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ABSTRACT 

The aim of this paper is to   introduce   and study  a new  class  c0 (S, T, Φ, ξ, u) of locally convex space  T-  valued 

functions using Orlicz function Φ as a generalization of  some of the  well   known sequence spaces and function 

spaces. Besides the  investigation  pertaining to the structures of  the class c0 (S, T, Φ, ξ, u),  our primarily interest is 

to explore some of the  containment relations  of the class   c0 (S, T, Φ, ξ, u) in terms of different ξ and u so that such 

a class of functions is contained in or equal to another class of similar nature. 
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INTRODUCTION  

We begin with recalling some notations and basic 

definitions that are used in this paper. 
Definition 1: A sequence space S is said to be solid 

if  ξ
–

=  < ξk > ∈ S and  γ– = < γk > a sequence of scalars   

with |γk| 1,  for all k ≥ 1, then  γ– ξ
–

 = < γk ξk >  ∈ S. 

So  far,  a  good  number  of  research  works   have  

been done  on various types of  sequence  spaces   and 

function spaces. 

Definition 2: By an Orlicz function we mean a 

continuous, non decreasing and convex function   

Φ: [0,∞) → [0,∞) satisfying    

Φ(0) = 0, Φ(s) > 0 for s > 0 and Φ (s) → ∞as s →∞. 

It is noted that an Orlicz function is always unbounded 

and an Orlicz function satisfies the inequality     

Φ(γs)  γ Φ (s), 0 < γ <1 (Krasnosel'skiî & Rutickiî, 

1961). 

An Orlicz function Φ can be represented in the 

following integral form    

Φ (ξ) = 
ξ

0
   q(t) dt 

where q, known as the kernel of Φ, is right-

differentiable for t ≥ 0, q(0) =0,  q(t) > 0 for  t > 0, q is 

non decreasing,and q(t) → ∞ as t → ∞ (Krasnosel'skiî  

& Rutickiî , 1961). 

 

 Definition 3: Lindenstrauss and Tzafriri (1971) used 

the notion of Orlicz function to construct the sequence 

space lΦ of scalars < ξk > such that  
k = 1

∞

.Φ 



||ξk||

 r
   < ∞ 

for some r > 0. They proved that the space lΦ  equipped 

with the norm defined by 

|| ξ 
–

||Φ = inf 









r > 0:   
k = 1

∞

. Φ 



|ξk|

 r
 ≤   1   

 This becomes a Banach space, which is called an Orlicz 

sequence space. The space lΦ (S) is closely related to the 

space l p which is an Orlicz sequence space with  

Φ (s) = s
p
 : 1  p < ∞. 

Subsequently, Kamthan and Gupta (1981), Rao and  

Ren  (1991),  Parashar and Choudhary (1994), Chen  

(1996), Ghosh and Srivastava (1999), Rao and  

Subremanina (2004), Savas and Patterson (2005), 

Bhardwaj and Bala (2007), Khan (2008), Basariv and 

Altundag (2009), Kolk (2011), Pahari (2013),   

Srivastava and  Pahari (2011 & 2013) and  many others 

have been introduced and studied the algebraic and 

topological properties of various sequence spaces  using 

Orlicz function as a generalization of several well 

known  sequence spaces.  

Definition 4: A topological linear space S is a vector 

space S over a topological field K (most often the  

complex numbers C with their standard topologies) 

which is endowed with a topology  ℑ such that if s1, s2 

∈ S, α ∈ K; the mappings: 
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(i) vector addition S×SS such that (s1, s2) → s1+ s2 and 

(ii) scalar multiplication K×S S such that (α, s) →α s 

are continuous.         

This topology ℑ  is called a vector topology or a linear 

topology on S. If ℑ  is given by some metric   then the 

topological vector space is called a linear metric space. 

All normed spaces or inner product spaces endowed 

with  the topology defined by its norm or inner product 

are well-known examples of topological vector spaces.  

