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ABSTRACT 

The intensity-curvature measurement approaches (ICMAs) are re-sampling techniques. The intensity-

curvature term is the product between the signal intensity and the classic-curvature and is the root concept at 

the foundation of the ICMAs. The concept offers six ICMAs: the classic-curvature (CC), the intensity-

curvature functional (ICF), the signal resilient to interpolation (SRI), the resilient curvature (RC), the 

intensity-curvature term before interpolation (Eo(x, y)), and the intensity-curvature term after interpolation 

(EIN(x, y)). The ICMAs have the following properties. The CC and the ICF are mask images. The SRI is a 

filter. The RC is adept to invert, and simultaneously, to smooth and to magnify the grayscale of the image. 

The aforementioned properties are illustrated with two-dimensional theoretical images and with Magnetic 

Resonance Imaging (MRI) images of the human brain. The novelty of this work consists of the use of the 

Eo(x, y) and the EIN(x, y) in order to highlight human brain vessels identified with MRI. 

 

Keywords: Classic-curvature, Intensity-curvature, Resilient curvature, MRA, Arterial spin-labeling. 

 

INTRODUCTION 

The Magnetic Resonance Imaging Spectrum 

Magnetic Resonance Imaging is the most used non-

invasive technique for the study of the human brain 

and for the diagnosis of the pathologies affecting 

the central nervous system. Since its inception, 

MRI has been able to drive research and 

development efforts in two main directions 

(Mansfield, 1962; Lauterbur, 1973). One is the 

development of MRI techniques which have the 

specific focus on the study of the organ and/or the 

pathology of interest. The second direction is 

consequential to the first one because it is driven by 

the need of assistance of the MRI task at hand, and 

thus is related to the development of signal-image 

post-processing techniques. When reviewing MRI 

allied techniques we are due to mention two 

important developments: 1) functional Magnetic 

Resonance Imaging (fMRI) (Ogawa et al., 1993); 

and Susceptibility Weighted Imaging (SWI) 

(Haacke et al., 2004). Functional MRI has been 

used with the specific purpose of studying the 

human brain function, instead of the anatomy, 

which is readily possible through the use of MRI. 

The fMRI signal needs to be post-processed and the 

development of the fMRI techniques were parallel 

to the development of software such as the 

Statistical Parametric Mapping (SPM) (Ashburner, 

2012) and the analysis of functional neuroimages 

(AFNI) (Cox, 1996), among others (Cui et al. 

2015). SWI is a technique under current 

development and its main purpose is to aid the 

study of the human brain vasculature (Haacke et 

al., 2004). Technique such as quantitative 

susceptibility mapping (QSM) nowadays offer 

methods for the quantification of in vivo iron 

content, calcifications and changes in venous 

oxygen saturation (Haacke et al., 2015). MRI on 

the other hand, has evolved in data acquisition 

techniques such as: (i) magnetic resonance 

angiography (MRA), which is used to image the 

human brain vasculature (Haacke et al., 1999). (ii) 
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Diffusion weighted imaging (DWI), which is used 

to measure the motion of water molecules through 

the calculation of the diffusion tensor. The 

diffusion tensor is a measure which includes six 

independent scalar parameters, from which three 

eigenvectors are calculated indicating the diffusion 

direction and three eigen values which are also 

known to represent the apparent diffusion 

coefficient (ADC) (Le Bihan et al., 1986, Pierpaoli 

et al., 1996). (iii) Perfusion weighted imaging (Le 

Bihan et al., 1986), which is able to measure 

relative cerebral blood flow, cerebral blood volume, 

and tissue mean transit time (Cutrer et al., 1998). 

