STRUCTURAL, ELECTRONIC AND MAGNETIC PROPERTIES OF DEFECTED WATER ADSORBED SINGLE LAYER MoS$_2$

Hari Krishna Neupane1,2, Narayan Prasad Adhikari3

1Department of Physics, Amrit Campus, Tribhuvan University, Kathmandu, Nepal
2Central Department of Physics, Tribhuvan University, Kathmandu, Nepal
3Corresponding author: narayan.adhikari@cdp.tu.edu.np

(Received: January 19, 2021; Revised: May 05, 2021; Accepted: June 04, 2021)

ABSTRACT

Water adsorbed in MoS$_2$ (w$_{ad}$-MoS$_2$), 1S atom vacancy defect in w$_{ad}$-MoS$_2$ (1S-w$_{ad}$-MoS$_2$), 2S atoms vacancy defects in w$_{ad}$-MoS$_2$ (2S-w$_{ad}$-MoS$_2$), and 1Mo atom vacancy defect in w$_{ad}$-MoS$_2$ (Mo-w$_{ad}$-MoS$_2$) materials were constructed, and their structural, electronic, and magnetic properties were studied by spin-polarized density functional theory (DFT) based first-principles calculations. The w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, 2S-w$_{ad}$-MoS$_2$, and Mo-w$_{ad}$-MoS$_2$ materials were found stable. From band structure calculations, w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, and 2S-w$_{ad}$-MoS$_2$ materials open energy bandgap of values 1.19 eV, 0.65 eV and 0.38 eV respectively. Also, it was found that the conductivity strength of the material increases with an increase in the concentration of S atom vacancy defects in the structure. On the other hand, the Mo-w$_{ad}$-MoS$_2$ material has metallic properties because energy bands of electrons crossed the Fermi energy level in the band structure. For the investigation of magnetic properties, the density of states (DoS) and partial density of states (PDos) calculations were used and found that w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, and 2S-w$_{ad}$-MoS$_2$ are non-magnetic materials, while Mo-w$_{ad}$-MoS$_2$ is a magnetic material. The total magnetic moment of Mo-w$_{ad}$-MoS$_2$ has a value of 2.66 µ$_B$/cell, due to the arrangement of unpaired up-spin and down-spin of electrons in 3s & 3p orbitals of S atoms; and 4p, 4d & 5s orbitals of Mo atoms in the material.

Keywords: DFT, Magnetic moment, Spins, Vacancy defects, Water adsorbed MoS$_2$.

INTRODUCTION

Molybdenum disulphide (MoS$_2$) is a two dimensional (2D) transition metal dichalcogenides (TMDS) material. It has a direct band gap semiconductor of band gap energy 1.80 eV (Mak et al., 2010), although it was reported 1.16 eV in the bulk state using density functional theory implemented in tight binding linear Muffin-tin orbital approach (Sedhain & Kaphle, 2017). The band gap is opened between the lowest energy of the conduction band and the highest energy of the valence band at the k-point. MoS$_2$ has a high carrier mobility of 200 cm2/Vs, and a high on/off current ratio of 10^5 at room temperature, so it is used in the field of FETs and photo-detectors (Radisavljevic et al., 2011; Jean & Konor, 2007). Both the theoretical and experimental research groups have studied the physical properties of monolayer MoS$_2$.

The physical properties are very sensitive to pressure, electric field and strain, because transitions from semiconductors to metal are observed in monolayer MoS$_2$ due to strain and electric field (Yun et al., 2012; Ataca & Ciraci, 2011; Ataca et al., 2011; Johari & Shenoy, 2012; Kumar & Ahluwalia, 2012; Scalise et al., 2012; Li & Chen, 2014). So, MoS$_2$ is used in the field of optoelectronics and nanoelectronics devices, as solid lubricants and as catalytic surfaces for hydrogen storage (Novoselov et al., 2012; Neto et al., 2009; Li & Zhu, 2015; Radisavljevic et al., 2011). Hence, it is known as some of the most studied nano-materials due to their different array of technological and industrial applications. MoS$_2$ has also been studied for the adsorption of water molecules because the devices made by MoS$_2$ sometimes have to be used in a moisture environment. The physical properties (electronic, magnetic, and tribologic) are affected by adsorbed molecules (like water molecule, hydrogen atom) in monolayer MoS$_2$ (Panitz et al., 1988; Zhao et al., 2010; Pantha & Adhikari, 2015; Pantha et al., 2020). Hence, the adsorption of a water molecule in monolayer MoS$_2$ is one of the promising approaches to modify and deceive unwanted properties of any constituent. The water adsorbed MoS$_2$ loses its lubricity because water-driven oxidation in MoS$_2$ material leads to the formation of molybdenum trioxide (MoO$_3$) (Liang et al., 2008; Liang et al., 2011).