A local base of topological vector space S is a collection 

B of neighbourhood θ such that every neighbourhood 

of θ contains the member of B.  

A set S in a topological vector space S is said to be 

absorbing if for every s ∈ S there exists an α > 0 such 

that s ∈ ν S  for  all ν ∈ C such that |ν| ≥ α ; and  
 balanced if ν S ⊂ S for every ν ∈ C such that |ν| ≤ 1. 

It is called convex in S if for every α ≥ 0, we have  

α S + (1-α) S ⊂ S; and absolutely convex in S if it is 

both balanced and convex. 

Definition 5: The gauge or Minkowski functional of a 

set A in a vector space X is a map x → qA (x) from X into 

the extended set R+ ∪ {∞} of non-negative real numbers 

defined as follows: 

qA (x) = 


inf  r ‚ if there exists r > 0 such that x ∈ r A and 

  ∞ ‚   if x ∉ r A for all r > 0.
  

Definition 6: A seminorm (pseudonorm) on a linear 

space S over the scalar C with zero element θ is a 

subadditive function p : S → R+  satisfying  

p(αs)  = |α| p(s), for all α∈C and s∈S. 

Clearly, if p(s) = 0 implies   s = θ,then p is a nom. 

If S is a vector space equipped with a family {pi : i ∈ I} 

of seminorms then there exists a unique locally convex 

topology ℑ  on S such that each pi is  ℑ - continuous 

(Rudin, 1991 & Park, 2005). 

The class c0 (S, T, ΦΦΦΦ, ξξξξ, u)  of locally convex space 

valued functions  

Let S be an arbitrary non empty set (not necessarily 

countable) and F(S) be the collection of all finite subsets 

of S. Let (T, ℑ) be a Hausdorff locally convex  

topological vector space (lcTVS) over the field of 

complex numbers C  and T * be the topological dual of 

T. Let U(T) denotes the fundamental system of 

balanced, convex and observing neighbourhoods of zero 

vector θ of T. pU will denote gauge or Minkowski  

functional  of    U ∈  (T).  

Thus, D = {pU : U∈ (T)}is the collection of all 

continuous seminorms  generating  the topology ℑ of T. 

Let u and w be any functions on S → R
+
, the set of 

positive real numbers, and l∞ (S, R
+
) = { u : S → R

+
 such 

that sups u(s) < ∞}. 

Further, we write ξ, η for functions on S →C – {0}, and 

the collection of all such functions will be denoted by 

s(S, C – {0}). 

We introduce the following new class of locally convex 

topological vector space valued functions: 

c0 (S, T, Φ, ξ, u) = {φ : S → T : for every ε > 0 and 

 pU ∈ D, there exists  J ∈  (S) such that for some r > 0,  

Φ 





 
[ pU (ξ (s) φ (s) )] 

u(s)

 r
  < ε for each s ∈ S – J }; 

When ξ : S → C – {0} is a function such that ξ (s) = 1 

for all s. Then, c0 (S, T, Φ, ξ, u) will be denoted by c0 

(S,T,Φ,u) and when u : S → R
+
 is a function such that 

u(s) = 1 for all s, then c0 (S, T, Φ, ξ, u) will be denoted 

by c0 (S, T, Φ, ξ).  

In fact, these classes are the generalizations of the  

familiar sequence and function spaces, studied in  

Srivastava (1996), Tiwari et al. (2008 & 2010), Pahari 

(2011), Srivastava and  Pahari ( 2011) using norm.  

RESULTS 

We explore the structure of the class c0 (S, T, Φ, ξ, u) of 

lc TVS T – valued functions by investigating the 

conditions in terms of different u and ξ so that a class   

is contained in or equal  to another similar class and 

thereby derive the  conditions of their equality. 

We shall denote the zero element of this class by 

θ,which we shall mean the function of θ : S → T such 

that θ (s) = 0, for all s∈ S. 