(iv) Diffusion tensor imaging (DTI), derived from 

DWI, and used to study, through the apparent 

diffusion coefficient (ADC), the intra-voxel 

incoherent motion resulting from molecular 

diffusion and microcirculation. The intra-voxel 

incoherent motion is noticeable through the 

changes in the spin echo relaxation (Le Bihan et al., 

1986). (v) Fluid attenuated inversion recovery 

(FLAIR) MRI, which is a pulse sequence 

characterized by the suppression of the 

cerebrospinal fluid (CSF) signal and high T2 

weighted imaging, makes it possible to enhance 

anatomical details of the human brain especially 

within the context of tumor diagnostics (Hajnal et 

al., 1992). (vi) MR phase imaging, which uses the 

phase images obtained at MRI acquisition time, are 

unwrapped through high pass filtering and thus able 

to show human brain structures non readily visible 

through T1, T2 and/or T2
*
 MR imaging. The 

capability of the phase images to show brain 

structures is a direct consequence of the magnetic 

susceptibility of natural tracers such as 

deoxyhemoglobin and iron, which can be measured 

and quantified through the phase (Rauscher et al., 

2005; Haacke et al., 2007). (vii) Magnetic 

Resonance Spectroscopy (MRS), which is able to 

quantify metabolites in the human brain and thus to 

increase the diagnostic capability of MRI (Isobe et 

al., 2010). (viii) Arterial spin-labeling (ASL) 

Magnetic Resonance Imaging, which is a non-

invasive method used to measure in vivo perfusion 

(Dashjamts et al., 2010). 

The intensity-curvature measurement 

approaches (ICMAs) 

Within the spectrum of MRI post-processing 

techniques, the ICMAs find their right juxtaposition 

among the re-sampling techniques (Ciulla et al., 

2015). Given a two-dimensional image, it is 

possible to calculate the ICMAs: the classic 

curvature (CC), the intensity-curvature functional 

(ICF), the signal resilient to interpolation (SRI), the 

resilient curvature (RC), the intensity-curvature 

term before interpolation (Eo(x, y)), and the 

intensity-curvature term after interpolation (EIN(x, 

y)). The classic-curvature is the sum of second 

order partial derivatives, respect to the spatial 

coordinates, of the model function fitted to the 

image data. The intensity-curvature term before 

interpolation (Eo(x, y)) is calculated as the anti-

derivative of the product between the value of the 

signal intensity and the value of the classic-

curvature calculated at the origin of the pixel 

coordinate system (Ciulla et al., 2018). The 

intensity-curvature term after interpolation (EIN(x, 

y)) is calculated as the anti-derivative of the 

product between the value of the signal calculated 

from the model function and the classic-curvature 

calculated at the generic intra-pixel location (Ciulla 

et al., 2018). The intensity-curvature functional is 

calculated as the ratio between the Eo(x, y) (at the 

numerator) and the EIN(x, y) (at the denominator). 

The signal resilient to interpolation is the value of 

the signal obtained solving the equation between 

the Eo(x, y) and the EIN(x, y). The resilient 

curvature is the sum of second order partial 

derivatives of the signal resilient to interpolation, 

respect to the dimensional variables. The 

mathematics used to obtain the ICMAs is reported 

elsewhere (Ciulla et al., 2015). The next section of 

the paper reports an implicit example. This paper 

overviews the properties of the ICMAs and presents 

an application of the Eo(x, y) and the EIN(x, y) when 

studying human brain MRI detected vasculature. 

 

MATERIALS AND METHODS 

Subjects, model functions, ICMAs and MRI 

acquisitions 

Ten healthy subjects participated in the study. The 

MRI scanner strength was 1.5 T and the recording 

parameters are presented in Table 1. Compliance 

with the declaration of Helsinki is assured because 

the MRI scans were collected after proper 

administration of the informed consent of the 

patient and in agreement with the ethical 

committees of Skopje City General Hospital. The 

model functions fitted to the MRI data for post-

processing were: (i) the bivariate cubic polynomial, 

(ii) the bivariate cubic Lagrange polynomial, and 

(iii) the bivariate linear polynomial. Theoretical 

images were calculated using in house software in 

order to explore the properties of the ICMAs 

through the same mathematical procedure that was 

used to study the MRI images. The MRI data were 
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fitted with the polynomial model functions as 

shown in Table 2. The theoretical images were 

fitted with the same polynomials, however the 

cubic and the bivariate cubic Lagrange models were 

used to calculate the classic-curvature. The 

intensity-curvature functional was calculated fitting 

the bivariate linear function. 

