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ABSTRACT 
This paper tries to derive maximum likelihood estimators (MLEs) for the parameters of the inverse Rayleigh 
distribution (IRD) when the observed data is masked. MLEs, asymptotic confidence intervals (ACIs) and boot-p 
confidence intervals (boot-p CIs) for the lifetime parameters have been discussed. The simulation illustrations 
provided that as the sample size increases the estimated value approaches to the true value, and the mean square error 
decreases with the increase in sample size, and mean square error increases with increase in level of masking, the 
ACIs are always symmetric and the boot-p CIs approaches to symmetry as the sample size increases whereas the 
mean life time due to the local spread of the disease is less than that due to the metastasis spread in case of real data 
set.  
. 
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INTRODUCTION 
A random variable (rv) X is said to follow inverse 
Rayleigh distribution (IRD) if its probability density 
function (pdf) is given by 
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The reliability function of IRD with pdf (1) is given as 
follows 
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Trayer (1964) introduced the IRD and discussed its 
application in reliability theory. Voda (1972) discussed 
some properties of the maximum likelihood estimator 
(MLE) of θ and the property that the distribution of 
lifetimes of several types of experimental units can be 
approximated by the IRD. Mukherjee and Saran (1984) 
noticed that the hazard rate of IRD is increasing till 
time 069543.1t , then it decreases and then becomes 
stable after some time. Various methods of estimation 
for IRD are developed by Gharraph (1993) and 
Mukherjee and Maiti (1996). A number of 
researchers have been discussed the IRD (Soliman et al. 
2010, Dey 2012).  
The theory of competing risk studies the subjects that 
are exposed to more than one cause of failure, and 
failure due to one cause excludes the chance of failure  

 
due to other causes. An investigator may use this theory 
to study the reliability characteristics of the components 
of series system. The failure of one component causes 
the breakdown of the system, the data can be collected 
in a pair of the lifetime of the system and the component 
which causes the failure. Crowder (2001) has presented 
appropriate competing risk methodology for analysis of 
such data. 
In reliability analysis/competing risk analysis, with 
multiple causes of failures, there may be cases for which 
the exact cause of failure may be unknown. It makes the 
data incomplete. The incompleteness may be due to 
deficiency of knowledge about the exact cause of 
failure, identifiability of cause due to time consuming 
process etc. Such a data is termed as “masked” in 
literature. Sarhan (2003) discussed the estimations of 
parameters in Pareto reliability model in the presence of 
masked data. For some more citations, one may refer to 
Basu et al. (2003) and Lin et al. (1993). 
In this context, this paper is to consider the competing 
risk analysis of masked data. Assuming the life times of 
components to be IRD, we obtain MLEs, asymptotic 
confidence intervals (ACIs) and boot-p confidence 
intervals (boot-p CIs) for the lifetime parameters of 
individual components using system lifetime data.We 
derive expressions to estimate the MLEs of parameter 
and to compute ACIs and boot-p CIs for parameters. 

ISSN: 2469-9062 (print),  2467-9240(e)  

Journal of Institute of Science and Technology, 2015, 20(2): 122-127, © IOST, Tribhuvan University



123

 
 

This paper also attempts the simulation and application 
of proposed methods using real data sets. 
MODELS 
Some of the used notations and assumptions are 
given below. 

 n  #systems under observation 
 k  #components in each system 
 1n  #systems failed due to component 1 
 2n  #systems failed due to component 2 
 12n  #systems with masked causes of failure 

 ijx
   

lifetime of thj component in the 
thi system, ni ...,,2,1 and ....,,2,1 kj   

 ),( jxf    pdf of lifetime of thj component 

 ),( jxF    reliability function of thj component 

 z    Upper th)(100  percentile of standard 
normal variate 

 ̂  MLE of   
   ),( 21   

Assumptions 
 Each system has 2-independent components 

connected in series.  
 n identical systems are put on the life test.  
 Systems, subsystems and components have only 

two statuses: failure and survival.  
 The rv kjniXXXX ikiii ...,,2,1;...,,2,1);...,,,min( 21  are 

independent with )...,,,( 21 njjj XXX  being 
identical and having inverse Rayleigh 
distribution with pdf ),( jxf   and reliability 

function ),( jxF   of the forms given, 
respectively, by (1) and (2). 

 The parameter  j  is unknown for ....,,2,1 kj   

 The observable quantities for the thi  system, on 
the life test, are its life time ix  and a set iS  of 
system's components that may cause it to fail.  

