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ABSTRACT 

The aim of this paper is to  introduce and study a  new vector valued sequence space  S( ( Z, || ( . , . ) ||Z ), γ
–
, u–) with terms from 

a product normed space  as a generalization of  sequence space studied by Srivastava and Pahari (2011) which is itself the 

generalization of the familiar absolutely summable  sequence space l. We investigate its linear structure with respect to the 

co-ordinate wise vector operation and explore the conditions in terms of different  u– and  γ
–
 so that a class is contained in 

another class of same kind and thereby derive the conditions of their equality. Finally we investigate the  paranormed  

structure of  S ( ( Z, || (. , . ) ||Z ), γ
–

, u–) by endowing it with a suitable natural paranorm. 
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INTRODUCTION  

The notion of vector valued sequence space is a 

generalized form of spaces of scalar valued sequences, and 

its terms consist of sequences from a vector space. Let A be 

a normed space over C, the field of complex numbers and   

let ω(A) denotes the linear space of all A valued sequences 

with usual coordinate-wise operations. We shall denote ω 

(C) by ω. Any subspace of ω is then called a sequence 

space. The various types  of vector valued sequence spaces 

has been significantly  developed by several workers for 

instances, Köthe  (1970), Maddox (1980), Kamthan and 

Gupta (1980), Ruckle (1981), Malkowski and Rakocevic 

(2004), Khan (2008), Kolk (2011), Srivastava and Pahari 

(2011, 2012 & 2013).  

The notion of paranormed space is closely related to   

linear metric space (Wilansky, 1978). A paranormed space 

(A,Φ) is a linear space A with zero element θ, together with 

a function  Φ:A  R+  (called a paranorm on  A) which 

satisfies the following axioms: 

PN1:  Φ (θ) = 0; 

PN2: Φ (ξ) = Φ (–ξ) , for all ξ ∈ A; 

PN3: Φ (ξ + η ) ≤ Φ (ξ) + Φ (η),for all ξ , η ∈ A;  

and   PN4: Scalar multiplication is continuous  

i.e., if < γn > is a sequence of scalars with γn  γ as     

n   and < ξn > is a sequence of vectors with Φ (ξn − ξ ) 

 0  as n  , then   Φ ( γn  ξn − γξ)  0 as n  . 

Note that the continuity of scalar multiplication is 

equivalent to   

(i)   if  Φ (ξn)  0  and   γn  γ as     n  , then   

Φ (γn ξn)  0 as  n  ; and 

(ii)   if γn  0 as n   and  ξ  be any element in  A, then  

Φ (γn ξ)  0 (Wilansky, 1978). 

A paranorm Φ is called total if  Φ (ξ) = 0 implies  ξ = θ 

(Wilansky, 1978). The studies of  paranorm on sequence 

spaces were initiated by Maddox (1969). Various types of  

paranorms  on the spaces  of sequences and functions  were 

further studied in the works of Parashar and Choudhary 

(1994),  Bhardwaj and Bala (2007), Khan (2008), Tiwari  

and Srivastava (2008 & 2010),  Pahari (2011 & 2013), 

Srivastava and Pahari (2011, 2012 & 2013).  

Let (A, || . ||A) and  (B, || . ||B)  be Banach spaces over the 

field C of complex numbers. Clearly the linear space 

structure of A and B provides  the Cartesian product of A 

and B given by  

Z = A × B = { ( ξ, η ) : ξ ∈ A, η ∈ B }forms a normed 

linear space over C  under the algebraic operations   

α (ξ1, η1 ) + β (ξ2, η2 ) = (αξ1 + βξ2, αη1 + βη2 ) with the  

norm|| (ξ, η ) ||A × B   = max {|| ξ ||A, || η ||B } 

where (ξ1, η1 ), (ξ2, η2 ),( ξ, η ) ∈ Z and  α,β ∈ C. 
Moreover, since (A, || . ||A) and  (B, || . ||B) are  Banach 

spaces therefore  the  Cartesian product ( Z, || ( . , . ) ||Z ) is 

also a Banach space. 

In studying various classes of a scalar  valued sequence 

space (see, Kamthan and Gupta (1980), we have  the 

following definition: 

A normed space A - valued topological sequence space  

V(A) equipped with the linear topology ℑ  is said to  be a 

GK-space if the projection  map  πk : V(A) → A defined by   

πk(ξ
–

) = ξk  is continuous for each k.  