Defects in the structure are one of the promising approaches to adapt and exploit the unwanted properties of materials. Hence, they influence the properties of materials in solids (Kettel et al., 1996). The electronic and magnetic properties are attractive properties of the materials. Mo vacancy defect in material develops magnetic properties (Neupane & Adhikari, 2020). Magnetic materials have conceivable applications in the fields of biomedicine, molecular biology, biochemistry, diagnosis, catalysis, nanoelectronic devices, magnetic sensors, computers, magnetic recording media, electric power generators, and transformers (Makarova et al., 2019; Peng et al., 2016).
To our best knowledge, electronic and magnetic properties Mo vacancy defect and S vacancy defect respectively in water adsorbed MoS\textsubscript{2} material have not been reported. Therefore, in present work, we studied the structural, electronic, and magnetic properties of Mo vacancy defect in water adsorbed MoS\textsubscript{2} material, and S vacancy defects in water adsorbed MoS\textsubscript{2} material by spin-polarized DFT theory based first-principles calculations.

MATERIALS AND METHODS

First-principles calculation was performed to investigate the structural, electronic, and magnetic properties of water adsorbed in MoS\textsubscript{2}, and Mo & S atoms vacancy defects in water adsorbed MoS\textsubscript{2} materials within the framework of DFT theory (Hohenberg & Kohn, 1964), using Quantum ESPRESSO (QE) computational package (Giannozzi et al., 2009), and structure visualization program XCrySDen (Kokalj, 1999). The electronic exchange and correlation effects in the systems were treated by generalized gradient approximation (GGA) using Perdew-Burke-Ernzerhof (PBE) (Perdew et al., 1996). Rappe-Rabe-Kaxiras-Joannopoulos (RRKJ) model of ultra-soft pseudopotentials was used to explain the chemically active valence electrons in our calculations. The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (Pfrommer et al., 1997) was used to relax the structures until the total energy change was less than 10^{-7} Ry between two consecutive self-consistent field (SCF) steps and each component of force acting was less than 10^{-3} Ry/Bohrs to get geometrically optimized structures. The unit cell was optimized to lattice parameter (a), kinetic energy cut-off (E\textsubscript{cut}) for plane-wave and the number of k-points along ‘x’ and ‘y’ axes, respectively.

The values of lattice constant (a = 3.18 Å), kinetic energy cut-off (E\textsubscript{cut} = 55 Ry), charge density cut-off (ρ = 350 Ry), and a mesh of (16x16x1) k-points of MoS\textsubscript{2} unit cell were obtained from the convergence test. A mesh of (16x16x1) k-points of MoS\textsubscript{2} unit cell was found from the plot of the total energy versus the number of k-points, where the energy of the unit cell of monolayer MoS\textsubscript{2} was almost constant after n\textsubscript{k}=16. Hence, in the unit cell of MoS\textsubscript{2}, a mesh of (16x16x1) k-points was used for the Brillouin-zone integration. For the (3x3) supercell structure of MoS\textsubscript{2}, the lattice constant was three times that of the unit cell and a mesh of k-points was reduced to (6x6x1). The reduction of the mesh was due to the relation of direct and reciprocal lattice geometries. The Marzari-Vanderbilt (MV) (Marzari et al., 1999), method of smoothing with a small width of 0.001Ry was used. In addition, ‘david’ diagonalization method was chosen with ‘plain’ mixing mode and a mixing factor of 0.6 for self-consistency. Spin-polarized calculations were allowed to study the magnetic properties of the systems. For band structure calculations, 100 k-points were chosen along the high symmetric points connecting the reciprocal space. For the density of states (DoS) and partial density of states (PDDoS) calculations, denser meshes of (12x12x1) k-points were taken.