 Masking is s-independent of the cause of 
failure.  

Maximum Likelihood Estimation  
Suppose an experiment is conducted with n identical 2-
component systems. Here the system may fail due to 
failure of any one component. The experiment 
terminates when all the systems fail and the life times of 
all the n systems nXXX ...,,, 21  along with the cause(s) 

of failures are obtained i.e., the data ....,,2,1),,( niSX ii   
With these notations we write the likelihood function of 
the data as follows. 
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Using (1) and (2), we get the from (3) that 
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Taking logarithm of (4) and differentiating it partially 
with respect to 1 and 2 , respectively, we get 
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From (5) and (6), we observe that the likelihood 
equations of 1  and 2  cannot be solved analytically. 
Therefore, we use iterative methods to evaluate these 
MLEs. Thus, using (5) and (6), we write the following 
expression for 1  and 2   in order to obtain their MLEs 
through numerical procedure.  
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Table 1. MLEs and respective MSE’s for 0.11 =θ and 0.12 =θ  at different masking level 

N 
Masking Level 

10% 20% 30% 10% 20% 30% 

1̂θ  2θ̂  

10 0.4801 
(0.2969) 

0.5242 
(0.6401) 

0.4303 
(0.9866) 

0.4352 
(0.3315) 

0.4355 
(0.7845) 

0.5003 
(0.8634) 

15 0.5810 
(0.2924) 

0.5772 
(0.5091) 

0.4835 
(0.8124) 

0.4990 
(0.2563) 

0.5733 
(0.5186) 

0.5428 
(0.8115) 

20 0.6531 
(0.1301) 

0.6302 
(0.5064) 

0.6454 
(0.6737) 

0.6199 
(0.1857) 

0.5828 
(0.4941) 

0.5620 
(0.6470) 

30 0.6780 
(0.1211) 

0.7186 
(0.4255) 

0.6729 
(0.6177) 

0.7675 
(0.1725) 

0.5993 
(0.4283) 

0.6438 
(0.6436) 

50 0.8147 
(0.0666) 

0.9513 
(0.3651) 

0.7632 
(0.3978) 

0.8964 
(0.0446) 

0.7695 
(0.1341) 

0.6816 
(0.2952) 

Table 2. A sy mp t o t i c  a nd  bo o t - p  confidence intervals for the MLE of 0.11 =θ and 0.12 =θ  at different 
masking level 

n 

 Masking Level 
 10% 20% 30% 10% 20% 30% 

 1̂θ  2̂θ  

10 
ACI 

boot-p 
 

(0.1426,0.8176) 
(0.3457,0.7019) 

 

(0.1186,0.9297) 
 (0.3398,0.8298) 

 

(0.1459,0.7147) 
 (0.3969,0.4927) 

 

(0.1416,0.7289) 
(0.3351,0.6332) 

 

(0.1556,0.7155) 
(0.3359,0.5934) 

 

(0.1542,0.8464) 
 (0.4331,0.6056) 

 

15 
ACI 

boot-p 
 

(0.2436,0.9184) 
  (0.3761,0.9044) 

 

(0.3570,0.7974) 
 (0.5039,0.6784) 

 

(0.2150,0.7520) 
 (0.3834,0.6529) 

 

(0.2735,.7246) 
(0.4377,0.5942) 

 

(0.3563,0.7904) 
(0.5394,0.6256) 

 

(0.2562,0.8295) 
 (0.4856,0.6195) 

 

20 
ACI 

boot-p 
 

(0.3474,0.9588) 
 (0.4962,0.8625) 

 

(0.2217,0.1.0387) 
 (0.5131,0.7809) 

 

(0.2139,0.5625) 
 (0.3591,1.0487) 

 

(0.2619,0.9778) 
(0.4522,0.8521) 

 

(0.2281,0.9375) 
(0.4417,0.7821) 

 

(0.3513,0.7726) 
 (0.5275,0.6074) 

 

30 
ACI 

boot-p 
 

(0.4229,0.9330) 
   (0.5301,0.8481) 

 

(0.4354,1.0018) 
 (0.5148,0.9438) 

 

(0.3855,0.9604) 
 (0.5582,0.8291) 

 

(0.4378,1.0973) 
(0.5773,0.9847) 

 

(0.3776,0.8209) 
(0.5338,0.6862) 

 

(0.4428,0.8448) 
 (0.5480,0.7581) 

