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ABSTRACT

This paper tries to derive maximum likelihood estimators (MLEs) for the parameters of the inverse Rayleigh
distribution (IRD) when the observed data is masked. MLEs, asymptotic confidence intervals (ACIs) and boot-p
confidence intervals (boot-p CIs) for the lifetime parameters have been discussed. The simulation illustrations
provided that as the sample size increases the estimated value approaches to the true value, and the mean square error
decreases with the increase in sample size, and mean square error increases with increase in level of masking, the
ACIs are always symmetric and the boot-p Cls approaches to symmetry as the sample size increases whereas the
mean life time due to the local spread of the disease is less than that due to the metastasis spread in case of real data

set.
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INTRODUCTION

A random variable (rv) X is said to follow inverse
Rayleigh distribution (IRD) if its probability density
function (pdf) is given by

.

The reliability function of IRD with pdf (1) is given as
follows
0
-5}

Trayer (1964) introduced the IRD and discussed its
application in reliability theory. Voda (1972) discussed
some properties of the maximum likelihood estimator
(MLE) of 6 and the property that the distribution of
lifetimes of several types of experimental units can be
approximated by the IRD. Mukherjee and Saran (1984)
noticed that the hazard rate of IRD is increasing till
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time ¢ < 1.069543 \/; , then it decreases and then becomes

stable after some time. Various methods of estimation
for IRD are developed by Gharraph (1993) and
Mukherjee and Maiti (1996). A number of
researchers have been discussed the IRD (Soliman et al.
2010, Dey 2012).

The theory of competing risk studies the subjects that
are exposed to more than one cause of failure, and
failure due to one cause excludes the chance of failure
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due to other causes. An investigator may use this theory
to study the reliability characteristics of the components
of series system. The failure of one component causes
the breakdown of the system, the data can be collected
in a pair of the lifetime of the system and the component
which causes the failure. Crowder (2001) has presented
appropriate competing risk methodology for analysis of
such data.

In reliability analysis/competing risk analysis, with
multiple causes of failures, there may be cases for which
the exact cause of failure may be unknown. It makes the
data incomplete. The incompleteness may be due to
deficiency of knowledge about the exact cause of
failure, identifiability of cause due to time consuming
process etc. Such a data is termed as “masked” in
literature. Sarhan (2003) discussed the estimations of
parameters in Pareto reliability model in the presence of
masked data. For some more citations, one may refer to
Basu et al. (2003) and Lin ef al. (1993).

In this context, this paper is to consider the competing
risk analysis of masked data. Assuming the life times of
components to be IRD, we obtain MLEs, asymptotic
confidence intervals (ACIs) and boot-p confidence
intervals (boot-p Cls) for the lifetime parameters of
individual components using system lifetime data.We
derive expressions to estimate the MLEs of parameter
and to compute ACIs and boot-p Cls for parameters.
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This paper also attempts the simulation and application
of proposed methods using real data sets.

MODELS

Some of the used notations and assumptions are
given below.

e 1 #systems under observation

e L #components in each system

e n, #systems failed due to component 1

e 1, #systems failed due to component 2

e n, #systems with masked causes of failure

e x; lifetimeof j * component in the
i" system, i =1,2,...,nand j=1,2,..., k.

*  f(x,0,) pdfoflifetime of j t component

o F(x.0 ;) reliability function of j * component

th .

e z, Upper 100 ()" percentile of standard
normal variate

e 6 MLEof ¢

e © (4,6,

Assumptions

e FEach system has 2-independent components
connected in series.

e nidentical systems are put on the life test.

e Systems, subsystems and components have only
two statuses: failure and survival.

e Therv X, =min( X,, Xy, X ) i=12,.n;j=12,., kare
independent with (X)X g0 X)) being
identical and having inverse Rayleigh
distribution with pdff(x,6,) and reliability
function ;(x,ﬁj) of the forms given,
respectively, by (1) and (2).

e The parameter 9, is unknown for j=1,2,.., k.

e The observable quantities for the i i system, on
the life test, are its life time x, and a set §; of
system's components that may cause it to fail.

e Masking is s-independent of the cause of

failure.
Maximum Likelihood Estimation

Suppose an experiment is conducted with » identical 2-
component systems. Here the system may fail due to
failure of any one component. The experiment
terminates when all the systems fail and the life times of
all the n systems X,,X,,.., X, along with the cause(s)
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of failures are obtained i.e., the data (X,,S,),i=1,2,..,n.