In the present work, water adsorbed MoS\textsubscript{2} structure, and Mo & S atoms vacancy defects in water adsorbed MoS\textsubscript{2} structures were prepared. At first, w\textsubscript{ad}-MoS\textsubscript{2} material was constructed by adsorbing water molecules at 2.52 Å distance above the surface of MoS\textsubscript{2}. Then, a Mo atom vacancy defect in the w\textsubscript{ad}-MoS\textsubscript{2} structure (Mo-w\textsubscript{ad}-MoS\textsubscript{2}) was created by removing 1Mo atom in w\textsubscript{ad}-MoS\textsubscript{2}. Similarly, 1S and 2S atoms vacancy defects in w\textsubscript{ad}-MoS\textsubscript{2} structure (i.e. 1S-w\textsubscript{ad}-MoS\textsubscript{2} & 2S-w\textsubscript{ad}-MoS\textsubscript{2}) were constructed by removing upper-1S atom in w\textsubscript{ad}-MoS\textsubscript{2} and 2S (upper-1S & lower-1S) atoms in w\textsubscript{ad}-MoS\textsubscript{2} structure respectively. All these structures were then optimized and relaxed by using the BFGS scheme for further calculations. Fig. 1 represents stable and relaxed water adsorbed in MoS\textsubscript{2} (w\textsubscript{ad}-MoS\textsubscript{2}), Mo atom vacancy defect in water adsorbed MoS\textsubscript{2} (Mo-w\textsubscript{ad}-MoS\textsubscript{2}), 1S (upper-S atom) vacancy defect in water adsorbed MoS\textsubscript{2} (1S-w\textsubscript{ad}-MoS\textsubscript{2}), and 2S (1S-upper & 1S-lower) atoms vacancy defects in water adsorbed MoS\textsubscript{2} (2S-w\textsubscript{ad}-MoS\textsubscript{2}) materials.

RESULTS AND DISCUSSION

The main findings and their interpretations are presented in this section. Spin-polarized DFT calculations were carried out for the first-principles study of w\textsubscript{ad}-MoS\textsubscript{2}, Mo-w\textsubscript{ad}-MoS\textsubscript{2}, 1S-w\textsubscript{ad}-MoS\textsubscript{2} and 2S-w\textsubscript{ad}-MoS\textsubscript{2} materials using computational tools Quantum ESPRESSO.

Structural analysis

The (3x3) supercell structure of monolayer MoS\textsubscript{2} was prepared by extending optimized primitive unit cell along ‘x’ and ‘y’ directions using structural visualization tool XCrySDen. The distance between Mo and S atoms in MoS\textsubscript{2} was equal to 3.18 Å. This value agrees with the experimentally reported value of 3.19 Å (Kadantsev & Hawrylak, 2012). Different stacking configurations of w\textsubscript{ad}-MoS\textsubscript{2} material were prepared by keeping water molecules at different positions on the surface of MoS\textsubscript{2} material. It found that the optimized and relax structure of w\textsubscript{ad}-MoS\textsubscript{2} material formed by adsorbing water molecules at 2.52 Å distance above the top surface of MoS\textsubscript{2} was more stable than other configurations. This stable structure is shown in Fig. 1(a).

The stability of structures was determined by binding energy calculations. The greater value of binding energy was more favorable for the stability of the system. The binding energy of w\textsubscript{ad}MoS\textsubscript{2} was calculated by using the relation (Vu et al., 2020), as depicted in equation (1):