 

Table 1: MRI acquisitions parameters.  

MRI acquisitions Figures 3a, 3d, 3g, 3j, 3m, 

Figures 4a, 4d, 4g, 4j, 4m 

TE 2.59 msec 

TR 7 msec 

FOV 280 × 280 

Pixel matrix size 410 × 512 

# of slices 9, 16 in Figure 4a 

 

Table 2: The model polynomial functions fitted 

to the MRI data. 

Model polynomial 

function 

ICMA 

bivariate cubic 

polynomial 

classic-curvature (CC), 

intensity-curvature term 

before interpolation (Eo(x, 

y)), and intensity-

curvature term after 

interpolation (EIN(x, y)) 

bivariate linear  intensity-curvature 

functional (ICF) 

bivariate cubic 

Lagrange polynomial 

signal resilient to 

interpolation (SRI), and 

resilient curvature (RC) 

  

Implicit example of the mathematics of the 

ICMAs  

Let f(0, 0) be the signal intensity and h(x, y) be the 

model polynomial function. Let h(x, y) have the 

property of second order differentiability. The 

classic-curvature (CC(x, y)) is defined as per 

equation (1). Let C(0, 0) not to be null. 

 

CC(x, y) = {(∂
2 

(h(x, y)) /∂x
2
) + (∂

2
 (h(x, y))/∂x∂y) 

+ (∂
2
(h(x, y)) /∂y∂x) +(∂

2
(h(x, y)) /∂y

2
)} 

(1) 

 

Let the intensity-curvature term before interpolation 

(Eo(x, y)) be defined as: 

Eo(x, y) = ∫ ∫ f(0, 0) ∙ CC(0, 0) dx dy (2) 

Let the intensity-curvature term after interpolation 

(EIN(x, y)) be defined as: 

 

EIN(x, y) = ∫ ∫ h(x, y) ∙ CC(x, y) dx dy (3) 

 

Let the intensity-curvature functional (ICF(x, y)) be 

defined as: 

 

ICF(x, y) = Eo(x, y) / EIN(x, y) (4)  

 

Let the signal resilient to interpolation (SRI(x, y)) 

be defined as the signal ζ(x, y) resulting from the 

solution in f(0, 0) of the equation between Eo(x, y) 

and EIN(x, y). Because of their definition as per 

equation (2) and (3), also Eo(x, y) and EIN(x, y) are 

functions of f(0, 0).  

 

SRI (x, y) = ζ (Eo(x, y) = EIN(x, y)) (5) 

 

Let the resilient curvature (RC) be defined as: 

 

RC(x, y) = {(∂
2
(ζ(x, y))/∂x

2
)+(∂

2
(ζ(x, y))/∂x∂y)+ 

(∂
2
 (ζ (x, y))/∂y∂x)+(∂

2 
(ζ(x, y))/∂y

2
)} (6) 

 

RESULTS 

Theoretical Images 

Three theoretical images were calculated in order to 

explore the Fourier properties of the classic-

curvature and the intensity-curvature function. The 

theoretical images are presented in figures 1a, 1b, 

1c. The classic-curvature of the three images was 

calculated using two polynomial model functions: 

the bivariate cubic polynomial and the bivariate 

cubic Lagrange polynomial. The results are 

presented in figure 1. The intensity-curvature 

function was calculated when fitting to the images 

the bivariate linear function. To date, the CC and 

the ICF images can be calculated fitting to the 

image data a wide array of model polynomial 

functions, and the most clear and well defined ICF 

can be obtained fitting the bivariate linear function 

(Ciulla et al., 2018). The suggestion that CC and 

ICF images were similar to MRI high pass filtered 

signal was made through the work reported in 

Ciulla et al. (2016a). This work further clarifies that 

both CC and ICF are different from high pass 

filtered signal. Indeed, when looking at the images 

in figure 2, the k-space magnitude of the CC and 

the ICF is clearly not the same as the k-space 

magnitude of the high pass filtered signal. Compare 
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figures 2d, 2e, 2f (the k-space magnitude of the 

high pass filtered theoretical images) versus the 

images presented in the third, fourth and fifth row 

from the top. Moreover, figure 2 clarifies that the 

nature of the CC and the ICF is not the same (see 

third, fourth and fifth rows from the top), 

consistently with their mathematical formulation. 

