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ABSTRACT 

In many real-world situations, there are numerous network optimization problems where the network attributes depend 

on time. In this paper, we consider single-source single-sink discrete-time dynamic network flow problems. We review 

some algorithms for the quickest flow problems in two environments (to the network attributes): time-invariant and time-

variant. This paper mainly focuses on the existing algorithms for a later one. In literature, most of the authors have made 

their objectives to determine the earliest arrival time paths along which a given amount of flow can be sent in the 

minimum time. Evacuation is the most recent research area of network optimization, where quickest flow models allow 

the estimation of the minimum time required to bring a given number of evacuees to safety. 

Keywords: Dynamic network, Optimization, Time-dependent, Quickest flow, Pseudo-polynomial algorithm. 

INTRODUCTION 

For the first time, Ford and Fulkerson (1962) considered 

the maximum dynamic flow problem in a discrete-time 

dynamic network with constant attributes and solved it in 

polynomial time. They considered a dynamic network into 

a time-expanded network as a static version of a dynamic 

network. A time-expanded network is a network 

constructed with copies of each node of an original 

network at specified periods over some time horizon, 

where arcs connect nodes in different periods according to 

the traversal times in the original network. Halpern (1979) 

and Anderson et al. (1989) considered the network with 

time-varying capacities and constant arc travel time 

functions. Cai et al. (2001) solved the minimum cost flow 

problem as well as the universal maximum flow problem 

by considering the network with time-dependent attributes 

and gave pseudo-polynomial time algorithms. They 

discussed both problems with no-waiting, finite waiting, 

and infinite waiting capacities at all nodes in a non-first-

in-first-out (FIFO) network with discrete periods. The 

static shortest path problem is polynomially solvable 

(Ahuja et al., 1993) but the time-dependent shortest path 

problem is NP-hard (Cai et al., 2001). 

The quickest flow problem (QFP) has historically been 

defined on a discrete-time dynamic network as a network 

clearing problem (Burkard et al., 1993). They showed that 

the QFP can be reduced to maximum dynamic flow 

problems via search techniques such as binary search and 

Newton’s search. They proposed several polynomial time 

and strongly polynomial-time algorithms for the quickest 

flow problem constant attributes (QFP-CA). Lin and 

Jaillet (2015) solved the QFP-CA with integer arc costs 

(travel time) based on the cost scaling approach of 

Goldberg and Tarjan (1990) in the same time bound as 

one of their cost scaling minimum cost flow algorithms. 

Saho and Shigino (2017) also proved that a strongly 

polynomial bound is possible by making use of a different 

cost scaling minimum cost flow algorithms: Cancel-and-

Tighten of Goldberg and Tarjan (1989). These works can 

be useful in evacuation planning (Nath et al., 2020; 

Pyakurel et al., 2018; Adhikari & Dhamala, 2020). A 

contra-flow approach can be used to solve evacuation 

planning problem in a continuous time dynamic network 

(Pyakurel & Dhamala, 2016). 

Tjandra (2003) studied QFP with time-dependent 

attributes (QFP-TDA) in two environments: supply does 

not change over time and supply changes over time. To 

adjust the initial supply contents, he suggested a 

modification of the original network by introducing a 

dummy node (super source) and a dummy arc with zero 

travel time and arc capacity same as the supply value 

according to the supply time. He also solved the problem 

for finite and infinite waiting at nodes in pseudo-

polynomial time. Similarly, Miller-Hooks & Patterson 

(2004) also proposed a pseudo-polynomial time algorithm 

called TDQFP algorithm to solve the problem QFP-TDA 

when infinite waiting is permitted at all nodes in a non-

FIFO network with discrete time intervals while solving 

QFP-TDA, Miller-Hooks and Patterson (2004), and 

Tjandra (2003) aimed to determine the earliest arrival 

time paths along which a given supply can be sent such 

that the last unit of flow arrives at the sink in a minimum 

time. The authors also suggested considering QFP-TDA 

as a time-dependent minimum time flow problem to solve 

in a time-expanded network and suggested applying the 

successive shortest path procedure for the solution. 