With these notations we write the likelihood function of
the data as follows.

o T
\

L(@\z)z]‘[L

Using (1) and (2), we get the from (3) that

L(©,x) = H 29; exp [— H—;Nl — exp [— %]}H 2632 exp [— H—i}{l — exp [— 6—'2]}
X; x; X; x;

1
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Taking logarithm of (4) and differentiating it partially
with respect to 6, and 0, , respectively, we get
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From (5) and (6), we observe that the likelihood
equations of 6, and ¢, cannot be solved analytically.

i

Therefore, we use iterative methods to evaluate these
MLEs. Thus, using (5) and (6), we write the following
expression for ¢, and ¢, in order to obtain their MLEs

through numerical procedure.
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Confidence Interval
Asymptotic Confidence Interval

Here, we evaluate ACI for parameters, using the
asymptotic normality of MLEs. Therefore, we first
obtain the approximate Fisher’s information matrix
given by

f((:))= Ay A,
2 A :
G=0
af!
Ay = - T L
00,
[ i R I
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265
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The approximate (observed) asymptotic variance-
covariance matrix for the MLE of parameters ¢, and@d,

can be found by inverting /(©)as
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var( 4,)
Cav(éz‘él}

!((:))=[ Cm’(ﬁl.ﬁg)]

var( 6;2 ) @=0

confidence limits

(12)

Thus, we get the 100(1-a)%

ford;k =1,2,by 6 +z,,,y17'(6,)

Boot-p Confidence Interval

In this section we define confidence intervals based on
bootstrapping. Following are the main steps to calculate
boot-p confidence interval:

e Based on the original samplex = (x,x,,.., x,)
obtain © , the MLE of ©.

¢ Under the same conditions simulate sample, say
(¥1s¥gsem ¥y, ) » from the underlying distribution
IRD (©).

e Compute the MLE of © based on
(yl’yZ‘"" Ym } E Say é. -

e Repeat Step 2 and Step 3, B times and
obtain®,,0,....0, .

e Arrange ©,,05,..,0, in ascending order.

e A two-sided 100(1-«)% percentile bootstrap

confidence interval of ® , say [(:);_‘(;,;;], is then
given by
(6.6 ]- [607r0, &70nD]

(13)

Fig. 1. Variation of MSE’s of 4, with varying
sample size and at different levels of masking.
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Fig. 2. Variations of MSE’s of éz with varying
sample size and at different levels of masking.

Simulation study

In this section, we present some numerical illustrations
based on simulation study for different sample sizes
n =10,15,20,30,40,50 and level of masking 10, 15, 20%.

Here we consider two cases when (9, =0,y and (g, = 0,) .

For the simulation study, we generate n observations

from irp (9,)and IRD (6,). Then the lifetimes of i
system becomes x| = min (X, X ,); i=1,2,..n.

We also note down the component which causes the i 4
system to fail. Then under different levels of masking

we obtain the MLEs of &, and @, from (7) and (8)

through iterative methods. We repeat this process 1000
times. For each considered sample size and level of
masking, we report the average values of MLEs along
with their mean squared errors (MSEs) in Tables 1 and 3
and ACI and boot-p CI in Table 2 and 4.

CONCLUSION

As working on the survival data or competing risk data,
the data obtained may not always be complete with
known cause of failure. In such a case, we are interested
in the designing a technique which can help us through
the problem. Here, we have obtained the parameters for
the data with varying sample sizes, and different levels
of masking. The simulation study gives (i) On the basis
of sample size- as the sample size increases the
estimated value approaches to the true value of
parameter, and the mean square error decreases with the
increase in sample size, and (ii) On the basis of level of
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masking- the mean square error increases with increase
in level of masking, the AClIs are always symmetric and
the boot-p Cls approaches to symmetry as the sample
size increases.
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Table 1. MLEs and respective MSE’s for 6, =1.0 and 8, =1.0 at different masking level

Masking Level
N 10% | 20% | 30% 10% | 20% | 30%
4, 6,
10 0.4801 0.5242 0.4303 0.4352 0.4355 0.5003
(0.2969) (0.6401) (0.9866) (0.3315) (0.7845) (0.8634)
5 0.5810 0.5772 0.4835 0.4990 0.5733 0.5428
(0.2924) (0.5091) (0.8124) (0.2563) (0.5186) (0.8115)
20 0.6531 0.6302 0.6454 0.6199 0.5828 0.5620
(0.1301) (0.5064) (0.6737) (0.1857) (0.4941) (0.6470)
30 0.6780 0.7186 0.6729 0.7675 0.5993 0.6438
(0.1211) (0.4255) (0.6177) (0.1725) (0.4283) (0.6436)
S0 0.8147 0.9513 0.7632 0.8964 0.7695 0.6816
(0.0666) (0.3651) (0.3978) (0.0446) (0.1341) (0.2952)

