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ABSTRACT
The purpose of the present paper is to study certain curvature conditions on Kenmotsu manifolds. It was
proved that Kenmotsu manifolds satisfying curvature conditions R(¢, X )B=0,C(& X )B=0and

S(X,g).B =0are D-conformally flat. It was also proved that Kenmotsu manifolds satisfying the curvature
conditions P(£, X)B=0, C(& X )B=0and g(B(¢X,pY )pzZ,W )=0are Einstein manifolds with scalar
curvature r =-n(n—1). Finally, we gave an example of 3-dimensional Kenmotsu manifold.

Keywords: Kenmotsu manifold, D-conformal tensor, Einstein manifold, 7 -Einstein, Ricci tensor.

INTRODUCTION

Kenmotsu studied a class of almost contact
Riemannian manifolds (Kenmotsu, 1972). A
Kenmotsu manifold is normal but not Sasakian.
Moreover, it is also not compact since divé =n—1.
Kenmotsu showed that locally a Kenmotsu

manifold is a warped product | x, N of an interval

I and a Kaehler manifold N with warping function
f(t)=se',where sis a nonzero constant. He also
proved that if Kenmotsu manifold satisfies the
condition R(X,Y)R=0,then the manifold is of

negative curvature -1. Later, Kenmotsu manifolds
have been studied by De and Pathak (2004), Jun et
al. (2005), De (2008), De et al. (2009).

In preliminaries we studied some basic relations
of Kenmotsu manifolds and D-conformal
curvature tensor. We investigated some results on
Kenmotsu  manifolds  satisfying  curvature
conditions such as

R(£ X)B=0, P(&,X)B=0, C(&X)B=0,
c(& x)B=0, s(x,&)B=0and
o(BloX, @ )iz, o) =o.

Finally, we studied an example of 3-dimensional
Kenmotsu manifold.

56

PRELIMINARIES

Let M be n(n=2m+1)-dimensional almost contact
manifold equipped with an almost contact metric
structure (p,&£,7,9) consisting of a (1, 1) tensor
field ¢,a contravariant vector field & a 1-form
and a compatible Riemannian metric g satisfying

{wz(x )=-X +n(X)&n(£)=1, 0
@5 =0, 77(¢><)= 0,

a(X.Y)=g(eX. 0¥ )+ (X (Y ) (2)
(X, oY) =—g(eX,Y)7(x)=g(X,&) (3)

for all X,Yex(M) (Blair, 1976 & 2002). An

almost contact metric manifold M is called a
Kenmotsu manifold if it satisfies

(4)
Q)

where V denotes the Riemannian connection of g
(Kenmotsu, 1972).

In an  n(n=2m+1)-dimensional
manifold the following relations hold:

(V.o XY)=algX, ¥ )& =Y Jox,

v, &=X-n(x)e,

Kenmotsu



= (X, ) ©
n(R(X,Y)z)=9(x.2)nlv)-g(v. 2)o(x). (@)
R(X.Y )& =n(X )Y =n(v)x ®
R(& X )Y =n(Y )X —g(X,Y)e 9)
5(X,&)=-(n-D(x) (10)
Q¢ =~(n-1), (12)
(X, 0¥ )= S(X,Y )+ (n=1)(X ) (Y), (12)

for any vector fields X,Y,Z e z(M)where R, S
and Q are the Riemannian curvature, the Ricci

tensor and the Ricci operator respectively
(Kenmotsu, 1972).
The D-conformal curvature tensor in an

n(n = 2m+1)-dimensional Riemannian manifold,
n > 4, is defined by

B(X,Y)z
=R(X,Y)z +%[s(x,z)v

-s(v,z)x +g(x,z)Qy
~g(v.Z)x —s(X, Z)(v )
+5(Y,Z)p(x )e = n(X n(z )y
(

(v.z

(v,

(13)
K-2
+7 Y) (Z)QX]—E[Q(XJ)Y

gl 2 a2l

=9(v.Z)n(X ) +n(XJn(z)Y
-1V n(2)x],

where K = Z(n_—l);r

. (Chuman, 1983). From (13),

we also have
B(X,Y)s=B(£,Y)z =B(X,£)Z = (14)
n(B(X,Y)z)=0. (15)