 

50 
ACI 

boot-p 
 

(0.5425,1.0869) 
   (0.6620,0.9772) 

 

(0.6685,1.2341) 
 (0.7814,1.1243) 

 

(0.5179,1.0086) 
 (0.6529,0.8892) 

 

(0.5984,1.1944) 
(0.6839,1.2541) 

 

(0.4635,1.0756) 
(0.5859,0.9873) 

 

(0.2852,1.0780) 
 (0.4865,0.8701) 

 

Table 3. MLEs and respective MSE’s for 0.11 =θ and 1.12 =θ  at different masking levels. 

n 
Masking Level 

10% 20% 30% 10% 20% 30% 

1̂θ  2̂θ  

10 0.5042 
(0.7136) 

0.1260 
(0.7642) 

0.0993 
(0.8166) 

0.7213 
(0.6982) 

0.2566 
(0.7426) 

0.1522 
(0.8995) 

15 0.5621 
(0.6851) 

0.3903 
(0.7738) 

0.2077 
(0.7976) 

0.7954 
(0.5476) 

0.4169 
(0.6678) 

0.2208 
(0.6834) 

20 0.6021 
(0.6537) 

0.5521 
(0.7126) 

0.2661 
(0.7364) 

0.8102 
(0.5264) 

0.5846 
(0.6482) 

0.3579 
(0.5534) 

30 0.6894 
(0.1703) 

0.5725 
(0.3043) 

0.4962 
(0.4253) 

0.8467 
(0.2164) 

0.6161 
(0.2764) 

0.7446 
(0.3098) 

50 0.7046 
(0.0249) 

0.6248 
(0.1395) 

0.5397 
(0.2120) 

0.9176 
(0.1837) 

0.7199 
(0.1954) 

0.6917 
(0.1983) 
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Table 4. A s y m p t o t i c  a n d  b o o t - p  confidence intervals for the MLEs at 0.11 =θ and 1.12 =θ  for different masking 
level. 

n 

 Masking Level 
 10% 20% 30% 10% 20% 30% 

 1̂θ  2̂θ  

10 
ACI 

boot-p 
 

(0.2235,0.7849) 
(0.4103,1.032) 

 

(0.0472,0.2048) 
(0.0961,0.1511) 

 

(0.0368,0.1618) 
(0.0594,0.1483) 

 

(0.2641,0.9054) 
(0.3427,1.2566) 

 

(0.0894,0.4238) 
(0.1335,0.2994) 

 

(0.0546,0.2498) 
(0.08,0.1777) 

 

20 
ACI 

boot-p 
 

(0.3416,0.7826) 
(0.2676,1.0184) 

 

(0.1558,0.8885) 
(0.3974,0.5793) 

 

(0.1001,0.3153) 
(0.132,0.254) 

 

(0.5810,1.0098) 
(0.3647,1.3928) 

 

(0.1914,0.6424) 
(0.3596,0.4574) 

 

(0.1059,0.3355) 
(0.0968,0.2495) 

 

30 
ACI 

boot-p 
 

(0.2014,1.0028) 
(0.2401,1.1242) 

 

(0.2592,0.8858) 
(0.4196,0.5025) 

 

(0.1475,0.3847) 
 (0.1752,0.346) 

 

(0.4028,1.2176) 
1 

(0.4792,1.2381) 
 

(0.2137,0.9556) 
1 

(0.4943,0.6436) 
 

(0.1951,0.5207) 
1 

(0.2249,0.4085) 
 

40 
ACI 

boot-p 
 

(0.5106,0.8682) 
(0.5106,0.8682) 

 

(0.2592,0.8858) 
 (0.4196,0.5025) 

 

(0.308,0.6843) 
 (0.4696,0.5257) 

 

(0.4973,1.1961) 
(0.2687,1.2266) 

 

(0.3193,0.913) 
(0.5524,0.6428) 

 

(0.3338,0.7553) 
(0.4347,0.5907) 

 

50 
ACI 

boot-p 
 

(0.5947,1.1425) 
(0.7053,1.0048) 

 

(0.4385,0.8364) 
 (0.5165,0.6689) 

 

(0.3828,0.6967) 
 (0.5204,0.5593) 

 

(0.5325,1.2894) 
(0.6588,1.1672) 

 

(0.4901,0.9495) 
(0.5269,0.7826) 

(0.4865,0.8969) 
(0.6253,0.7612) 

 

 