Let u– = (uk) and  v– = (vk) be any sequences of strictly 

positive real numbers and γ
–

 = (γk) and µ
–

 = (µk) be 

sequences of non-zero complex numbers. We now 
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introduce the following class of Banach space Z - valued 

sequences: 

   S ((Z, || ( . , . ) ||Z ), γ
–

, u–) = { u– = < (ξk , ηk ) >  : 

   (ξk, ηk ) ∈ Z, 
k = 1

∞
  ||γk (ξk, ηk) ||

 u
k
 < ∞}. ……………….(1) 

Further, when γk =1 for all k, then S ((Z, || ( . , .) ||Z), γ
–

, u–) 

will be denoted by S ( (Z, || ( . , . ) ||Z ) , u
–) and when  

uk = 1 for all k; then    S ( (Z, || ( . , . ) ||Z ), γ
–

, u–) will be 

denoted by  S ( (Z, || ( . , . ) ||Z ), γ
–

).   

Several  properties of bilinear vector valued sequence 

spaces defined on product normed spaces have been 

introduced and examined  by the various workers ,see 

Sanchezl  et al. (2000), Castillo et al. (2001), Yilmaz and 

Solak (2004), which generalize and unify a number of  

existing sequence spaces and function spaces. 

RESULTS 

In this section we show the linearity of the class 

S((Z, || ( . , . ) ||Z ),γ
–

, u–) with respect to co-ordinate wise 

vector operations and then explore the conditions on  u– and  

γ
–

 so that a class  S((Z,|| (. , .)||Z ) , γ
–

, u–) is contained in or 

equal to another similar class. Finally we investigate the 

paranormed structures of S((Z, || ( . , . ) ||Z), γ
–

, u–) by 

endowing it with a suitable natural paranorm. 

 As far the as linear space structure of the class  

S ((Z, ||  ( . , .) ||Z ), γ
–

, u– ) over the field C are  concerned, 

we shall take point-wise    vector operations, i.e. for 

s– = < ( ξk , ηk ) > , z– = < (  ξ'k  , η'k  ) >   

∈  S((Z, || ( . , . ) ||Z ), γ
–

, u– ) and α,β ∈ C, we have  

 αs– +βz– =  α < (ξk , ηk ) >  + β < (ξ'k , η'k  ) >   

             = < (  αξk + β ξ'k , αηk +β η'k   ) > . 

 The zero element of  S((Z, || ( . , . ) ||Z ), γ
–

, u– ) will be  

 denoted by  θ
–

 = < ( 0, 0 ), ( 0, 0 ), ( 0, 0 ), ...> . 

 Throughout the work, we shall denote  rk =  



γk

 µk

 uk

  . 

Moreover, we write  M  for  max (1, supk uk). But when the 

sequences <uk>  and < vk > occur, then to distinguish M  

we use the notations  M(u) and M(v) respectively. 

Theorem 1: If  supk  uk is finite, then  S((Z, || ( . ,.) ||Z), γ
–

 ,u–)   

forms a linear space   over C. 

Proof:  

Assume that supk  uk < ∞ and s– = < (ξk , ηk ) >  and  

z– = < ( ξ'k , η'k  ) >  ∈  S ( (Z, || ( . , . ) ||Z ), γ
–

, u– ) .   

So that   
k = 1

∞
    || γk (  ξk , ηk ) ||

 u
k
  < ∞  

and   
k = 1

∞
      || γk (ξ'k , η'k ) ||

 u
k
 <  ∞. 

Now, considering || γk ((  ξk , ηk  ) + (ξ'k , η'k  ))||
 u

k
 / M

    

≤ || γk (ξk , ηk ) ||
 u

k
 / M

 + || γk (ξ'k , η'k ) ||
 u

k
 / M

   
and therefore 


k = 1

∞
     || γk ((  ξk , ηk  ) + (ξ'k , η'k  ))||

 u
k
 / M

    

≤ 
k = 1

∞
   || γk (ξk ,ηk ) ||

 u
k
 / M

  + 
k = 1

∞
    || γk (ξ'k , η'k ) ||

 u
k
 / M

   <  ∞ 

and hence s– + z–  ∈  S((Z, || ( . , . ) ||Z ), γ
–

, u– ). 