Definition: A Kenmotsu manifold M"is said to be
n -Einstein if its Ricci tensor S of type (0, 2) is of

the form

s(X,Y)=ag(X,Y)+br(Xn(Y),

(16)
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for any vector fields Xand Y,where a,bare
smooth functions on M. If b =0,then the manifold
is said to be an Einstein manifold.

RESULTS AND DISCUSSION

We proved the following theorems:

Theorem 1. Let M be an n-dimensional Kenmotsu
manifold satisfying the condition R(g, X).B =0.
Then the manifold M is D-conformally flat.

Proof. Let us consider an n-dimensional Kenmotsu
manifold M which satisfies the condition

(R(&,X)B)U,v)z=0. Then, by definition we
have

0=R(& X)BU,V)z-B(R(£, X U,V )z
-B(U,R(&, X )z -B(U,V)R(& X )z.

Using (9) in (17) we get

n(B(U,V)zZ)X —g(X,B(U,V)z)e

~n(U)B(X,V)z +g(x,U)B(&V )z

—n(v)BU. X )z +9(x,V)B(U.¢)z

-n(z)B(U.V)X +g(x,Z)BU,V ) =0.

By virtue of (14), (15) and (18) we have

17

(18)

0=g(x,B(U,V)z)e+7(U)B(X,V)z
+7(vV)B(U, X )z +5(2)B(U,V)X.

Taking inner product on both sides of (19) by &and
using (1) and (15) we get

(19)

9(x,B(U,v)z)=0. (20)
This implies that
B(U,V)z =o0. (21)

Thus the manifold is D-conformally flat. This
completes the proof of the theorem.

Theorem 2. If a Kenmotsu manifold M "satisfies
the condition P(g,X).B:O, then the manifold is
Einstein and the scalar curvature is r = —n(n—1).

Proof. Let M be an n-dimensional Kenmotsu
manifold. The Weyl projective curvature tensor P
of type (1, 3) on a Riemannian manifold (M : g) of
dimension n is defined by
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P(X,Y)z
=R(x,Y)z—ni_l[s(Y,z)x—s(x,z)Y], 2

forany X,Y,Z e (M) (Yano & Kon, 1984). From
(22), it follows that

P(sY)z =

Now, we suppose that the manifold M satisfies the

condition (P(&, X )B)U,V )z =0.Then by definition

we have

0="P(& x)B(U,V)z-B(P(&, X U,V )z
-B(U,P(&, X V)z-B(U,V)P(&, X )z

Using (23) in (24) we obtain

~g(Y, z)g—ils(v,z)g. (23)

(24)

9(x,B(U,V)z)e-g(x,u)B(£,V )z
—g(x,v)BU,&)z-g(x,2)BU,V)E

s(x.u)Blev)z
~s(x,V)B(U, &)z -s(x,2)B(U,V )e] = 0.
Using (14) in (25) we get

+i[S(X,B(U,V) z)e - ()

0=g(x,BU,V)z)s

26
+is(x,5(u,v)z)§. (%9)

Taking inner product on both sides of (26) by & we
get

0=(n-1)g(x,B(U,V)z2)

+s(x,B(U,v)z) @
This implies that
s(x,w)=—(n-1)g(x,w). (28)

Thus the manifold is an Einstein manifold. Now,
taking an orthonormal frame field and contracting
over X and W in (28) we have

r= —n(n —l,)

where ris the scalar curvature. In view of (28) and
(29), the theorem is proved.

Theorem 3. If a Kenmotsu manifold M "satisfies
the condition C(&, X )B =0,then either the scalar

(29)
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curvature is r=-n(n—1) or the manifold is D-
conformally flat.