Dhundia (2005) modified the TDQFP algorithm for zero 

waiting at intermediate nodes by using a re-optimization 

technique (a heuristic approach). Opasanon (2005) 

extended the TDQFP algorithm for solving QFP-TDA in 

deterministic, time-varying networks for use in stochastic 

environments. That is, it iteratively determines the 

maximum probability paths from source to sink in a 
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residual network and incrementally pushes flow along the 

paths until all demand is fulfilled. The network can also 

be studied with inflow-dependent transit time (Dhamala et 

al., 2018; Khanal et al., 2018). Pundir et al. (2015) 

presented an efficient algorithm for solving the linear 

bottleneck assignment problem. Several researchers have 

been carried out in production and logistic network 

independently (Yu & Thapa, 2014). 

In this paper, we consider the attributes and parameters as 

integral valued functions and follow the model of Tjandra 

(2003) herein. 

Preliminaries 

A discrete-time dynamic network is a dynamic network, 

where time is divided into discrete units, flow moves 

through the network over time, capacity restricts the flow 

rate on an arc, and travel time determines how long each 

unit of flow can spend traversing an arc. Let   
(               ) be a discrete-time dynamic network 

with time horizon  , where    is the set of vertices 

(nodes),   the set of arcs,    the arc travel time function,   

the arc capacity function,   and   be a source and a sink. 

Let    number of nodes and    number of arcs. For 

each node      and time     *       +, we denote 

supply contents, waiting times, and waiting capacities by 

  ( )    ( ) and    ( ) respectively. Let   
  

*   (   )    + and   
  *   (   )    + be the sets of 

predecessors and successors of node  . 

Motivation 

In Fig. 1(a), we can see that there is a regular pattern of 

the arcs because of constant arc travel time. Many 

polynomial-time algorithms have been developed for 

dynamic network flow problems of this model. But in Fig. 

1(b), a regular pattern of the arcs was not observed 

because of the time-varying nature of the arc travel time 

function. 

 

Fig. 1. Dynamic network in different environments 

There is no efficient algorithm for this model, although 

there have been a lot of research works in this area. 

According to Tjandra (2003), discrete-time dynamic flow 

on   can be considered as a function             
* + given by  ((   )  )     ( )   (   )               

satisfying the following conditions (1) - (4). 
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      ( )      ( )    (   )         

*  |               ( 
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    ( )     ( )                                                 ( ) 

Without loss of generality, we may suppose that    ( )  

    ( ) (waiting flow) for     and      ( )    for 

convenience. Here, (1) represents that outflow at the 

source node should be equal to inflow at sink node, (2) is 

flow conservation law and (3) and (4) are capacity 

constraints for arcs and nodes respectively. Here, we 

suppose that lower bounds for capacity functions (arc 

capacity and waiting capacity) are zero. If waiting is not 

allowed at its intermediate nodes, the value on the right-

hand side of (2) should be zero. 

If a network was taken without a time parameter and 

travel time function as a distance function, the network 

becomes a static network. 

Let    , the flow that can be sent to the sink node   from 

its predecessors at time   is called terminal flow. For   
 ,  define a sum function of terminal flows, 

   ∑ ∑    ( 
 )

{  |      ( 
 )  }    

 

 

a) Maximum dynamic flow problem: For a given time 

horizon  , a discrete-time maximum dynamic flow 

problem is to maximize the total flow value ∑   
 
     

for the constraints (1) - (4).  

b) Earliest arrival flow problem: For a given time 

horizon  , a discrete-time earliest arrival flow problem 

is to find the total maximum flow value ∑   
 
    for 

each period     concerning (1) - (4).  

c) Minimum weighted sum flow problem: For a given 

time horizon  , let    be the weight (or cost) increasing 

function over the time   associated with    for each 

   . Then a discrete-time minimum weighted sum 

flow problem is to minimize the total weighted sum 

flow ∑     
 
     with respect to (1) - (4). 

d) Quickest flow problem: For a given supply value 

  ∑   ( )
 
   , the quickest flow  problem determines 
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a 

      {   |      ∑   
  

     } with respect to the 

constraints  (1) - (4).  

Consider the value of earliest arrival flow at each period 

  ,   - as 

      ∑  

 

   

 

Then    is the value of maximum dynamic flow in the 

period ,   - for    . 