Moreover, we shall frequently use the notations  

 L = sups u(s) and A [α] = max (1, |α|), for scalar α. But 

when the functions u(s) and w(s) occur, then to 

distinguish L, we use the notations L(u) and L(w) 

respectively. 

Theorem 1:   The class c0 (S, T, Φ, ξ, u) forms a solid. 

Proof: 

Let  φ ∈ c0 (S, T, Φ, ξ, u), r > 0 be associated with  

φ  and  ε > 0 . Then for   pU ∈ D , there exists    a  J ∈  

(S) such that 

Φ  



 

 [ pU (ξ(s) φ(s))]
 u(s)

 r
   < ε for every  s ∈ S  – J. 
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 Now, if we take scalars α(s), s ∈ S such that |α(s)| ≤ 1, 

then  

Φ  



[ pU (α(s) ξ(s) φ(s))] 

u(s)

 r
   

≤  Φ 



|α(s)| 

u(s)
 [ pU (ξ(s) φ (s))] 

u(s)

 r
  

 ≤  Φ 





 
[ pU (ξ(s) φ(s))] 

u(s)

 r
  < ε. 

This shows that α φ ∈  c0 (S, T, Φ, ξ, u) and  hence  c0 

(S, T, Φ, ξ, u) is solid. 

Theorem 2: If u ∈ l∞ (S, R
+
) and ξ, η ∈ s (S, C – {0}), 

then 

c0 (S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, η, u) 

if   lim infs 



ξ(s)

 η(s)

u(s)

 > 0. 

 Proof:  

 Assume that lim infs 



ξ(s)

 η(s)

u(s)

 > 0. 

 Then there exists m > 0 such that,  

 m |η(s)|
u(s)

 <  |ξ (s)|
u(s)

  for all but finitely many s ∈ S.  

Let  φ ∈ c0 (S, T, Φ, ξ, u), r1 > 0  be associated with 

φ and ε > 0. Then for pU ∈ D, there exists J ∈  (S) such 

that  

Φ 





 
[ pU (ξ (s) φ(s))] 

u(s)

 r1
  < ε for each s ∈ S – J.  

Let us choose r such that r1 < m r. Then for such r, 

using non decreasing property of Φ, we have 

 Φ





 
[ pU(η(s) φ(s))] 

u(s)

 r
  = Φ





 
[|η(s)| pU (φ(s))] 

u(s)

 r
 

Φ





 
[ |ξ (s)| pU (φ(s))] 

u(s)

m r
  

Φ





 
[ pU (ξ (s) φ(s))] 

u(s)

 r1
 < ε, for each s ∈ S – J.   

Since pU ∈ D is arbitrary in the above discussion, 

therefore we easily get φ ∈ c0 (S, T , Φ , η, u). 

This proves that c0 (S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, η, u). 

Theorem 3: If u ∈ l∞ (S, R
+
),ξ, η ∈ s (S, C – {0}) 

and c0 (S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, η, u), then  

lim infs 



ξ(s)

 η(s)

u(s)

 > 0. 

Proof: 

Assume that c0(S, T, Φ, ξ, u) ⊂ c0(S, T, Φ, η, u) 

but lim infs 



ξ(s)

 η(s)

u(s)

 = 0. 

Then we can find a sequence < sk > of distinct points in 

S such that for every k ≥ 1,  

 k|ξ(sk)|
u(sk)

 < |η(sk)|
u(sk) 

. 
     

                                   …(1) 

We now choose t ∈ T and pV ∈ D such that pV (t) = 1  

 and define φ : S → T by 

φ(s)=


(ξ(s))

–1
 k 

–1/u(s)
 t‚ for s = sk‚ k = 1‚ 2‚… ‚ and

θ‚ otherwise.
 ...(2) 

Let r  > 0 .Then for each pU ∈ D and each 

 k ≥ 1,  we have 

Φ 





 
[ pU (ξ (sk) φ(sk))] 

u(sk)

 r
  = Φ 





 
[ pU (k 

–1/ u(sk)
 t)] 

u(sk)

 r
     

  =  Φ 







 

1

k
 [ pU (t)]

 u(sk)

 r
  

  
1

k
 Φ 



 

A [(pU(t)) 
L(u)

 ]

 r
  → 0 ,as k → ∞ and   

Φ 





 
[ pU (ξ (s) φ(s))] 

u(s)

 r
  = 0, for s ≠ sk , k ≥ 1. 