Proof. Let M be an n-dimensioal Kenmotsu
manifold. The concircular curvature tensor C of
type (1, 3) on a Riemannian manifold (M,g) of
dimension nis defined by

c(x,y)z
=R(X,Y)Z—th[g(\(,z)x (30)
-g(x,z)v]
(Yano & Kon, 1984). From (30), we have
Cley)z
31)

_ (1+ ah)j[n(z)Y ~g(v,2)a1.

We suppose that the manifold M satisfies the
condition (C(&, X )B)U,V )z =0. Then we have

0=C(& x)B(U,V)z-B(C(s,x U,V )z
—B(U.C(&,x V)z-B(U,V)C(£, x)z.

By virtue of (31) and (32), we obtain

(1+ Kh))["(B(U V)z)x

(32)

(33)

+g(x,2)B(U,V)é1=0
By the use of (14) and (15) in (33), (33) reduces to

(1+ Rh)j[g(x,a(u,v)z)g
+n(U)B(X,v)z +7(V)B(U, X )z
+n(z)BU,V)X]=0

(34)

Taking inner product on both sides of (34) by &and
using (1) and (15), we get

(1+Rh))g(x,8(u,v)z)=o.

This implies that either the scalar curvature is
r=-n(n-1) or g(X,B(U,V)z)=0.

(35)



From g(x,B(U,v)z)=0,we have

B(U,V)z =0. (36)

Hence the manifold is D-conformally flat. This
completes the proof of the theorem.

Theorem 4. In an n-dimensional Kenmotsu
manifold M if the condition c(£ X)B=0 holds,
then the manifold is an Einstein manifold with
scalar curvature r = —n(n—1)

Proof. Let us consider an n-dimensional Kenmotsu
manifold M.The Weyl conformal curvature tensor

C of type (1, 3) on a Riemannian manifold (M, g)
of dimension nis defined by

c(x,y)z
~R(X,Y)z —ﬁ[s(v,z)x -s(x,z)y

+9(v,z)x —g(x,z)Qv]
e 2 olxzm

(Yano & Kon, 1984). From (37), we have

cley)z
n+r-1

:Gjaajzﬂdﬁzk—ﬂﬁyl
- —5is(v.2)-n(z)n

(37)

(38)

Suppose  that M satisfies the  condition

(c(& x)B)U,V)z =0.Then we have

0=c(& x)B(U,v)z-B(c(e,xU.v)z
—B(U,c(&xV)z-B(U,V (g, x)z.

By the use of (38) in (39), we obtain

(39)

n+r-1

(mj[g(x BUV)2)e

~n(BUV)Z)x ~g(x.u)B(e.V )z

+n(U)B(X,V )z -g(x V)B(U,£)2

+n(v)BU, )z -g(x,2)BU.V )¢

+n(2)BU LV )XT-—=15(x,B(U.V )2 )¢
(

( L sl

n(BUV)zZ)x -s(x,u)B(¢.v )z
n(U)B(QX v )z - (X, v )B(U, £)z
+7(V)B(U,Qx )z -s(x,z)B(U,V )

)
+n(z)B(U,V)RX]=0

(40)
n

+

+
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Using (14) and (15) in (40), we get

+7(V)B(X.V)Z + (v )B(U, X )z
+n(z)B(U |V)X]—n—i2[8(x, B(U,V)z )¢

+n(U)B(QX,V)z +7(V)B(U,QX )z
+n(z)B(U,V)Qx]1=0.

Taking inner product on both sides of (41) by &and
using (1) and (15) we obtain

(41)

n+r-1

(o o)

—ﬁs(x,s(u,v)z)zo.

(42)

From this equation it follows that

n+r-1

s(X, W)— g(x,w).

(43)

Taking an orthonormal frame field and contracting
over X and W in (43), we get
r:—dn—ﬁ (44)
In view of (43) and (44), the theorem is proved.