FIFO Property 

An arc (   )      is said to have a FIFO (first-in-first-out) 

property if  

          (  )      (  )                                               ( ) 

where    ( )       ( ) is the arc arrival time function 

for node   at time  . If every arc in a network has a FIFO 

property, the network is known as a FIFO network. In the 

FIFO network, the arc arrival time function is non-

decreasing over the period. In a time-dependent network, 

there may not be a FIFO property because of time-varying 

attributes. So, waiting at a node may give an earliest 

arrival time path even for the late starting time (Fig. 2).  

 

Fig. 2. Earliest arrival time path with waiting at x  

Dynamic augmenting path 

Let  ( ) be a residual network for an augmenting flow  . 

A dynamic augmenting path is a dynamic  -  path  (  ) in 

 ( ) composed of a sequence of time-arc pairs   (       ) 
with departure time    for arc (       ) from node   to 

node   that ready at node   at the time      , as given by  

 (  )  *  (     )   (     )       (       )+, 

where                          
     for   

         . 

MATERIALS AND METHODS 

It is an algorithmic study of a graph-theoretic model, 

where the correctness of the algorithms is proven through 

lemmas, theorems, and propositions and verified with 

examples by using computational programming with 

computer implementation.  

Generally, we have three approaches to solve time-

dependent network flow problems.  

 To create a so-called time expanded network as a static 

version of a dynamic network and use algorithms for 

static network,  

 To reduce it into a static one and use existing 

algorithms,  

 To explore only the time-dependent property of 

network attributes without doing time expansion.  

The main contribution of this paper is based on a review 

and discussion of the previously published documents. 

RESULTS 

The QFP is closely related to the maximum dynamic flow 

problem in the sense that it is to send a given flow   from 

a given source to a given sink in the shortest possible time 

  , whereas the maximum dynamic flow problem sends  

maximum units of flow ∑   
 
    from a given source   to a 

given sink   within the given time horizon  . 

Ford and Fulkerson (1962) introduced temporally 

repeated flow as a special type of dynamic flow that turns 

any feasible static flow into a feasible dynamic flow. If 

      be a feasible static flow and   a given time horizon, 

      can be decomposed into the set   of path flows 

(paths   ’s with their flows    (  )) which is called flow 

decomposition. A temporally repeated flow is a dynamic 

flow obtained by temporarily repeating all paths flows of 

some path decomposition. Let  (  ) be the length of    

with respect to the travel time. Mathematically, the value 

of temporally repeated flow, denoted by    ( ) can be 

defined as 

   ( )  ∑    (  )(     (  ))

    

 

Lemma 1 (Ford & Fulkerson, 1962) 

For a maximum dynamic flow problem, there exists an 

optimal solution in the temporally repeated form. 

Lemma 1 is the direct consequence of the definition of 

temporally repeated flow because of flow decomposition. 

Theorem 1 [Triple Optimization Theorem] (Jarvis & 

Ratliff, 1982). 

Consider the above three problems b), c) and d) under the 

assumption that there exists a feasible flow of   units (i.e., 
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    ). Then the solution for either problem b) or c) is 

also the solution of the other two problems. 

Proof: [  )    )] If it is possible to get a feasible flow of 

  units from   to  , then there exists an earliest arrival flow 

which equals   (Minieka, 1973). Suppose that there exists 

a set of terminal flows   
  for     satisfying b) and hence 

∑   
  

      and ∑   
  

    ∑   
 
    for    . Since, 

∑   
  

    ∑   
 
   , if  there exist      such that    

  

   
then ∑     

  
    ∑     

 
    (Jarvis and Ratlift, 1982). 

This shows that    does not correspond to a solution of c). 

Hence    and   
  must be equal for all    . This implies 

that b) and c) are equivalent. 

[  )     )   )] As b) and c) are equivalent, we show that 

a solution of b) can be used d). Let   be the largest index 

such that   
   . On the contrary, if the solution of b) 

does not solve d) then there exist some     such that 

∑   
 
     . This contradicts that ∑   

  
    is the maximum 

flow in the first   period. 

Quickest flow problem with constant attributes 

Here, the attributes are considered as constant functions 

over time   (e.g.,   ( )         ( )         ( )  

       ( )    ) Ford and Fulkerson (1962). In our 

consideration, a network with constant attributes is a FIFO 

network and in a FIFO network, waiting at nodes is never 

beneficial. 

Based on the search techniques and maximum dynamic 

flow algorithms, the authors developed several 

polynomial-time algorithms by considering a discrete-

time dynamic network with nonnegative integer-valued 

arc capacity and arc travel time functions. Burkard et al. 

