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ABSTRACT 

A sudden application of sources results in time-varying currents and voltages in the circuit known as transients. This 

phenomenon occurs frequently during switching. A simple circuit constituting a resistor, an inductor, and a capacitor is 

termed an RLC circuit. It may be in parallel or series configuration or both. Different values of damping factors 

determine the different nature of the transient response. We applied different numerical solution methods such as explicit 

(forward) Euler method, third-order Runge-Kutta (RK3) method, and Butcher's fifth-order Runge-Kutta (BRK5) method 

to approximate the solution of second-order differential equation with initial value problem (IVP). We thoroughly 

compared the numerical solutions obtained by these methods with the necessary visualization and analysis of error. We 

also examined the superiority of these methods over one another and the appropriateness of numerical methods for 

different damping conditions is explored. With high accuracy of the approximation and thorough analysis of the 

observation, we found Butcher's fifth-order Runge-Kutta (BRK5) method to be the best numerical technique. Regarding 

the different values of damping factors, we considered the further possibility of discussion and analysis of this iterative 

method. 
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INTRODUCTION 

There is a significant and crucial role of the differential 

equation while considering the problem of mathematical 

modeling in the field of engineering, mathematics, and 

applied science (Ahamad & Charan, 2019; Kendall et al., 

2009; Pokhrel et al., 2020a). While encountering the 

differential equations in modeling, almost all appears to 

be nonlinear. It is a needle in a haystack task to solve a 

nonlinear partial differential equation (PDE) analytically 

(Ahamad & Charan, 2019; Pokhrel et al., 2020a, 2020b). 

Naiver-Stokes equation is a typical example of a second-

order nonlinear partial differential equation that can’t be 

solved analytically (Kendall et al., 2009; Hossain et al., 

2017b; Pokhrel et al., 2020). Therefore, a pragmatic and 

more rigorous approach is to be devised to find some 

approximation of such difficult problems. One such 

approach is the numerical method (Hossain et al., 2017a). 

Time-varying currents and voltages from a sudden 

application of sources induce a transient or momentary 

fluctuation of energy upon the electrical circuit. This 

event occurs usually during switching (Suhag, 2013). This 

sudden upsurge of energy in the circuitry is not a good 

environment for sensitive electrical components such as 

an inductor, capacitor, resistor, diode, and transistors that 

are millions in number and embedded inside integrated 

circuits (Deshpande, 2014). The whole system could be 

destabilized and the electrical system could be rendered to 

an unsteady state. The role of transient analysis comes 

into play in such a scenario as it analyses the response of 

electrical components under these unsteady conditions 

(Kee & Ranom, 2018). 

Thus, a transient analysis methodology is to measure the 

performance of electrical circuits (Balota & Grebovic, 

2016). If the variables do not change with time, then the 

state of a system is in a steady state. Otherwise, it is in an 

unsteady state. The current in the parallel LCR (inductor, 

capacitor, and resistor) circuit depends not only on the 

magnitude of the applied electromotive force (emf) but 

also on its frequency (Lamichhane, 2019; Adhikari et al., 

2018). The electrical component in daily household 

equipment such as mixture, iron, refrigerator, mobile 

charger, etc. is comparatively larger and heavier dosed to 

handle the transient ailments. However, the transient 

occurring in a nano-scale inside a microprocessor, hard 

disk, and motherboard could be fatal to the existence of 

the system (Henry et al., 2019). The response of the 

system by changing the conditions from one steady-state 

value to another for the transient analysis of a second-

order RLC circuit was observed. The author insisted on 

the efficiency of the RK method in solving second order 

differential equation. 

The RK4 method was used with different time steps size h 

for the transient analysis of series RLC circuits under 

different damping conditions (Kee & Ranom, 2018). The 

accuracy of the RK4 method was calculated gradually by 

decimating the step size. Thus by decreasing the step h or 
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increasing the number of step (n) degree of accuracy and 

efficiency of the improved RK4 method was more favored 

for solving transient analysis of the electrical circuit. Two 

numerical methods viz. Heun's method and the Runge-

Kutta method were employed for the task of transient 

analysis of second-order RLC circuit (Henry et al., 2019). 

Though Heun's method reached the stable limit first by 

converging faster, Runge-Kutta 4
th

 order method proved 

to be more accurate. Runge-Kutta method was thus 

recommended for transient analysis of the complex 

electric circuit. 