$$E_b = E_{\text{water}} + E_{\text{MoS}_2} - E_{\text{water/MoS}_2}$$

Where, E_{water}, E_{MoS_2}, and $E_{\text{water/MoS}_2}$ represent ground state energy of relaxing water molecule, monolayer MoS\textsubscript{2}, and water adsorbed in monolayer MoS\textsubscript{2} materials respectively.
After that, Mo-w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, and 2S-w$_{ad}$-MoS$_2$ structures were prepared by removing 1Mo atom, upper-1S atom, and 2S (upper-1S & lower-1S) atoms, respectively, in the w$_{ad}$-MoS$_2$ structure. Where, out of 9 Mo atoms in w$_{ad}$-MoS$_2$, the concentration of Mo atom in Mo vacancy defect w$_{ad}$-MoS$_2$ structure was found to be 11.11 %. Also, the concentration of S atoms in 1S vacancy defect w$_{ad}$-MoS$_2$ and 2S vacancy defects w$_{ad}$-MoS$_2$ structures were found to be 3.04 % and 7.41 %, respectively. The defects formation energy of these materials was calculated by the relation (Hou et al., 2012), as given by equation (2);

\[E_d = E_{td} + n_d\mu_d - E_{TP} \]

Where E_{td} is the total energy of a supercell with the defects, n_d is the numbers of defects atoms removed from the perfect supercell to introduce a vacancy, μ_d is chemical potential of defects atoms, E_{TP} is the total energy of the neutral perfect supercell. The calculated defect formation energy of Mo-w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$ and 2S-w$_{ad}$-MoS$_2$ materials have values 0.68 eV, 0.58 eV and 0.82 eV, respectively. The lower value of defect formation energy means, materials are more stable. Thus, 1S-w$_{ad}$-MoS$_2$ is more stable than 2S-w$_{ad}$-MoS$_2$ & Mo-w$_{ad}$-MoS$_2$ materials. The obtained defect formation energy values are comparable with the defect formation energy of other 2D materials (Neupane & Adhikari, 2021). The defective structures were then relaxed by using the BFGS method. The relaxed-stable Mo-w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$ & 2S-w$_{ad}$-MoS$_2$ materials are shown in Figs. 1(c), 1(e) & 1(g), respectively. The binding energy of these materials is given in Table 1.

![Image](image_url)

Fig. 1. (a) Water adsorbed MoS$_2$ structure, (b) Before 1Mo atom vacancy defect in water adsorbed MoS$_2$ structure, (c) 1Mo atom vacancy defect in water adsorbed MoS$_2$ structure, (d) Before upper-1S atom vacancy defect in water adsorbed MoS$_2$ structure, (e) Upper-1S atom vacancy defect in water adsorbed MoS$_2$ structure, (f) Before 2S atoms vacancy defects in water adsorbed MoS$_2$ structure (g) 2S atoms vacancy defects in water adsorbed MoS$_2$ structure

Electronic properties

The electronic properties of w$_{ad}$-MoS$_2$, Mo-w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$ and 2S-w$_{ad}$-MoS$_2$ materials were studied by the analysis of band structure calculations. To know the effect of the adsorbed water molecule in (3×3) supercell of monolayer MoS$_2$, first need to understand the electronic properties of (3×3) supercell structure of MoS$_2$. It is a wide band gap semiconductor of band gap value 1.65 eV (Neupane & Adhikari, 2020), this value is close to the experimentally reported value of 1.80 eV (Phuc et al., 2018). The bandgap energy of w$_{ad}$-MoS$_2$ was found to be 1.19 eV which is less than the reported band gap energy value of supercell MoS$_2$.

Therefore, the band gap energy of w$_{ad}$-MoS$_2$ was reduced due to the adsorption of the water molecule in pure MoS$_2$ super cell structure as shown in Fig. 2(a). Similarly, we have calculated the band gap energy values of 1S-w$_{ad}$-MoS$_2$ and 2S-w$_{ad}$-MoS$_2$ materials from their band structure plots as shown in Figs. 2(b) & 2(c), respectively, wherein all band structure plots, the x-axis represents high symmetric points in the first Brillouin-zone and the y-axis represents the corresponding energy values.
The band gap energy value of these materials was found to be 0.65 eV and 0.38 eV, respectively. These values are less than the band gap energy value of \(w_{ad}\text{-MoS}_2 \). Hence, from all these calculations, we concluded that \(w_{ad}\text{-MoS}_2 \), 1S\(_{ad}\text{-MoS}_2 \), and 2S\(_{ad}\text{-MoS}_2 \) materials resemble the nature of semiconductors. But, the conductivity strength of the material increases with an increase in its defect concentration. Also, the band structure of Mo\(_{ad}\text{-MoS}_2 \) was analyzed, and found that the energy band of electrons crossed the Fermi energy level as shown in Fig. 2(d). Hence, Mo\(_{ad}\text{-MoS}_2 \) is metallic in nature.