(1993) made a close relationship between the maximum 

flow problem and the quickest flow problem in the 

following lemma. 

Lemma 2  

Let   be a dynamic flow of value   in the period 
,   -    . If        then   is the quickest flow of 

value  . Moreover,     . 

Lemma 1 implies that finding an optimal solution to the 

quickest flow problem with a given amount of flow   is 

equivalent to finding the minimum time    such that 

     . Let            and      * |       
 + (length of the shortest  -  path with respect to the travel 

times). Suppose that |     | is the value of an arbitrary 

maximum static flow       in the network  . 

Theorem 2 (Burkard et al., 1993) 

(i)    is nondecreasing as time   increases and for     

it is strictly increasing. 

(ii)    is nondecreasing. That is,               

(iii)    can attain only values from the set 
*      |     |+. 

From Theorem 2,    is non-decreasing and   attains only 

integer values. One can use a binary search method over 

  ,     - such that    ,     - and solve maximum 

dynamic flow problem in each iteration, until    is found. 

While applying a pure binary search technique, the 

efficiency can be improved by applying the Newton’s like 

method and regula falsi to obtain the bounds. A new 

example of this approach can be found in (Bhandari & 

Dhamala, 2020). Using an improved binary search 

technique the QFP can be solved in  (   (     |     |)  
   (   )) (Burkard et al., 1993), where    (   ) is 

the time complexity for solving one minimum cost flow 

problem with   nodes and   arcs. 

Newton’s method can also be used to solve the QFP with 

constant attributes with an initial guess    for   . 

Newton’s method needs at most  (        |     |) 
time (Burkard et al., 1993).  

In conclusion, we can state a theorem as below. 

Theorem 3 (Burkard et al., 1993) 

The QFP-CA can be solved polynomially. 

Lemma 3 (Lin & Jaillet, 2015) 

The QFP-CA can be formulated as the fractional 

programming problem as below. 

      
  ∑       (   )  

|     |
 

Subject to 

∑    

     
 

 ∑    

     
 

 {
   |     |            
 |     |              
               

  

            (   )     

Keeping the idea of Lemma 2 in mind, the formulation in 

Lemma 3 can be developed by using the temporally 

repeated form of the maximum dynamic flow model. For 

detailed proof, we refer to (Lin & Jaillet, 2015). 

Lemma 4 (Lin & Jaillet, 2015) 

The QFP with constant attributes can be solved in 

 .     .
  

 
/    (  )/ time, where   is the maximum 

arc cost (travel time). 

Proof: The QFP with constant attributes can be solved by 

applying the cost scaling algorithm of Goldberg and 

Tarjan (1990) for minimum cost circulations. The time 

complexity of the algorithm is  .     .
  

 
/    (  )/. 

For more detailed proof see (Lin & Jaillet, 2015). 

Lemma 5 (Saho & Shigeno, 2017) 
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The QFP with constant attributes and integer arc costs can 

be solved in strongly polynomial time. 

Proof: The weakly polynomial-time algorithm of Lin and 

Jaillet (2014) can be improved with strongly polynomial 

time (i.e.  (   (    ) )) bound for the solution for the 

QFP by Cancel-and-Tighten algorithm of Goldberg and 

Tarjan (1990) for min-cost flow problem. 

Quickest flow problem with time-dependent attributes 

Here, we consider the QFP-TDA, where capacity, travel 

time, and supply value may change over time. Before 

discussing the algorithms for this problem, certain 

assumptions have been made as follows. 

 Each arc has a non-negative time-varying capacity. 

 Residual network permits negative travel time. 

 Demand will equal the total supply. 

 When flow arrives before time  , it simply waits 

without penalty until time   in order to satisfy the 

demand. 

 At each node    , and for every time     , there 

exists a holdover arc (   ) with waiting capacity   ( ) 

and unit waiting time   ( ) . 

 When flow arrives at the sink node before the time  , 

it simply waits without penalty until time   in order to 

satisfy the demand. 

 Once the flow has been sent, the time-dependent 

residual network is updated (i.e. capacities and travel 

times of all affected arcs in the network at the 

appropriate departure periods should be updated). 

 Backward arcs are introduced to permit the return of 

capacity to an arc, corresponding to reversing 

decisions from previous iterations as a means for 

improving the objective. 