Table 2. Asymptotic and boot-p confidence intervals for the MLE of §, =1.0and 6, =1.0 at different

masking level

Masking Level
n 10% | 20% | 30% 10% 20% | 30%
0 0,
ACT (0.1426,0.8176) | (0.1186,0.9297) | (0.1459,0.7147) | (0.1416,0.7289) | (0.1556,0.7155) | (0.1542,0.8464)
10/ boot-p | (0.3457,0.7019) | (0.3398,0.8298) | (0.3969,0.4927) | (0.3351,0.6332) | (0.3359,0.5934) | (0.4331,0.6056)
ACI (0.2436,0.9184) (0.3570,0.7974) (0.2150,0.7520) (0.2735,.7246) | (0.3563,0.7904) | (0.2562,0.8295)
15| boot-p | (0.3761,0.9044) | (0.5039,0.6784) | (0.3834,0.6529) | (0.4377,0.5942) | (0.5394,0.6256) | (0.4856,0.6195)
ACI (0.3474,0.9588) | (0.2217,0.1.0387) | (0.2139,0.5625) | (0.2619,0.9778) | (0.2281,0.9375) | (0.3513,0.7726)
20| boot-p | (0.4962,0.8625) (0.5131,0.7809) | (0.3591,1.0487) | (0.4522,0.8521) | (0.4417,0.7821) | (0.5275,0.6074)
ACIT (0.4229,0.9330) | (0.4354,1.0018) | (0.3855,0.9604) | (0.4378,1.0973) | (0.3776,0.8209) | (0.4428,0.8448)
30| boot-p | (0.5301,0.8481) | (0.5148,0.9438) | (0.5582,0.8291) | (0.5773,0.9847) | (0.5338,0.6862) | (0.5480,0.7581)
ACI (0.5425,1.0869) (0.6685,1.2341) (0.5179,1.0086) | (0.5984,1.1944) | (0.4635,1.0756) | (0.2852,1.0780)
50| boot-p (0.6620,0.9772) | (0.7814,1.1243) (0.6529,0.8892) | (0.6839,1.2541) | (0.5859,0.9873) | (0.4865,0.8701)
Table 3. MLEs and respective MSE’s for 6, =1.0and 8, =1.1 at different masking levels.
Masking Level
n 10% | 20% \ 30% 10% | 20% | 30%
6, 6,

10 0.5042 0.1260 0.0993 0.7213 0.2566 0.1522

(0.7136) (0.7642) (0.8166) (0.6982) (0.7426) (0.8995)

15 0.5621 0.3903 0.2077 0.7954 0.4169 0.2208

(0.6851) (0.7738) (0.7976) (0.5476) (0.6678) (0.6834)

20 0.6021 0.5521 0.2661 0.8102 0.5846 0.3579

(0.6537) (0.7126) (0.7364) (0.5264) (0.6482) (0.5534)

30 0.6894 0.5725 0.4962 0.8467 0.6161 0.7446

(0.1703) (0.3043) (0.4253) (0.2164) (0.2764) (0.3098)

50 0.7046 0.6248 0.5397 0.9176 0.7199 0.6917

(0.0249) (0.1395) (0.2120) (0.1837) (0.1954) (0.1983)
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Table 4. Asymptotic and boot-p confidence intervals for the MLEs at 6, =1.0 and 6, =1.1 for different masking

level.

Masking Level

10%

20%

30%

10%

20%

|

30%

o

6,

10

ACI
boot-p

(0.2235,0.7849)
(0.4103,1.032)

(0.0472,0.2048)
(0.0961,0.1511)

(0.0368,0.1618)
(0.0594,0.1483)

(0.2641,0.9054)
(0.3427,1.2566)

(0.0894,0.4238)
(0.1335,0.2994)

(0.0546,0.2498)
(0.08,0.1777)

20

ACI
boot-p

(0.3416,0.7826)
(0.2676,1.0184)

(0.1558,0.8885)
(0.3974,0.5793)

(0.1001,0.3153)
(0.132,0.254)

(0.5810,1.0098)
(0.3647,1.3928)

(0.1914,0.6424)
(0.3596,0.4574)

(0.1059,0.3355)
(0.0968,0.2495)

30

ACI
boot-p

(0.2014,1.0028)
(0.2401,1.1242)

(0.2592,0.8858)
(0.4196,0.5025)

(0.1475,0.3847)
(0.1752,0.346)

(0.4028,1.2176)
1
(0.4792,1.2381)

(0.2137,0.9556)
1
(0.4943,0.6436)

(0.1951,0.5207)
1
(0.2249,0.4085)

40

ACI
boot-p

(0.5106,0.8682)
(0.5106,0.8682)

(0.2592,0.8858)
(0.4196,0.5025)

(0.308,0.6843)
(0.4696,0.5257)

(0.4973,1.1961)
(0.2687,1.2266)

(0.3193,0.913)
(0.5524,0.6428)

(0.3338,0.7553)
(0.4347,0.5907)

50

ACI
boot-p

(0.5947,1.1425)
(0.7053,1.0048)

(0.4385,0.8364)
(0.5165,0.6689)

(0.3828,0.6967)
(0.5204,0.5593)

(0.5325,1.2894)
(0.6588,1.1672)

(0.4901,0.9495)
(0.5269,0.7826)

(0.4865,0.8969)
(0.6253,0.7612)
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