Thus for a given ε > 0, we can find a finite subset J of S 

satisfying  

Φ 





 
[ pU (ξ (s) φ(s))] 

u(s)

 r
  < ε  for all s ∈ S – J. 

This clearly shows that φ ∈ c0 (S, T, Φ, ξ, u).  

But for each k ≥ 1, in view of equations (1) and (2), we 

have  

Φ





 
[ pV (η(sk) φ(sk) )] 

u(sk)

 r
 

=Φ





 
[ pV (η(sk) (ξ(sk))

–1
 k

 –1/u(sk) 
t)]

 u(sk)

 r
  

=Φ





 
1

k r
 



η(sk)

λ(sk)

u(sk)

 [pV (t)] 
u(sk)  

 ≥ Φ 



 

1

 r
 ,        

which is independent of k.  

This shows that φ ∉ c0(S, T, Φ, η, u), a contradiction. 

This completes the proof. 

On combining the Theorems 2 and 3, we get: 

Theorem 4: If u ∈ l∞ (S, R
+
) and ξ, η ∈ s (S, C – {0}), 

then c0 (S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, η, u)  

if and only if lim infs 



ξ(s)

 η(s)

u(s)

 > 0. 

..................................
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Theorem 5:Let u ∈ l∞ (S, R
+
). Then for any ξ, η ∈ s(S, 

C –{0}), c0 (S, T, Φ, η, u) ⊂ c0(S, T, Φ, ξ, u), 

if lim sups 



ξ(s)

 η(s)

u(s)

 < ∞. 

Proof:  

Assume that lim sups 



ξ(s)

 η(s)

u(s)

 < ∞. 

Then there exists a constant d > 0 such that   

|ξ(s)| 
u(s)

 < d |η(s)|
u(s)

 for all but finitely many s ∈ S.  

Let φ ∈ c0 (S, T, Φ, η, u), r1 > 0  be associated with 

φ and ε > 0. Then for   pU ∈ D, there exists J ∈  (S) 

such that  

Φ 





 
[ pU(η(s) φ (s))] 

u(s)

 r1
  < ε  for each s ∈ S  – J.  

  Let us choose r such that d r 1 < r. Then for such r, 

using non decreasing property of Φ, we have 

Φ 





 
[ pU (ξ(s) φ(s))] 

u(s)

 r
  = Φ 



 [ |ξ(s)| pU (φ(s))] 

u(s)

 r
  

 ≤Φ





 
d |η(s)| 

u(s)
 [ pU (φ (s))] 

u(s)

 r
 

≤ Φ





 
[ pU(η(s) φ (s))] 

u(s)

 r 1
 < ε for all s ∈ S – J.   

Since pU ∈ D is an arbitrary, it clearly shows that   

φ ∈ c0(S, T, Φ, ξ, u). 

This proves that c0(S, T, Φ, η, u) ⊂ c0 (S, T, Φ, ξ, u). 

Theorem 6:Let u ∈ l∞ (S, R
+
).   

For any ξ, η ∈ s(S, C – {0}) such that  

c0 (S, T, Φ, η, u) ⊂ c0(S, T, Φ, ξ, u), then  

lim sups 



ξ(s)

 η(s)

u(s)

 < ∞. 

  Proof: 

  Assume that c0(S, T, Φ, η, u) ⊂ c0 (S, T, Φ, ξ, u) 

but lim sups 



ξ(s)

 η(s)

u(s)

 = ∞. 