Time-dependent residual network: As given in 

(Tjandra, 2003), the time-dependent residual network to a 

given feasible dynamic flow   is defined as  ( )  
(      ) with      

  Where, 

  
  *(   )|(   )             ( )        ( )     ( )   

and   
  *(   )|(   )             ( )        ( )   . 

The attributes of the time-dependent residual network are 

as follows. 

 Residual arc travel time  

   
 ( )  

{
      ( )     (   )          ( )                                    

    ( )    (   )          ( 
 )         ( 

 )   
  

 Residual arc capacity  

   
 ( )  

{
      ( )     ( )     (   )          ( )                     

                ( )      (   )          ( 
 )     

  

 Residual waiting capacity  

  
  ( )    ( )    ( )         

  
  ( )    ( )                         

  

Tjandra (2003) developed a successive earliest arrival 

augmenting path (EAAP) algorithm to solve an earliest 

arrival flow problem with time-varying attributes. The 

author showed that by allowing infinite waiting at nodes, 

the EAAP algorithm is more efficient by factor   than 

implementing the successive shortest path algorithm on 

the time-expanded network. He also applied the EAAP 

algorithm to solve QFP-TDA.  

EAAP Algorithm (Tjandra, 2003) 

Input:  Residual dynamic network  ( )  (      ) of a 

flow   

Output:  An EAAP path   with    ( )  

Step 0: Initialization    * + and set the labels for each 

     

                 {
                   
           

  ,     *       + 

         ( )  {
                   
           

 

        ( )  {
                   
           

 

Step 1:  Select current node 

   If     , go to step 3 

   Otherwise, select      and set       * + 

Step 2:  Scan the current node and update the labels 

   For all  (   )     do 

  {For all 

  { |          ( )         ( )   } do 

    { if (     .     ( )/   ) then 

  {         ( ),          

           (  )    ;     (  )    

              * + 

      While (    ) and (     ( 
 )   ) do 

        {      ( 
 )         ( 

 )           } 

           Define         ( )    

    While (       
  (    )          ( 

 )   ) 
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             do { if (     ) then       

                   ( 
 )         ( 

 )            ; 

        End while; 

    End while 

 End for; 

Return to step 1 

Step 3:  Constructing an s-l earliest arrival augmenting 

path 

   If      then     and    ( )   ; 

   Else {                  ( ); 

   Define   * (   )+ and    ( )    

   While (   )*       ( ) do 

     If (   ) then {        
 (  )        } 

     Else if (    )  then       
  (  ); 

     Else       
  (  ); 

    If (       ( )) then    ( )            

                ( 
 )      

    If (    ) then    *  (      )+;  

   End while; 

Proposition 1 (Tjandra, 2003) 

The EAAP algorithm finds the earliest arrival augmenting 

path in  (   ) for infinite waiting. 

To apply the EAAP algorithm for QFP-TDA, Tjandra 

(2003) suggested adjusting the supply value by adding a 

super source    and a dummy arc (    ) with the 

properties. 

    ( )        ( )    ( )      ( )         . 

Procedure overview of Tjandra’s algorithm 

1. Modify the original network by adding a dummy 

source and dummy arc to adjust the supply contents. 

2. Set the time horizon   large enough so that the 

problem is feasible. 

3. Find the earliest arrival flow by the EAAP algorithm. 

4. Update the residual network of the current flow and 

augment the flow. 

5. Repeat the process from step 3 until ∑   
 
      for 

    

Theorem 4 (Tjandra, 2003) 

If    is the earliest arrival flow for a time horizon   with a 

value    and       *  |      ( )+ exists, then    

solves the discrete-time QFP with initial supply content 

  ( ). 

Proof of Theorem 4 is directly followed from the Triple 

Optimization Theorem. 

Proposition 2 (Tjandra, 2003) 

The time complexity of Tjandra’s algorithm is  (     ) 

for finite waiting and  (    ) for infinite waiting at 

every node of the network. 