Ahamad and Charan (2019) utilized the fifth order Runge-

Kutta method (RK5) to solve the initial value problem for 

fourth-order ODE. Kamruzzaman and Nath (2018) 

compared the numerical solution with the exact solution 

of an ODE with IVP by employing the modified Euler and 

Runge-Kutta method. Maffezzoni et al., (2007) found a 

novel approach to accurate time-domain simulation of a 

nonlinear circuit by employing high order implicit Runge-

Kutta method. They briefly reviewed the stability and 

accuracy of this RK method. Kafle et al. (2020) compared 

the different iterative methods to analyze the damping 

conditions of series RLC circuits under the transient 

situation with DC source and they found the best iterative 

method as BRK5 to solve the second-order ODE of the 

series RLC circuit. They observed the three damping 

conditions by using the BRK5 method. Alizadeh et al. 

(2020) studied the Laplace transformation solution of 

Caputo-Fabrizio sectional derivative to study the transient 

response of parallel RLC circuits. They compared the 

graph obtained for solutions of a different order of 

fractional derivative with the usual solutions. Elton (2017) 

started with the basics concept of the RLC circuit and 

ended with the concept of circuit design. He analyzed 

both series and parallel RLC circuits with practical 

applications using advanced calculus to aid in 

predetermined results. 

In the presented work, we employed a second-order ODE 

to model a parallel RLC circuit with a DC source. For 

solving IVP of ODE and transient analysis, we first 

compared the three iterative methods: Explicit Euler, 

third-order Runge-Kutta (RK3), and Butcher fifth-order 

Runge-Kutta (BRK5). BRK5 method is observed to be the 

best method as it gives the least error compared to the 

other two methods. BRK5 method is then chosen to 

analyze the three damping conditions of the RLC circuit. 

Our approach in this paper is less analytical and more 

numerical among the various iterative methods for solving 

the differential equation. The second section comprises 

the theoretical approach and three iterative methods with 

the necessary numerical formulation. The third section 

depicts the simulation result and comparison of the above-

mentioned method. The fourth section culminates the 

conclusion and finding of this work. 

MATERIALS AND METHODS 

Mathematical theory 

An RLC circuit constitutes of three electrical elements: a 

resistor, an inductor, and a capacitor. It is a second-order 

circuit. These circuits are the most popular as they are 

applied to construct oscillators and tuners of radio or 

audio receivers (Suhag, 2013). In Fig. 1, the electrical 

elements resistor (R), inductor (L), and capacitor (Ϲ) are 

connected in parallel with the D.C. source (Vs), which we 

call the parallel RLC circuit. A circuit equation is drawn 

to undertake the analytical solution part of a transient 

analysis (Kee & Ranom, 2018). An ordinary electrical 

circuitry could contain thousands of components. 

Therefore, any analytical solution in such RLC circuits is 

virtually impossible. In such a scenario, numerical 

methods could offer great relief to the solution of the 

system (Falade & Ayodele, 2019). Here, we used possible 

iterative methods to solve the circuit equation under the 

terms of transient analysis in an RLC circuit and compare 

different methods. 

 

Fig. 1. Parallel RLC circuit 

The Kirchhoff’s Current Law (Kee & Ranom, 2018) is 

applied around the loop for 0t  , in which the total 

current of the circuit in Fig. 1 is calculated by the 

following; 

)1(IIII CLRS   

Where, SI is the source current LR I,I and CI are the 

current through resistor, inductor, and capacitor 

respectively. 

The differential equation of the RLC in Fig. 1 is based on 

the method of loop currents where the fundamental 

relationship between the current, and the individual circuit 

elements (Maria Selvam & Vignesh, 2018) are given by 

Resistance: v
R

1
IR 

 
Capacitance: 

dt

dv
CIC 

 

Inductance:  vdt
L

1
IL

 

Where, v is the voltage drop across each element viz. 

capacitor, resistor, inductor. Substituting these values in 

equation (1), we get; 
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L

1
+

dt

dv
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Differentiate on both sides, we get the second-order 

differential equation of the RLC circuit with constant 

coefficients is written as (Santiago, 2013). 

0v
LC

1

dt

dv

RC

1

dt

vd
2

2

 )2(
 

with 12
dt

)0(d
and,0)0(i,6)0( 


  

The parallel RLC circuit is analyzed to determine its 

transient characteristics once the switch is closed. 