Then there exists a sequence < sk > of distinct points in 

S such that for each k ≥ 1, 

|ξ (sk)|
 u(sk)

 > k |η(sk)|
 u(sk )                 … ……..(3) 

Now, we choose t ∈ T and pV ∈ D with pV(t) = 1 

  and define φ : S → T by 

φ (s)  =


(η(s))

–1
 k 

–1/u(s)
 t‚ for s = sk‚ k = 1‚ 2‚… ‚ and

θ‚ otherwise.
 ...(4) 

Let r  > 0 . Then for each pU ∈ D and each  

  k ≥ 1 , we have 

 Φ 





 
[ pU(η(sk) φ(sk))] 

u(sk)

 r
 =Φ 





 
[ pU (k 

–1/u(sk)
 t)] 

u(sk)

 r
 

=Φ 



 

1

k r
 [ pU (t)]

 u(sk)
    

1

k
 Φ 





 
[ pU(t)] 

u(sk)

 r
  

 
1

k
Φ



A [( pU(t)) 

L(u)
]

 r
 → 0, as k → ∞ and 

 Φ 





 
[ pU(η(s) φ(s))] 

u(s)

 r
  = 0, for s ≠ sk , k ≥ 1. 

Thus for given ε > 0, we can find a finite subset J of S 

such that 

Φ 





 
[ pU(η(s) φ(s))] 

u(s)

 r
  < ε  for all s ∈ S – J. 

This shows that φ ∈ c0(S, T, Φ, η, u). But on the other 

hand for each k ≥ 1 and in view of equations (3) and (4), 

we have 

 Φ





 
[ pV (ξ(sk) φ(sk))] 

u(sk)

r
 

=Φ





 
[ pV(ξ(sk) (η(sk))

–1
 k 

–1/ u(sk)
 t)]

 u(sk )

 r
   

=  Φ 





 
1

k r
 



ξ(sk)

η(sk)

 u(sk)

 [ pV (t)]
 u(sk)

 ≥  Φ 



 

1

 r
 , 

which is independent of k. 

This shows that φ∉ c0 (S, T, Φ, ξ, u), a contradiction.  

This completes the proof. 

On combining the Theorems 5 and 6, we get: 

Theorem 7: Let u ∈ l∞ (S, R
+
). Then for any  

ξ, η ∈ s(S, C – {0}), c0 (S, T, Φ, η, u) ⊂ c0(S, T, Φ, ξ, u)              

if and only if 

lim sups 



ξ(s)

 η(s)

u(s)

 < ∞. 

When Theorems 4 and 7 are combined, we get: 

Theorem 8: Let u ∈ l∞  (S, R
+
). Then for any  

ξ, η ∈ s (S, C –{0}), c0 (S, T, Φ, ξ, u) = c0 (S, T, Φ, η, u) 

if and only if  

0 < lim infs 



ξ(s)

 η(s)

u(s)

 lim sups 



ξ(s)

 η(s)

u(s)

< ∞. 

Corollary 9: For u ∈ l∞ (S, +
) and ξ  ∈ s (S, C –{0}). 

Then 

(i) c0 (S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, u) if and only if  

         lim infs |ξ (s)|
u(s)

 > 0; 
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(ii)    c0 (S, T, Φ, u) ⊂ c0 (S, T, Φ, ξ, u)  if and only if  

             lim sups |ξ (s)|
u(s)

 < ∞; and  

(iii)   c0 (S, T, Φ, ξ, u) = c0 (S, T, Φ, u)  if and only if       

0<lim infs |ξ (s)|
u(s)

  lim sups |ξ (s)|
u(s)

< ∞. 

Proof: 

If we consider, η : S → C – {0} such that η (s)=1  for 

each s, in Theorems 4, 7 and 8, we easily obtain the 

assertions (i), (ii) and (iii) respectively. 

Theorem 10:  If u ∈ l∞ (S, R
+
), w : S → R

+
 and  

ξ ∈ s ( S, C – {0}), then  

c0 ( S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, ξ, w) if lim infs 
w(s)

u(s)
 > 0. 