Table 1. Fermi energy (\(E_f \)), Fermi energy shift (\(E_s \)), band gap energy (\(E_g \)), binding energy (\(E_b \)), defects formation energy (\(E_d \)), total magnetic moment (\(M \)), and magnetic moment (\(\mu \)) due to up-spin and down-spin of electrons in 4p, 4d & 5s orbitals of Mo atoms; 3s & 3p orbitals of S atoms; 2s & 2p orbitals of O atom; 1s orbital of H atoms; of \(w_{ad}\text{-MoS}_2 \), 1S\(_{ad}\text{-MoS}_2 \), 2S\(_{ad}\text{-MoS}_2 \) and Mo\(_{ad}\text{-MoS}_2 \) materials

<table>
<thead>
<tr>
<th></th>
<th>(w_{ad}\text{-MoS}_2)</th>
<th>1S(_{ad}\text{-MoS}_2)</th>
<th>2S(_{ad}\text{-MoS}_2)</th>
<th>Mo(_{ad}\text{-MoS}_2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_f) (eV)</td>
<td>-2.04</td>
<td>-2.02</td>
<td>-2.10</td>
<td>-2.48</td>
</tr>
<tr>
<td>(E_s) (eV)</td>
<td>-</td>
<td>0.02</td>
<td>0.06</td>
<td>0.44</td>
</tr>
<tr>
<td>(E_b) (eV)</td>
<td>1.19</td>
<td>0.65</td>
<td>0.38</td>
<td>-</td>
</tr>
<tr>
<td>(E_d) (eV)</td>
<td>0.15</td>
<td>0.13</td>
<td>0.10</td>
<td>0.08</td>
</tr>
<tr>
<td>(\mu)-due to 4p of Mo atoms ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.20</td>
</tr>
<tr>
<td>(\mu)-due to 4d of Mo atoms ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.66</td>
</tr>
<tr>
<td>(\mu)-due to 5s of Mo atoms ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>(\mu)-due to 3s of S atoms ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.04</td>
</tr>
<tr>
<td>(\mu)-due to 3p of S atoms ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.74</td>
</tr>
<tr>
<td>(\mu)-due to 2s of O atom ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(\mu)-due to 2p of O atom ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>(\mu)-due to 1s of H atoms ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total magnetic moment (M) ((\mu_b)/cell)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>2.66</td>
</tr>
</tbody>
</table>

The metallic and semiconductor nature in defected materials were obtained because the edges and vacancies are very sensitive locations for molecular adsorption due to the under-coordination of atoms in the edge or around the vacancy. They also play a special role either in determining the geometrical conformation of layered materials and inducing modifications of the electronic properties of the layers themselves. It is known that electronic configurations of valence electrons in Mo, S, O and H atoms are [Kr] 4d\(^6\) 5s\(^1\), [Ne] 3s\(^2\) 3p\(^4\), [He] 2s\(^2\) 2p\(^4\) and 1s\(^1\), respectively. Each Mo atom has one unpaired up-spin in sub-orbital 5s and 4d\(_{xy}\), 4d\(_{xz}\), 4d\(_{yz}\), 4d\(_{x^2-y^2}\), 4d\(_{z^2}\); S atom has paired spins (up-spin and down-spin) in 3p\(_x\) sub-orbital and one unpaired up-spin in 3p\(_y\), 3p\(_z\) sub-orbital, and each O atom contains paired spins in 2p\(_x\) sub-orbital and single unpaired up-spin in 2p\(_y\) and 2p\(_z\) sub-orbital, H atom has single unpaired up-spin in 1s orbital. Due to the arrangement of unpaired up and down spin states of electrons in the orbitals of atoms in all \(w_{ad}\text{-MoS}_2 \), 1S\(_{ad}\text{-MoS}_2 \), 2S\(_{ad}\text{-MoS}_2 \) and Mo\(_{ad}\text{-MoS}_2 \) materials developed different values of Fermi energy. The Fermi energy values of \(w_{ad}\text{-MoS}_2 \), 1S\(_{ad}\text{-MoS}_2 \), 2S\(_{ad}\text{-MoS}_2 \) and Mo\(_{ad}\text{-MoS}_2 \) materials were found -2.04 eV, -2.02 eV, 0.02 eV, and 0.00 eV, respectively.
eV, -2.10 eV and -2.48 eV, respectively. Besides, shifting of Fermi energy values of 1S-w$_{ad}$-MoS$_2$, 2S-w$_{ad}$-MoS$_2$ and Mo-w$_{ad}$-MoS$_2$ materials are 0.02 eV, 0.06 eV and 0.44 eV, respectively, which are given in Table 1. This is due to the movement of charges in the structures. Moreover, we have carried out DoS and PDoS calculations to understand the electronic and magnetic properties of materials. The DoS and PDoS plots of w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, 2S-w$_{ad}$-MoS$_2$ and Mo-w$_{ad}$-MoS$_2$ materials are shown in Figs. 3(a-d) and Figs. 4(a-d), respectively. We have anomatized PDoS calculations to know the contributions of the magnetic moment given by the up-spin and down-spin of electrons in the individual orbital of atoms in materials. The detailed calculations of the magnetic moment due to spin states of electrons in the orbitals of Mo, S, O, and H atoms in PDoS of w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$ and 2S-w$_{ad}$-MoS$_2$ materials are given in Table 1. DoS and PDoS plots of these materials are seen symmetrically distributed near the Fermi energy level as shown in Figs. 3(a-c) and Figs. 4(a-c), respectively.