Equation (2) can be solved using different iterative 

methods (Henry et al., 2019). 

The damping factor is responsible for the amount by 

which the oscillation of a system gradually decreases with 

time (t). Transient response is dependent on the value of 

the damping factor )( (Henry et al., 2019). In a parallel 

RLC circuit, the damping factor is given by  

o




 

where, 
RC2

1
 (damping coefficient) and 

LC

1
o     (resonant frequency). 

Then,
C

L

R2

1
  

)3(

 

The system is (i) overdamped when 1 , (ii) critically 

damped when 1 , and (iii) underdamped when 1   

(Suhag, 2013). 

Numerical methodologies 

In this section, we introduce the Euler method (explicit), 

Third-order Ruge-Kutta method (RK3), and Butcher’s 

fifth-order Runge-Kutta (BRK5) method to solve initial 

value problems (IVP) for ordinary differential equations 

(ODE) (Boyce & Di Prima, 2012; Butcher & Goodwin, 

2008; Kafle et al., 2020). 

The forward Euler formula (Butcher & Goodwin, 2008; 

Kafle et al., 2020) is 

)y,t(hfyy nnn1n  )4(
 

The third order Runge-Kutta formula (Senthilnatha, 2018; 

Kafle et al., 2021) is 
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The Butcher fifth-order Runge-Kutta formula (Henry et 

al., 2019; Butcher & Goodwin, 2008; Kafle et al., 2021) is 
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It can extend the above discussed iterative methods for the 

solution of higher-order IVP for ODE and system of IVP 

for ODEs (Hossain et al., 2017a, 2017b; Kafle et al., 

2021).

 
Numerical formulation of parallel RLC circuit 

Let, xv  and )7..(........................................
c

y

dt

dv


 

Then equation (2) becomes  

)8........(........................................
L

x

RC

y

LC

v

dt

dy S   

Hence, equations (7) and (8) form a system of the first-

order differential equation (Henry et al., 2019; Kafle et 

al., 2021). 

Let,  
c

y

dt

dv
f    and  

L

x

RC

y

LC

v

dt

dy
g S   

Euler’s method for RLC circuit 

)y,x,t(fhxx iiii1i   

)y,x,t(ghyy iiii1i   

where h is the time step size. 

RK3 method for RLC circuit 
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Formulating BRK5 method for RLC circuit 
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RESULTS AND DISCUSSION 

In the following sub-section, we compare the numerical 

solution of RLC circuits by above discussed numerical 

methods with the exact solution and analyze the different 

characteristics of damping factor by using an iterative 

method. The time step size used for the simulation is 

0.1second. Fig. 2 describes simulation results of 

numerical solution of parallel RLC circuit and exact 

solution in overdamped, critically damped, and 

underdamped conditions from the top, middle, and bottom 

respectively. To compare the accuracy of the numerical 

methods, the computed points of the three numerical 

methods are taken at a specific time. The computed point 

of each method is compared with the analytic solution. It 

observed from Fig. 2 that numerical solutions are more 

converging with the analytical solution in overdamped 

conditions and less converging with the analytical solution 

in underdamped conditions. Therefore, we conclude that 

numerical methods are more suitable in the overdamped 

condition. In the Euler method, there is taking slope only. 

In RK3 method takes the third-order slopes and average of 

these slopes. In the BRK5 method, it takes the average of 

the fifth-order slopes. So Butcher method is converging 

faster than the other two methods. 

 

Fig. 2. Comparison of the iterative method with the 

analytical solution of overdamped (top), critically 

damped (middle), and underdamped (bottom) 

From Fig. 2, it observed that the approximate solution 

curve obtained from the Butcher fifth-order Runge-Kutta 

(BRK5) method is converging faster towards the 

analytical solution in comparison with the other two 

methods. This shows that there is less error between 

BRK5 and analytical solution in comparison with the 

other two methods. 

Comparison between analytical solution and 

numerical methods  

Table 1 contains the data that is used in the simulation of 

three iterative methods and three damping conditions for 

the solution of a parallel RLC circuit. 
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Table 1. The values of electrical elements of parallel RLC 

circuit for three conditions (Kee & Ranom, 2018) 

 Value 

Element Cond-1 Cond-2 Cond-3 

Resistor Under-

damped 

Critically 

damped 

Over-

damped 

DC (Vs)  6 V 6 V 6 V 

R <1 Ω 1Ω > 4 Ω 

L 1 H 1 H 1 H 

C 0.25 F 0.25 F 0.25 F 

R= Resistor, L= Inductor, C= Capacitor, Cond.= Condition 

Table 2 contains details of simulated results obtained for 

iterative methods and exact solutions with errors in 

different time slices.  Hence, we concluded that the BRK5 

method is a more efficient method to approximate the 

solution of parallel RLC circuit as the BRK5 method takes 

the average of fourth-order slopes which gives less error. 