Proof: 

Assume that lim infs 
w(s)

u(s)
  > 0. Then there exists  m > 0 

such that w(s) > m u(s) for all but finitely many s ∈ S. 

 Let  φ ∈ c0 (S, T, Φ, ξ, u), r  > 0  be associated with 

φ and ε > 0 . 

Then for  0 < ρ < 1 with ρ 
m 

 Φ 





 
1
 r

  < ε and  pU ∈ D, 

there exists  J ∈  (S)  satisfying 

Φ 





 
[ pU (ξ (s) φ(s))] 

u(s)

 r
  < Φ 





 
ρ
r
  for each s ∈ S – J.  

Since Φ  is non decreasing, therefore,  

[ pU (ξ (s) φ (s) )] 
u(s) 

 <  ρ and so  

[ pU (ξ (s) φ(s))] 
w(s)  [(pU (ξ (s) φ(s))) 

u(s)
] 

m 
< ρ 

m 

Hence   using convexity of Φ, we have 

Φ





 
 [ pU (ξ(s) φ(s))] 

w(s)

 r
  Φ





 
ρ 

m 

 r
   

   ρ 
m 

 Φ 





 
1
 r

  < ε, for each s ∈ S – J.   

Since pU ∈ D is arbitrary, we easily get: 

φ ∈  c0(S, T, Φ, ξ, w). 

Hence, c0 (S, T, Φ, ξ, u) ⊂  c0(S, T, Φ, ξ, w). 

Theorem 11:  If u ∈ l∞ (S, R
+
), w : S → R

+
,  

ξ ∈ s ( S, C – {0}) such that  

c0 ( S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, ξ, w), then  

lim infs 
w(s)

u(s)
 > 0. 

Proof: 

Assume that the inclusion, 

 c0 (S, T, Φ, ξ, u) ⊂ c0(S, T, Φ, ξ, w) holds  but  

lim infs 
w(s)

u(s)
 = 0. 

Then there exists a sequence < sk > of distinct points in 

S such that for each k ≥ 1, 

   k w(sk) < u(sk)             ……. … (5) 

Now, taking pV ∈ D and t ∈ T with pV (t) = 1 

define   φ : S → T by the relation 

φ(s)=


(ξ (s))

–1
 k 

-1/u(s)
 t‚ for s = sk‚ k = 1‚ 2‚ 3‚… ‚ and

θ‚ otherwise.
 ...(6) 

  Let r > 0 .Then for each pU ∈ D and k ≥ 1,  we have 

    Φ 





 
[ pU(ξ(sk) φ(sk))] 

u(sk)

 r
 = Φ 





 
[ pU (k

 –1/
 
u(sk) 

t)] 
u(sk)

 r
     

      
1

k
 Φ 





 
[ pU (t)] 

u(sk)

 r
 ≤ 

1

k
 Φ 



 

A [(pU(t)) 
L(u)

]

 r
  

and for s ≠ sk , k ≥ 1, Φ 





 
[ pU(ξ(s) φ(s))] 

u(s)

 r
  = 0. 

This shows that φ ∈ c0 (S, T, Φ, ξ, u). 

On the other hand for each k ≥ 1 and in view of 

equations (5) and (6), we have 

Φ 





 
[ pV(ξ(sk) φ(sk))] 

w(sk)

 r
 =Φ 





 
[ pV (k 

–1/
 
u(sk)

 t)] 
w(sk)

 r
    

                                         ≥ Φ



 

1

 r k
1/k ≥Φ 





 

1

 r e
  . 

This shows that φ ∉ c0 (S, T, Φ, ξ, w), a contradiction. 

This completes the proof. 

On combining the Theorems 10 and 11, one can obtain: 

Theorem 12:  If u ∈ l∞  (S, R
+
), w : S → R

+
 and  

ξ ∈ s ( S, C – {0}), then 

c0 ( S, T, Φ, ξ, u) ⊂ c0 (S, T, Φ, ξ, w)if and only if 

lim infs 
w(s)

u(s)
  > 0. 