Magnetic properties

The magnetic moment of materials can be calculated from DoS and PDoS analysis. DoS and PDoS of up and down spin states of electrons in the orbitals of atoms in the materials were symmetrically distributed means, materials have non-magnetic properties, and asymmetrically distributed means, and materials have magnetic properties. The DoS and PDoS plots of w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, 2S-w$_{ad}$-MoS$_2$ and Mo-w$_{ad}$-MoS$_2$ materials are shown in Figs. 3(a-d) and Figs. 4(a-d), respectively. We have anomatized PDoS calculations to know the contributions of the magnetic moment given by the up-spin and down-spin of electrons in the individual orbital of atoms in materials. The detailed calculations of the magnetic moment due to spin states of electrons in the orbitals of Mo, S, O, and H atoms in PDoS of w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$ and 2S-w$_{ad}$-MoS$_2$ materials are given in Table 1. DoS and PDoS plots of these materials are seen symmetrically distributed near the Fermi energy level as shown in Figs. 3(a-c) and Figs. 4(a-c), respectively.

Fig. 3. (a) Total DoS of water adsorbed MoS$_2$ material, (b) total DoS of upper-1S atom vacancy defect in water adsorbed MoS$_2$ material, (c) total DoS of 2S atoms vacancy defects in water adsorbed MoS$_2$ material, (d) total DoS of 1Mo atom vacancy defect in water adsorbed MoS$_2$ material

Also, it was found that net magnetic moment given by up and down spin of electrons in 4p, 4d & 5s orbitals of Mo atoms; 3s & 3p orbitals of S atoms; 2s & 2p orbitals of O atom; and 1s orbital of H atoms have zero value. This is because; adsorbed water molecule reduces chemical activity in the lattice structures of w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$ and 2S-w$_{ad}$-MoS$_2$ materials.
Structural, electronic and magnetic properties of defected water adsorbed single-layer MoS$_2$