Thus, the concept of intensity-curvature, which 

merges together the signal intensity value with the 

sum of the second order partial derivatives 

calculated respect to the spatial variables, has 

immediate effect as figure 2 demonstrates. Figure 3 

through 7 shows the outcome of the application of 

the concept in Magnetic Resonance Imaging.  

 

     

     

     

     
 

Fig. 1. Theoretical images in (a), (b) and (c). The classic-curvature of the three theoretical images is 

calculated from the bivariate cubic model function and is presented in (d), (e) and (f). The classic-

curvature of the three theoretical images is calculated also with the bivariate cubic Lagrange model 

function and is presented in (g), (h) and (i). The intensity-curvature functional of the theoretical images 

is calculated from the bivariate linear function and is presented in (j), (k) and (l). 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 
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Fig. 2. In (a), (b) and (c) are presented the high pass filtered theoretical images. In (d), (e) and (f) are 

presented the k-space magnitude images of (a), (b) and (c) respectively. The k-space magnitude of the 

classic-curvature images (calculated from the bivariate cubic model function) is presented in the second 

row from the top (see Figs. 1d, 1e, and 1f). The k-space magnitude of the classic-curvature images 

(calculated from the bivariate cubic Lagrange model function) is presented in the third row from the top 

(see Figs. 1g, 1h, and 1i). The k-space magnitude images of the intensity-curvature functional images 

(Figs. 1j, 1k, and 1l) are presented in the bottom row: images in (m), (n) and (o). 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 
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The ICMAs of Magnetic Resonance Images 

This section starts with the presentation of the 

numerator of the ICF (the intensity-curvature term 

before interpolation: Eo(x, y)), and the denominator 

of the ICF (the intensity-curvature term after 

interpolation: EIN(x, y)). The MRI in figure 3 and 4 

is presented to the far left of each row of images, 

the Eo(x, y) is placed in the middle, and the EIN(x, 

y) is presented on the far right of each row. Fig. 3 

and 4 present the following two points of 

discussion. 1) The novelty reported by this paper. 

The MRI images were selected in the regions of 

interest showing human brain vasculature. The 

intensity-curvature terms (Eo(x, y) and EIN(x, y)) 

were calculated. 2) The two intensity-curvature 

terms (ICTs) appear to be very much alike because 

the intensity-curvature functional calculated from 

the bivariate cubic model polynomial function is 

almost equal to ‘1’ across the full spatial extent of 

the MRI image and thus is unusable. The novelty of 

the works herein reported can be summarized in 

three main points: (i) the ICTs display the visually 

perceptible third dimension (Ciulla et al., 2016a) 

likewise the classic-curvature when calculated 

fitting to the MRI data the bivariate cubic model 

polynomial function (as shown in this paper), (ii) 

