFERENCES**


Suraj, M.S. and Hassan, M.R. 2013. Solution of Sitinikov's restricted four body problem when all the primaries are oblate bodies. *Proceeding of PAS 50(1)*: 61-79.