Similarly for any scalar α,   

|| αγk (ξk , ηk )||
 u

k
 / M

 = |α|
 u

k /M  
|| γk (ξk , ηk ) ||

 u
k
 / M

 

  ≤ max(1, |α|) || γk (ξk , ηk ) ||
 u

k
 / M

   

and therefore 


k = 1

∞
      || αγk (ξk , ηk )||

 u
k
 / M

  

=  
k = 1

∞
    |α|

 u
k /M  

|| γk (ξk , ηk )||
 u

k
 / M

 

 ≤ max(1, |α|) 
k = 1

∞
   || γk (ξk , ηk ) ||

 u
k
 / M

   <  ∞ 

and  shows that   α s– ∈ S((Z, || ( . , . ) ||Z ), γ
–

, u– ). This 

implies that   S ( (Z, || ( . , . ) ||Z ), γ
–

, u– ) forms  a linear 

space over C.  

Theorem 2: If S((Z, || (. , .) ||Z ), γ
–

 , u– )  forms a         linear 

space over C  ,then  supk uk is finite. 

Proof: 

Suppose that  S((Z, || (. , .) ||Z ) , γ
–

, u– ) forms  a linear space 

over  C but supk  uk = ∞.Then   there  exists  a sequence < 

k(n) > of positive integers  satisfying  1 ≤ k (n) < k (n + 1), 

n ≥ 1   for which  

uk(n)   > n  ,for each n ≥ 1. .……………….….………..(1) 

Now taking (ξ, η)  ∈  Z  with  || (ξ, η) || = 1 ,  

we define a sequence   s– = < (ξk , ηk ) >  where 

(ξk , ηk  )  is given by  

(ξk ,ηk  ) = γ
–1

k(n)
 n 

–2/uk(n)  ( ξ,η)‚for k = k(n)‚n ≥ 1 

             =   < 0‚ 0 >‚ otherwise ……………….………(2) 

Then we have 


k = 1

∞
  || γk (ξk , ηk ) ||

 u
k 
= 

n = 1

∞
  || γk(n) (ξk(n), ηk(n) ) ||

 u
k(n)

                                                   

   = 
n = 1

∞
     || n 

–2/uk(n) (ξ,η ) ||
 u

k(n)
  =   

n = 1

∞
     

1

n
2   <  ∞. 
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Thus we see that  s– ∈ S((Z, || ( . , . ) ||Z ), γ
–

, u– ) but on the 

other hand for k = k(n)‚ n ≥ 1 and  in view  of (1) and (2) 

for the scalar  α = 2, we have 


k = 1

∞
  || γk [α(ξk ,ηk )]||

u
k 
= 

n = 1

∞
  ||γk(n)[2(ξ k(n), ηk(n))]||

 u
k(n) 

  = 
n = 1

∞
  |2|

 u
k(n) 

|| n 
–1/uk(n)  (ξ,η ) ||

 u
k(n)

 

  = 
n = 1

∞
       2

 u
k(n)

 . 
1

n
 >  

n = 1

∞
      

2
n

 n
  ≥  1 

This shows that α s– ∉ S((Z, || ( . , . ) ||Z ), γ
–

, u– ),  a 

contradiction. This completes the proof of the theorem. 

Combining Theorem 1 and Theorem 2, we get: 

Theorem 3:  S((Z, || ( . , . ) ||Z ), γ
–

 , u– )   forms a linear 

space over C    if and only if   supk uk is finite. 

Theorem 4: For any u– = < uk >  and if  < rk >   has finite   

limit superior, then 

S((Z, || ( . , . ) ||Z ) , µ
–

, u–) ⊆ S((Z, || ( . , . ) ||Z ) , γ
–

, u–) 

Proof : 

Assume that  lim supk rk <∞ . Then there exists a constant  

L > 0 such that |γk|
 u

k
  < L |µk|

 u
k   

 for all large values of k.  

or, || γk < ξk , ηk > ||
 u

k   
<  L || µk (ξk , ηk ) ||

 u
k
. 

Let  s– = < (ξk , ηk ) > ∈ S((Z, || ( . , . ) ||Z ) , µ
–

, u– ) ,  

so that   
k = 1

∞
    ||µk (ξk , ηk )||

 u
k
 < ∞. 

Now, 
k = 1

∞
  || γk (ξk , ηk ) ||

 u
k
 <L 

k = 1

∞
   || µk (ξk , ηk ) ||

 u
k 
< ∞ 

and hence   s– ∈ S((Z, || ( . , . ) ||Z ) , γ
–

, u– ). 

This clearly implies that  

S((Z, || ( . , . ) ||Z ), µ
–

, u–) ⊆  S((Z, || ( . , . ) ||Z ) , γ
–

, u–  ).This 

completes the proof. 