the visually perceptible third dimension might be 

related to the accumulation of fluids in proximity of 

the vessels, and (iii) the k-space magnitude of the 

ICTs is different from the k-space of the high pass 

filtered signal (as it shall be seen in figure 7), hence 

the nature of the ICTs is not high pass filtered 

signal. As far as regards, the second point of 

discussion, clearly, the use of the intensity-

curvature terms replaces the use of the unusable 

intensity-curvature functional (ICF). The behavior 

of the ICF in such case is not uncommon and has 

been observed when fitting also other model 

polynomial functions. To elucidate the behavior of 

the images presented in figures 5 and 6, the 

following three points can be made. 1) The classic-

curvature highlights the vasculature of the human 

brain showing the visually perceptible third 

dimension in proximity of the vessels. 2) The signal 

resilient to interpolation is not a duplication of the 

original MRI because it behaves as a narrow filter 

(Ciulla et al., 2016b). 3) The resilient curvature 

presents the properties of inverting, smoothing and 

magnifying (in one pass) the grayscale of the MRI 

(Ciulla et al., 2016b). Figure 7 clarifies the neat 

difference existing between the high pass filtered 

MRI image and the Eo(x, y) and the EIN(x, y). Such 

difference was documented for the classic-

curvature and the intensity-curvature functional, 

through the k-space magnitude of the theoretical 

images presented in the section 4.1 titled: ‘The 

Theoretical Images’, and is remarked here through 

the outward show of the high pass filtered MRI 

image and the outward show of the k-space 

magnitude of the Eo(x, y) and the EIN(x, y) (see (f) 

versus (g) and (h)). Therefore, Fig. 7 clarifies that 

the meaning and the nature of the intensity-

curvature terms Eo(x, y) and EIN(x, y) is not high 

pass filtered signal (likewise the classic-curvature 

and the intensity-curvature functional).  

 

 

 

(a) (b) (c) 

(d) (e) (f) 
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Fig. 3. Magnetic Resonance Imaging (MRI) of regions of interest of the human brain are presented in 

(a), (d), (g), (j) and (m). The intensity-curvature term before interpolation (Eo(x, y)) is presented in (b), 

(e), (h), (k) and (n). The intensity-curvature term after interpolation (EIN(x, y)) is presented in (c), (f), (i), 

(l) and (o). The intensity-curvature terms were calculated using the bivariate cubic model function fitted 

to the MRI data. The outward show of the two ICTs is similar because the ratio between the Eo(x, y) and 

the EIN(x, y) is very close to ‘1’. The arrows point to the human brain vessels. 

 

 

 

 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 

(a) (b) (c) 

(d) (e) (f) 
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Fig. 4. MRI regions of interest are presented in (a), (d), (g), (j) and (m). The intensity-curvature term 

before interpolation (Eo(x, y)) of the MRI is presented in (b), (e), (h), (k) and (n) respectively. The 

intensity-curvature term after interpolation (EIN(x, y)) is presented in (c), (f), (i), (l) and (o) respectively. 

Likewise Figure 3, the intensity-curvature terms were calculated using the bivariate cubic model function 

fitted to the MRI data. The arrows point to the human brain vessels. 

 

 

 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 

(a) (b) (c) 

(d) (e) (f) 
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Fig. 5. the reference MRI images were presented in Figures 3a, 3d, 3g, 3j, 3m. In (a), (d), (g), (j) and (m) 

are presented the resultant CC images. In (b), (e), (h), (k) and (n) are presented the resultant SRI images. 

In (c), (f), (i), (l) and (o) are presented the resultant RC images. 

 

 

 

 

 

 

(a) (b) (c) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 

(d) (e) (f) 
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Fig. 6. The MRI regions of interest were presented in Figure 4 in (a), (d), (g), (j) and (m). The pictures 

presented here are the classic-curvature images: (a), (d), (g), (j) and (m). The signal resilient to 

interpolation images: (b), (e), (h), (k) and (n). And, the resilient curvature images in (c), (f), (i), (l) and 

(o). Noteworthy is the remarkable highlight on the vasculature offered by the signal resilient to 

interpolation images in (h), (k) and (n). 

 

 

 
 

Fig. 7. The MRI image presented in (a) is high pass filtered and presented in (b). The Eo(x, y) and the 

EIN(x, y) of (a) were calculated from the bivariate cubic polynomial function and are presented in (c) and 

(d) respectively. The k-space magnitude of (a) and (b) is presented in (e) and (f) respectively. The k-space 

magnitude of (c) and (d) is presented in (g) and (h) respectively. 