Theorem 5. A Kenmotsu manifold M "satisfying
the condition S(x,£)B =0 is D-conformally flat.

Proof. Consider an n-dimensional Kenmotsu
manifold M satisfying the condition
s(x,&)B(U,V)z =o. (45)
By definition we have

(s(x,&)BYu,v)z

=((x A £)BJU.V )2 46)

=(X A, €)BUV)Z +B((X Ay £,V )z
+B(U, (X A, EV)Z+BU,V )X A, £)Z,

where the endomorphism X A, Y is defined as

(X A Y)Z =s(Y,2)x =s(X,z). (47)
In view of (45), (46) and (47), we get
0=s(BU,V)z,&)x —-s(x,B(U,v)z)e
+s(U,&)B(x,v)z-s(x,u)B(e,V )z “8)

+s(v,&)B(U, X )z -s(x,v)B(U, &)z
+5(z,&)B(U,V)x =s(x,z)B(U,V ).
By the use of (10) and (14) in (48), we get
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(n-1)r(B(U,V)Z)X +7(U)B(X,V)z
+n(V)B(U, X)Z +7(z)BU,V)X]
+s(x,B(U,v)z)e (49)

Taking inner product on both sides of (49) by &and
using (1), (3) and (15), we obtain

s(x,B(U,v)z)=o. (50)
This equation implies that
B(U,V)z =o0. (51)

Thus the manifold is D-conformally flat. This
completes the proof of the theorem.

Theorem 6. If a Kenmotsu manifold M"is ¢ -D-

conformally flat, then the manifold is an Einstein
manifold with scalar curvature r = —n(n—1).

Proof. Let us consider an n-dimensional Kenmotsu
manifold M which is ¢ -D-conformally flat. Then

the condition g(B(¢X, Y )piz JW = 0is satisfied.
From (13), for ¢ -D-conformally flat it follows that

a(R(eX, oY oz, oW )
+%[S(¢X,¢Z)g(¢Y,¢W)
~S(pY, ¢z Ja(pX, o)

+9(gX, 0z )3 (Y, W)
~S(gX, oW )g (g, g2 )]

—%[g(wxwz)g((/ﬂ,ww)

- 9(eY. 02 )Ja(px, oW )] = 0.
Using (2), (7) and (12) in (52), we get
("= Htlx.2)-nlx iz
x{a (v, w)-n(v oW} ~{o(v.2)
=Y (2 (X, W )= n(X J(w b1

L s(x,2)+ (- X2y

x{g (¥, W) (¥ oWy —{s(v.2)
+(n=1)n(¥Y (2 g (X W) = (X )W )}

+{s(Y. W)+ (n=2)g(¥ W g (X, 2)

=Xz =8 (X.W )+ (n=2)7(X )W
x{g(v.2)-n(v n(z}1=0.

Let {ei i=12,..., n} be an orthonormal basis of the
tangent space at any point of the manifold. Putting

(52)

(53)
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X =W =g in (53) and taking summation over

i1<i<n,we get

n2—K(-2)+2n+1+r

S(Y,Z):— 3 g(sz)
2(n-1 Kn_ 2 (4)
T ca)
. 2(n—1)+r .
Putting K=———— In (54) from (13), we
obtain

s(v,z)=-(n-1)g(Y,2).

Thus the manifold is an Einstein manifold. Now,
taking an orthonormal frame field and contracting
over Y and z in (55), we get

(55)

r= —n(n —1). (56)

By virtue of (55) and (56), the theorem is proved.

EXAMPLE OF A 3-DIMENSIONAL KENMO-
TSU MANIFOLD

We consider 3-dimensional manifold
M ={(x,y.z)eR’}, z=0where (x,y,z) are the
standard coordinates of R®.The vector fields

e—zae—zae—z
1 ox 2 13

oy

are linearly independent at each point of M.Let g
be the Riemannian metric defined by

g(el,ez): g(ez,es): g(el,e3): 0,
g(el,el): g(ez,ez)z g(eB,e3)=1.