Theorem 5: For any u– = < uk >  , if  

S((Z, || ( . , . ) ||Z ) , µ
–

, u–) ⊆ S((Z, || ( . , . ) ||Z ) , γ
–

, u–) then   

< rk >  has finite limit superior.  

Proof : 

Suppose  that the inclusion   

S((Z, || ( . , . ) ||Z ), µ
–

, u–) ⊆  S((Z, || ( . , . ) ||Z ) , γ
–

, u–) 

holds but lim supk rk  = ∞. Then we can find a sequence  

< k(n) > of positive integers with  k(n) <  k(n + 1), n ≥ 1 for 

which 

 | γk(n) | 
u
k(n)   

>  n| µk(n) |
 u

k(n)  
…………………..………….(3) 

Corresponding to (ξ,η ) ∈ Z with  || (ξ, η ) || = 1, 

we define  the sequence  s– =  < (ξk , ηk  ) > where  

(ξk,ηk ) = µ
–1

k(n)
 n 

 -2/u
k(n) 

 

(ξ,η )‚ for k = k(n)‚ n ≥ 1 

 = < 0‚ 0 >‚ otherwise  …………….…………. (4) 

Then we have        


k = 1

∞
   || µk (ξk , ηk ) ||

 u
k
  = 

n = 1

∞
   ||  µ k(n) (ξk(n) , ηk(n) ) ||

 u
k(n) 

  

   = 
n = 1

∞
     

1

n
2 < ∞ 

and so   s– =  < (ξk , ηk ) >  is in S((Z, || ( . , . ) ||Z ) , µ
–

, u–)  . 

But on the other hand in view of (3) and (4), we have 


k = 1

∞
   ||γk (ξk ,ηk ) ||

 u
k
  = 

n = 1

∞
   ||γk(n) (ξk(n) , ηk(n) ) ||

 u
k(n)

                                 

    ≥ 
n = 1

∞
   n|µk(n)|

u
k(n) 

||(ξk(n), ηk(n)||
u
k(n)

    

  =  
n = 1

∞
     

1

n
   = ∞  and therefore 

s– =  < (ξk , ηk ) >  ∉ S((Z, || ( . , . ) ||Z ) , γ
–

, u– ), a 

contradiction. This completes the proof of the theorem. 

   If Theorems 4 and 5 are combined, we get 

Theorem 6: For any u– = < uk > , 

 S((Z, || ( . , . ) ||Z ) , µ
–

, u–) ⊆  S((Z, || ( . , . ) ||Z ) , γ
–

, u–) 

 if and only if  < rk > has finite limit superior.  

Theorem 7: For any u– = < uk >   and   

S((Z, || ( . , . ) ||Z ) , γ
–

, u–)  ⊆   S((Z, || ( . , . ) ||Z ), µ
–

, u– ) then   

< rk >  has positive limit inferior. 

Proof :  

Assume that  lim infk rk > 0. Then there exists a  constant  

m > 0 such that  m|µk|
 u

k
 < |γk|

 u
k 
for all large values of k.    

 or,  m || µk(ξk , ηk ) ||
 u

k
    ≤  || γk (ξk , ηk ) ||

 u
k
. 

Let  s– = < (ξk , ηk ) >  ∈ S((Z, || ( . , . ) ||Z ), γ
–

, u– ) ,    

so that   
k = 1

∞
      || γk  (ξk , ηk )||

 u
k
 < ∞. Now, 


k = 1

∞
   || µk (ξk , ηk ) ||

 u
k    

<  
1

m
 
k = 1

∞
  || γk (ξk , ηk ) ||

 u
k  

< ∞ 

and hence  

  s– = < (ξk , ηk ) >  ∈ S((Z, || ( . , . ) ||Z ) , µ
–

, u–). 

This clearly implies that  

S((Z, || ( . , . ) ||Z ), γ
–

, u–) ⊆ S((Z, || ( . , . ) ||Z ),µ
–

, u–). 

The proof is now complete. 

Theorem 8: For any u– = < uk > , 

 S((Z, || ( . , . ) ||Z ) , γ
–

, u–)  ⊆   S((Z, || ( . , . ) ||Z ) , µ
–

, u– ) 

then   < rk >  has positive limit inferior. 