(a) (b) (c) (d) 

(e) (f) 

(g) (h) (i) 

(j) (k) (l) 

(m) (n) (o) 

(g) (h) 
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DISCUSSION 

MRI initial post-processing techniques had been 

under development and research since more than 

two decades now, and had released to the scientific 

community well reputable software for 

segmentation (Collins et al., 1995), registration and 

co-registration (Friston et al., 1995, Ashburner & 

Friston 1997), spatial normalization (Ashburner & 

Friston 1999, 2000), and filtering (Gerig et al., 

1992). For an extended review of MRI post-

processing software the reader is referred to Cui et 

al. (2015). Feature extraction from MRI images is 

another important task in MRI post-processing and 

is accomplished here through the use of re-

sampling techniques called ICMAs. Hence, to 

explain the properties of the CC and its outward 

show, it is due to mention that in order to calculate 

the CC, the model polynomial function needs to fit 

the image data on a pixel by pixel basis. Thus, the 

CC calculates an additional image which outward 

show is the direct consequence of the mathematical 

function used to fit the image data (see Figures 1d, 

1e, 1f, 1g, 1h, 1i). Consequential to the CC is the 

ICMA called intensity-curvature functional (ICF), 

which merges the image intensity with the CC (see 

for instance Figs. 1j, 1k, 1l). While studying human 

brain tumors the ICF showed the visually 

perceptible third dimension in proximity of the 

accumulation of fluids, next to the tumor mass 

(Ciulla et al., 2014). Moreover, the CC appears to 

be similar to the ICF, because (when calculated 

using the bivariate cubic model polynomial 

function) it also displays the visually perceptible 

third dimension (Ciulla et al., 2016a). This work 

presents evidence that the CC and the ICF are not 

quite the same as high pass 

filtered signals. Moreover, the k-space of the CC is 

different from the k-space of the ICF (see Fig. 2). 

Recent research reports on the meaning and the 

nature of the ICMAs showing that: (i) the CC and 

the ICF are filter masks (Ciulla et al., 2016c), (ii) 

the signal resilient to interpolation is a filter (Ciulla 

et al., 2016b), and (iii) the resilient curvature 

inverts, smooths and magnifies (all at once) the 

grayscale of the image (Ciulla et al., 2016b). 

Samples of the SRI and the RC of MRI zones of 

interest are presented in figures 5 and 6, and the 

MRIs are presented in figures 3 and 4. Additional 

research yields the novelty presented in this paper. 

Two more images are derived from the ICF, and 

they are the intensity-curvature term before 

interpolation (Eo(x, y)), and the intensity-curvature 

term after interpolation (EIN(x, y)). When calculated 

from the bivariate cubic model polynomial 

function, the intensity-curvature terms are similar to 

the CC. The similarity consists of the visually 

perceptible third dimension, which is prominent 

because of the presumed accumulation of fluids 

(Ciulla et al., 2016a). It can be therefore inferred 

that the visually perceptible third dimension of the 

Eo(x, y) and the EIN(x, y) images might also be the 

indicator of fluids accumulation. And even so, 

though, the intensity-curvature term images are able 

to highlight the vessels of the human brain. 

 

CONCLUSION 

The intensity-curvature measurement approaches 

are image processing techniques which theoretical 

basis is the intensity-curvature concept. The notion 

is to merge together the image intensity with the 

sum of second order partial derivatives of the 

polynomial model function fitted to the image data. 

The aforementioned sum is called classic-curvature. 

The classic-curvature and the intensity-curvature 

functional are not quite the same as high pass 

filtered signal and this is elucidated through the 

study of their k-space magnitude. The classic-

curvature and the intensity-curvature functional are 

mask images. The signal resilient to interpolation is 

an alternative filter. Likewise the resilient 

curvature, which moreover, inverts, smooths and 

magnifies the grayscale of an image. When 

calculated from the bivariate cubic model 

polynomial function, the two intensity-curvature 

terms show the visually perceptible third dimension 

very much alike the classic-curvature. The visually 

perceptible third dimension might be related to the 

accumulation of fluids. Hence, the intensity-

curvature terms display the characteristic to 

highlight the human brain vasculature detected with 

MRI. Finally, the comparison between the k-space 

magnitude of the intensity-curvature terms of the 

MRI and the k-space of the high pass filtered signal 

of the MRI, reveals that ICTs are not the same as 

high pass filtered signal. 
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