Let » be the 1-form defined by 7(X )= g(X e, )for

any X e y(M) the set of vector fields. Let ¢ be (1,
1) tensor field defined by

oz’ (57)

(58)

(59)

ole)=—e, 0le.)=¢,oe)=0. (60)
Then using the linearity of @ and g, we have

n(e,)=1¢'(X) =X +n(xX e, (61)
9(eX. ¥ )= 9(X.Y)=n(X)n(¥) (62)

for any vector fields X,Y e (M ). Thus for e, =¢,
(40,5,77,9) defines an almost contact metric



structure on M.Let Vvbe the Levi-Civita
connection with respect to the Riemannian metric
g. Then by the definition of Lie bracket and (57),
we have

[ez ) es] =€, — €8,

Similarly, we obtain [e,e,|=0and [e,e ]|=e,. Thus
we have

[evez]zo’ [el’e3]:el’ [82,63]282. (63)
The Levi-Civita connectionv of the Riemannian
metric g is given by

29(v,Y,2)

= Xg(Y,2)+Yg(z,x)-2zg(x,Y) (64)
+o([x.¥]}z)-g(lv.z] x)+ o([z x]Y),

which is known as Koszul's formula.

By virtue of (58), (59), (63) and (64), we get
Zg(Velea,q)

= elg(es,e1)+ e3g(e1,el)—elg(e1,e3)

+ g([elles]' el)_ g([eave1]7 e1)+ g([el’el]’ e3)

= 29(91761)'

Similarly, we can calculate

Zg(Velea, ez): 0= Zg(el,ez)and 2g(Ve1e3, e3): 0=
Zg(el,e3).

Thus from above calculation we can write

ZQ(quy X)= 29(e1, X),

for all X eyz(M) Hence we have Ve =e.
Therefore, proceeding same way we obtain

Veles =8, Velez = Ovvelel =83,
Ve,83 =65, Ve € =83,V 8 =0, (65)
ve3el = V93e2 = vege3 =0,

Riddhi Jung Shah

For e, = ¢, (65) implies that

V.e =e =g - g(el,ea)ea,
Vezes =€,=¢, - g(e2163)eal (66)
Ve3e3 =0=¢e, - g(es,e3)e3,

thus we have v, ¢&=X—g(X,&)E =X —n(X ), for
e, =¢&.Hence the manifold satisfies the condition

(5).
Again, using (60) and (65) we obtain

(Vq¢)el = Vel¢e1 - (Dvelel = Vel (_ ez)_ (0(_ es)
=0.

Similarly, we can easily verify other relations and
we have

(Vq¢)el = 0,(V81(0)92 =-€;, (Vq¢)es =—€,
(Voo = (V.ok, =0.(V. 0k =e, (67)
(V93¢))el = (Veaq))eZ = (Veaq))% =0.

From (4), we have (V,o)Y =g(pX,Y)s —n(Y )oX.
Using this relation with (58)-(60), we obtain

(Vel(l’)el = 9(@1! el)es - ’7(e1)(/’el
=g(-epe )05 - glere5)(-¢,)

=0

for e, =¢&. Similarly, we can verify other relations

and the manifold also satisfies the condition (4).
From above it follows that the conditions (4) and

(5) are satisfied by the manifold for e, =¢and

consequently the manifold under the consideration
is a 3-dimensional Kenmotsu manifold.

CONCLUSION

In this paper, we have proved that an n(n=2m+1) -
dimensional ~Kenmotsu manifold  satisfying
curvature conditions B(&, X).B=0, C(& X).B=0
and s(x,&)B=0 is D-conformally flat. It also

proved that Kenmotsu manifold satisfying the
curvature conditions P(£,X)B =0, C(£,X)B=0

and g(B(¢X, @Y Jpiz, W )=01is an Einstein manifold
with scalar curvature r = —n(n 1),

The paper will be useful for those who are working
and studying in the field of structures on
differentiable manifolds.
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