J.K. Srivastava and Narayan Prasad Pahari



28

Proof : Let the inclusion, 

S((Z, || ( . , . ) ||Z ) , γ
–

, u–) ⊆ S((Z, || ( . , . ) ||Z ) , µ
–

, u–) hold but  

lim infk rk = 0. Then we can find a sequence < k(n) >  of 

positive   integers with  k(n) < k(n + 1), n ≥ 1  such that for 

each n ≥ 1 

 n |γk(n)|
 u

k(n)
 < |µ k(n)|

 u
k(n

 ……………….……………. ….(5) 

Corresponding to  (ξ, η ) ∈ Z  with  || (ξ,η ) || = 1,we define  

a sequence  s– =  < (ξk , ηk ) > , where 

(ξk ,ηk ) = γ
–1

k(n)
 n 

–2/uk(n)  (ξ, η )‚ for k = k(n)‚ n ≥ 1 

   = (0, 0)‚ otherwise. ………………..… (6) 

Then we have  
k = 1

∞
   || γk (ξk , ηk ) ||

 u
k
    

   = 
n = 1

∞
   || γk(n) (ξk(n), ηk(n) ) ||

 u
k(n)

 = 
n = 1

∞
     

1

n
2 < ∞ 

and so s– =  < (ξk , ηk ) >  is in S((Z, || ( . , . ) ||Z ) , γ
–

, u–).  

But on the other hand in view of (5) and (6) we have 


k = 1

∞
  || µk (ξk , ηk ) ||

 
u

k  
= 

n = 1

∞
   || µ k(n) (ξ k(n) ,η k(n) ) ||

 
u

k(n) 

   
=

  
n = 1

∞
     



µk(n)

γk(n)

 uk(n)

 . 
1

n
2 > 

n = 1

∞
     

1

n
 = ∞ 

and therefore  s– = < (ξk , ηk ) > ∉ S((Z, || ( . , . ) ||Z ) , µ
–

, u–) , 

which is a contradiction. This completes the proof. 

If Theorems 7 and 8 are combined, we get 

Theorem 9: For any u– = < uk >,  

S((Z, || ( . , . ) ||Z ) , γ
–

, u–)  ⊆   S((Z, || ( . , . ) ||Z ) , µ
–

, u– ) 

 if and only if  < rk >  has positive limit inferior. 

If  Theorems  6 and  9  are combined, we get 

Theorem 10: For any u–  =  < uk >  ,  

 S((Z, || ( . , . ) ||Z ) , γ
–

, u–) = S((Z, || ( . , . ) ||Z ) , µ
–

, u– )  

 if and only if   0 < lim infk rk  ≤ lim supk rk   < ∞. 

Corollary  11: For any u– = < uk >  , 

(i)  S((Z, || ( . , . ) ||Z ) , γ
–

, u– ) ⊆ S((Z, || ( . , . ) ||Z ) , u
– )  

 if and only if   lim infk |γk|
 u

k 
  > 0; 

(ii)  S((Z, || ( . , . ) ||Z ) , u
– ) ⊆  S((Z, || ( . , . ) ||Z ) , γ

–
, u– )   

 if and only if   lim supk |γk|
 u

k
  < ∞; 

(iii)  S((Z, || ( . , . ) ||Z ) , γ
–

, u– ) = S((Z, || ( . , . ) ||Z ) , u
– ) 

 if and only if  0 <  lim infk |γk|
 u

k
 ≤ lim supk |γk|

 u
k
 < ∞. 

Proof: 

By taking µk = 1 for all k  , in Theorems 6 , 9 and  10 , the 

assertions (i),(ii) & (iii)  follow. 

Theorem  12:  For any sequence γ
–

 = < γk > , if  

 uk ≤ vk  for all but finitely many k, then  

S((Z, || ( . , . ) ||Z ) , γ
–

, u– ) ⊆ S((Z, || ( . , . ) ||Z ) , γ
–

, v– ). 

Proof:  

Let   s– = < (ξk , ηk ) >  ∈  S((Z, || ( . , . ) ||Z ), γ
–

, u–), 

then clearly 
k = 1

∞
     || γk (ξk , ηk ) ||

 u
k
  < ∞. 

This shows that there exists  K ≥1 such that  

|| γk (ξk , ηk ) || 
 
 < 1,  for all  k  ≥ K. 

Thus  || γk (ξk, ηk ) ||
 v

k
  ≤    || γk (ξk, ηk  ) ||

 
u
k
 for all  k ≥ K. 

This  clearly shows that  


k = 1

∞
  || γk (ξk , ηk )||

 v
k
 < ∞ and hence  s– = < (ξk, ηk ) >  

∈  S((Z, || ( . , . ) ||Z ) , γ
–

, v– ).  This completes the proof. 