In the following section, we consider three damping cases 

(i.e. underdamped, critically damped, and overdamped) 

for Butcher fifth-order Runge-Kutta (BRK5) method 

Characteristics of damping factor by using BRK5 

method 

From Fig. 3, we observed that the under-damped 

responses are a decaying oscillation that decays at a rate 

determined by the attenuation (α) by using the BRK5 

method. The exponential decay describes the envelope of 

the oscillation. Here the oscillation is sinusoidal with 

exponentially decaying amplitude. The critically damped 

response represents the circuit response that decays in the 

fastest possible time without going into oscillation. This 

consideration is important in control systems where it is 

required to reach the desired state as quickly as possible 

without overshooting. The over-damped response is a 

decay of the transient current without oscillation, which 

reaches the stable state slower than the critically damped 

case.  

 

Fig. 3. Comparison of three different damping condition 

by using BRK5 

The quantitative description of the numerical solution for 

three damping conditions by using the BRK5 method is 

presented in Table 3. 

 

Table 2. Simulated results obtained for iterative methods and exact solution with error   

 

CONCLUSION 

The transient analysis of the electrical circuit is analyzed 

using the analytical method, Euler (explicit) method, RK3 

methods, and BRK5 method. With the usage of 

computational software, the process of obtaining results of 

the transient analysis is done systematically and 

Time (t) 

(seconds) 

Euler 
  

Exact 

Voltage (V) 
Voltage (V)  Voltage (V)  Voltage (V)  

0.0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

0.1 0.000000 7.550000 0.232000 5.550000 0.448062 9.488000 0.737550 

0.2 0.960000 2.195200 1.328157 3.795000 1.665911 6.041000 2.181952 

0.3 2.688000 6.488600 3.098752 5.413400 3.470005 2.881000 4.152886 

0.4 4.992000 9.169100 5.360915 2.277600 5.688888 4.803000 6.483691 

0.5 7.687680 3.723300 7.944409 8.050400 8.167195 7.718000 9.024913 

0.6 10.604544 4.204500 10.695937 0.652000 10.768352 8.237000 11.646589 

0.7 13.590528 8.875000 13.482075 7.328000 13.376102 3.301000 14.239404 

0.8 16.515133 9.770000 16.190937 3.966000 15.895022 9.881000 16.714903 

0.9 19.271197 6.292000 18.732741 2.164000 18.250199 4.706000 19.004905 

1.0 21.775442 5.153000 21.039441 0.848000 20.386214 4.075000 21.060289 



 

 

J. Kafle, B. K. Thakur, I. B. Bhandari 

33 

 

 

conveniently. From the simulation results, we conclude 

that numerical solutions are more appropriate in 

overdamped conditions than in underdamped and 

critically damped conditions. It has been observed that the 

BRK5 method is very efficient in solving second-order 

differential equations. Thus, authors can conclude that by 

carrying out the transient analysis of a system, we can find 

out the response of the system by changing the conditions 

from one steady-state value to another. Observation 

clearly shows that the under-damped decay is oscillatory 

and exponential. However, the other two are non-

oscillatory exponential decay. The decay in the critically 

damped case is observed faster than in the over-damped 

case. 

Table 3. Values of three conditions of BRK5 method 

Values of BRK5 Method 

Time 

(s) 

Under 

damped 

Critically 

damped 

Over 

damped 

0.0 0.000000 0.000000 0.000000 

0.1 0.448062 0.420556 0.372918 

0.2 1.665911 1.477249 1.188828 

0.3 3.470005 2.925636 2.181422 

0.4 5.688888 4.588992 3.226176 

0.5 8.167195 6.341790 4.265703 

0.6 10.768352 8.096949 5.274355 

0.7 13.376102 9.796018 6.241456 

0.8 15.892022 11.401660 7.163347 

0.9 18.250199 12.891917 8.039625 

1.0 20.386214 14.255861 8.871361 
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