and 2S-w$_{ad}$-MoS$_2$ materials. Physisorption interactions can arise when a water molecule is adsorbed in this type of structure. Therefore, w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, and 2S-w$_{ad}$-MoS$_2$ materials have non-magnetic properties. Furthermore, the DoS/PDoS calculation of Mo-w$_{ad}$-MoS$_2$ material was analyzed. The DoS and PDoS of up-spin and down-spin states of electrons near the Fermi level were asymmetrically distributed, as shown in Figs. 3(d) and 4(d). Hence, the Mo-w$_{ad}$-MoS$_2$ material has magnetic properties. Also, the contributions of the magnetic moment due to the distribution of spins of electrons in the individual orbital of atoms presented in Mo-w$_{ad}$-MoS$_2$ material are given in Table 1. The magnetic moment developed in the material due to up-spin and down-spin of electrons in 4p, 4d & 5s orbitals of Mo atoms are 0.20 μ_B/cell, 0.66 μ_B/cell & 0.02 μ_B/cell; 3s & 3p orbitals of S atoms were 0.04μ_B/cell & 1.74μ_B/cell; and 2s & 2p orbitals of O atom, 1s orbital of H atoms were 0.00 μ_B/cell values, respectively. It means dominant contributions of magnetic moments are given by spins of 4p & 4d orbitals of Mo atoms and 3s & 3p orbitals of S atoms in the material. These values of the magnetic moment were calculated by subtraction between the values of the magnetic moment given by total up-spins and total down-spins of electrons in the orbitals of atoms present in Mo-w$_{ad}$-MoS$_2$ material. Hence, from these calculations, we found that the total magnetic moment of Mo-w$_{ad}$-MoS$_2$ has a value of 2.66 μ_B/cell. The positive value of magnetic moment means the up-spin electrons of atoms have a dominant role over the down-spin electrons of atoms. In Mo-w$_{ad}$-MoS$_2$ material, 3p orbital of S atoms and 4d orbital of Mo atoms have the principal role for the development of magnetic moment.

![Fig. 4. PDoS of individual orbital of Mo, S, O, H atoms in (a) water adsorbed MoS$_2$ material, (b) upper-1S atom vacancy defect water adsorbed MoS$_2$ material, (c) 2S atoms vacancy defects water adsorbed MoS$_2$ material, and (d) 1Mo atom vacancy defect water adsorbed MoS$_2$ material](image)

CONCLUSIONS

In the present work, the structural, electronic, and magnetic properties of w$_{ad}$-MoS$_2$, 1S-w$_{ad}$-MoS$_2$, 2S-w$_{ad}$-MoS$_2$ and Mo-w$_{ad}$-MoS$_2$ materials were studied by first-principles calculations based on the spin-polarized density functional theory (DFT) method. The Quantum ESPRESSO package was used for the computational work.
and the XCrySDen program was used for structure visualization. By analyzing the structures, the w_{ad}-Mo$_2$S$_2$, 1S-w_{ad}-Mo$_2$S$_2$, 2S-w_{ad}-Mo$_2$S$_2$, and Mo-w_{ad}-Mo$_2$S$_2$ were found to be stable materials. From the band structure calculations, the band gap energy of w_{ad}-Mo$_2$S$_2$, 1S-w_{ad}-Mo$_2$S$_2$, and 2S-w_{ad}-Mo$_2$S$_2$ materials calculated as 1.19 eV, 0.65 eV, and 0.38 eV, respectively. Therefore, these materials behave as a semiconductor. But, energy bands of electrons were crossed the Fermi energy level in the band structure of Mo-w_{ad}-Mo$_2$S$_2$ material. Hence, Mo-w_{ad}-Mo$_2$S$_2$ material has metallic properties. From DoS and PDos calculations, w_{ad}-Mo$_2$S$_2$, 1S-w_{ad}-Mo$_2$S$_2$, and 2S-w_{ad}-Mo$_2$S$_2$ materials are non-magnetic materials, while Mo-w_{ad}-Mo$_2$S$_2$ is a magnetic material. Therefore, non-magnetic w_{ad}-Mo$_2$S$_2$ changes to magnetic Mo-w_{ad}-Mo$_2$S$_2$ material due to the presence of Mo vacancy defect. The total magnetic moment of Mo-w_{ad}-Mo$_2$S$_2$ material has a value of 2.66 μ_B/cell. The high value of magnetic moment in Mo-w_{ad}-Mo$_2$S$_2$ is given by distributed up-spin and down-spin in 3p orbital of 5 S atoms and 4d orbital of Mo atoms.

ACKNOWLEDGEMENTS

HKN acknowledges the UGC Nepal for awarding the Ph. D. scholarship (PhD-7576-S&T-09), and NPA acknowledges network project NT-14 of ICTP/OEA and UGC Nepal Grants CRG 073/74 -S&T -01.

REFERENCES