Theorem 13: Let u : S → R
+
, w ∈ l∞   (S, R

+
) and  

 ξ ∈ s (S, C – {0}), then 

c0 (S, T, Φ, ξ, w) ⊂ c0 (S, T, Φ, ξ, u) if lim sups 
w(s)

u(s)
 < ∞. 

Proof:  

Assume that lim sups 
w(s)

u(s)
 < ∞. 

Then there exists a constant d > 0 such that w(s) < d u(s) 

for all but finitely many s ∈ S. 
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 Let φ ∈ c0 (S, T, Φ, ξ, w), r  > 0 be associated 

with  φ and ε > 0.  

Then for 0 < ρ < 1  with ρ 
1/d 

 Φ 





 
1
 r

    < ε and pU ∈ D, 

there exists  J ∈  (S) satisfying  

Φ 





 
[ pU (ξ (s) φ(s))] 

w(s)

 r
  <  Φ 





 
ρ
r
  for each s ∈ S – J.  

Since Φ  is non decreasing, therefore 

[ pU (ξ (s) φ (s) )] 
w(s) 

 <  ρ <  1 and so 

[ pU (ξ (s) φ(s))] 
u(s)  [( pU (ξ (s) φ(s))) 

w(s)
]

1/d 
< ρ1/d

.
 
 

Hence using the convexity of Φ, we have 

Φ





 
[ pU (ξ (s) φ(s))] 

u(s)

 r
  Φ 





 
ρ 

1/d

 r
   

  ≤ η 
1/d

 Φ 





 
1
 r

  < ε for each s ∈ S – J.   

  Since pU ∈ D is arbitrary, this clearly implies  that  

φ ∈ c0 (S, T, Φ, ξ, u) and hence  

c0(S, T, Φ, ξ, w) ⊂ c0 (S, T, Φ, ξ, u) . 

 This completes the proof. 

Theorem 14: Let u : S → R
+
, w ∈ l∞  (S, R

+
),  

ξ∈s (S, C–{0}) and c0 (S, T, Φ, ξ, w) ⊂c0 (S, T, Φ,ξ, u), 

then lim sups 
w(s)

u(s)
 < ∞. 

Proof: 

Suppose that c0 (S, T, Φ, ξ, w) ⊂ c0(S, T, Φ, ξ, u) but  

lim sups 
w(s)

u(s)
 = ∞.  

Then there exists a sequence  < sk >  in S  of distinct   

points such that  

w(sk) > k u(sk) for each  k ≥ 1.   . ………… (7) 

Now, taking pV ∈ D and t ∈ T with pV (t) = 1. 

We define φ : S → T by 

φ(s) =  


(ξ (s))

–1
 k 

-1/w(s)
 t‚ for s = sk‚ k ≥ 1

θ‚ otherwise.
         ……...(8 

Then analogous to the proof of Theorem 11 and in view 

of equations (7) and (8), we can show that  

φ ∈ c0 (S, T, Φ, ξ, w) and φ ∉ c0 (S, T, Φ, ξ, u),  a 

contradiction. 

The proof is now complete. 

On combining the Theorems 13 and 14, one can obtain:  

Theorem 15: Let u : S → R
+
, w ∈ l∞  (S, R

+
) and               

ξ ∈ s (S, C – {0}), then 

c0 (S, T, Φ, ξ, w) ⊂ c0 (S, T, Φ, ξ, u) if and only if 

lim sups 
w(s)

u(s)
 < ∞.  

CONCLUSION  

Present paper examined some conditions that 

characterize the linear space structures and containment 

relations on the locally convex topological vector space 

valued null functions defined by semi norm and Orlicz 

function. In fact, these results can be used for further 

generalization to investigate other properties of the 

function spaces using Orlicz function.  
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