 

Combining Theorem 9 and Theorem 12, we get: 

Theorem 13: For any γ
–

 = < γk >, µ
–

 =< µk >, u–=< uk >  and 

v– = < vk > , if 

(i)  lim infk rk  > 0; and    

(ii)  uk ≤ vk, for all but finitely many k,   

       hold together, then 

S((Z, || ( . , . ) ||Z ) , γ
–

, u– ) ⊆ S((Z, || ( . , . ) ||Z ), µ
–

, v– ). 

Let supk  uk < ∞. For  s– ∈ S((Z, || ( . , . )||Z ), γ
–

 ,u– ).    

We now define   

Φγ
–
, u
–
 (s
–) = 










k = 1

∞
    ||γk ( ξk , ηk )||

uk

1/M

……………….…. (7) 

In the following Theorems, Φ will denote Φ γ
–
, u
–. 

Theorem 14: Let  supk  uk < ∞ and A, B  be the normed 

spaces with Z = A × B, then  S((Z, || ( . , . ) ||Z ), γ
–

 , u– )  

forms  a total  paranormed – space with respect to Φ . 

Proof:  

For  s– , t– ∈ S((Z, || ( . , . )||Z ), γ
–

 ,u– ),we can easily verify  

that  Φ  defined  by (7) satisfy the following axioms: 

PN1: Φ (s
–) ≥ 0, and Φ (s

–) = 0 if and only if s– = θ
–

, 

PN2: Φ (s
– + t–) ≤ Φ (u

–) + Φ ( t–), 

PN3:  Φ(αs–)  ≤  A(α) Φ (s–), where α ∈ C. 
Finally to prove the  continuity of scalar multiplication i.e. 

PN4, it suffices  to show that 

(a) Φ (s–
 (n)

)  → 0 and αn → α  imply  

 Φ (αns–
 (n)

) → 0;  and 

(b) αn → 0 implies Φ (αns–) → 0 for each 

 s– ∈   S((Z, || ( . , . ) ||Z ) , γ
–

 , u– ). 

 Suppose |αn| ≤  L for all n ≥ 1, then we get 

Φ (αns–
 (n)

) ≤ 
sup

k
 |αn |

 u
k /M 

( 
k = 1

∞
  ||γk (ξ

(n)

k
, η

(n)

k
 )||

 u
k
)

1/M
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 ≤  max(1, | L |) Φ (s–
 (n)

) and so (a) follows. 

For (b), suppose that  s– ∈S((Z, || ( . , . ) ||Z ) ,γ
–

 ,u– ) and αn → 

0. Then for ε > 0 there exist positive integers K and  N such 

that 


k = K

∞
     || γk  (ξk , ηk )  ||

 u
k
 <  


ε

 2
 

M

and when n ≥ N 


k = 1

K–1

    |αn|
 u

k
 || γk (ξk , ηk ) ||

 u
k
 < 


ε

 2
 

M

  
and |αn| ≤ 1.

 

Thus for all n ≥ N we see that 

Φ (αns–) ≤ ( 
k = 1

K–1

    || αn γk (ξk , ηk ) ||
 u

k  
)

1/M
  

 +( 
k = n

∞
  ||γk (ξk , ηk ) ||

 u
k 
)

1/M
   < ε, and hence (b) follows. 

Theorem 15:  Let supk  uk < ∞, then if  A and B  

 are normed  spaces  with Z=A × B  then   

S ((Z,||(.,.)||Z ), γ
–

, u– )  is a  GK-space with respect to ξ. 

Proof:          

For each k ≥ 1, the continuity of 

πk : S ( (Z, || ( . , . ) ||Z )  , γ
–

 , u– ) → Z, 

where  πk (s–) = (ξk  , ηk ),follows from the inequality 

πk(s–) = || (ξk , ηk ) ||  ≤ |γk|
–1

 (ξ (s–))
M / u

k
. 

Thus S((Z, || ( . , . ) ||Z ), γ
–

 , u– ) is a GK-space. 

CONCLUSION  

In this paper, we have examined the linear topological  

structure  by endowing a suitable natural paranorm of a  

new vector valued sequence space S ( ( Z, || ( . , . ) ||Z ), γ
–

, u–) 

with terms from a product normed space. In fact, these 

results can be used for further generalization to investigate 

topological properties of other absolutely summable 

sequence and function spaces. 
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