Proof: From the proposition 1 we have the worst case time 

complexity for finding an EAAP as  (   ). In the worst 

case, only one unit of flow might be sent at each timing 

path. So, the total time complexity of Tjandra’s algorithm 

is  (    ) 

Miller-Hooks and Patterson (2004) solved the QFP-TDA 

with the objective  

   [   
    

 

   

 (     ( ))   ( ) ]  

Where    ( )  {
           ( )     
                 

and capacity constraints 

be restated as    ( )     ( )   ( )       
       

While solving the QFP-TDA, we may set the time horizon 

  large enough so that the problem is feasible. However, 

Miller-Hooks and Patterson (2004) proposed an idea to set 

a time horizon for QFP-TDA, which is given as follows. 

          
     ⌈

 

  
    ⌉                                                  ( ) 

where       returns the time at which travel conditions 

become stationary,   
     returns the shortest path time 

between the origin and destination using the arc travel 

times at      , and   
     returns the corresponding capacity 

of this shortest path. 

Let  ( ) be the excess (supply value at  ) at time  . 
Suppose that  ̂     *  |  ( )   +.  

TDEAT Algorithm (Miller-Hooks & Patterson, 2004) 

Input:   ( ( )    ̂  ) 

Output:           

Step 0:  Initialization    * + and set the labels for each 

     

       {
 ̂                  
           

  ,  

   For all   *       + 
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    ( )  {
               ̂  

                ̂  
                   

,   ( )    

     ( )  {

  ̂             ̂   

         ̂     
                   

  

Step 1:  Select current node 

   If     , go to step 3; 

   Otherwise, select      and set       * + 

Step 2:  Scan the current node and update the labels 

For all     
 ( )     {

        (   )     
                 

   

        {  |    
 ( )              ( )   }; 

    For all       { |      ( )      }; 

     If (  .     ( )/   ) then 

              ( )  
         

       .     ( )/      (  )    

     (  )     {  ( )    
 ( )}  

   While (    ) and (  ( 
 )   ); 

         ( 
 )       ( 

 )        

         ( 
 )    ( 

   )     ; 

   End while; 

   End if; 

    End for; 

   End for; 

Return to step 1 

Step 3:  Constructing an earliest arrival time path 

   For all      

        (  )               

   While (   ) 

             ( )  

        {(  ( )  )  
 }         

         ( )  

          

   End while; 

Proposition 3 (Miller-Hooks & Patterson, 2004) 

The TDEAT algorithm terminates with the earliest arrival 

time paths from a given origin at a selected departure time 

to all other nodes in  , where waiting is permitted. 

Procedure overview of TDQFP algorithm 

1. Initialization. 

2. A time-dependent earliest arrival time (TDEAT) 

algorithm is implemented to find the TDEAT path. 

3. Find the augmenting flow and update its residual 

network. 

4. If all the supply has reached the sink node, stop. 

Otherwise, go to step 2. 

Proposition 4 (Miller-Hooks & Patterson, 2004) 

The TDQFP algorithm can solve the QFP-TDA in 

 (    ). 

Proof: Step 2 of the TDQFP algorithm can take  (   ) 

time to obtain the TDEAT path in the worst-case. If 1 unit 

of flow can be sent at a time in step 3, we have to repeat   

times. So, step 2 can be repeated at most   times. Hence, 

the total time complexity is  (    ). 

Theorem 5 (Miller-Hooks & Patterson, 2004) 

The solution of time-varying QFP for a single-source 

single-sink network can be extended to solve the time-

varying QFP in a multi-source multi-sink network. 

Proof: According to Miller-Hooks and Patterson (2004), 

we can divide its proof into two parts. 

Converting multiple sources to a single super source: Let 

  the set of sources. We add a super source node    to the 

original network with dummy arcs (    )     such that 

    ( )        ( )    ( )          . We also add a 

self-loop at    with infinite capacity and unit travel time 

for every period    .  

Converting multiple sinks to a single super sink: Let   be 

the set of given sinks. We add a super sink   and a copy    
(dummy sink) for each sink node     to the network. We 

also add new dummy arcs  (    )       to the network 

with infinite capacities and zero travel times for all      
For every   , add a self-loop with infinite capacity and unit 

travel time for each    . Now for each dummy sink    of 

   , add dummy arc (     ) to the network with 

     ( )  |  ( )| (absolute value of demand at    ) and 

zero travel time for all    . 

DISCUSSION 

Based on network attributes, one may classify the quickest 

flow problem as the quickest flow problem with constant 

attributes (Burkard et al., 1993; Lin & Jaillet, 2015; Saho 

& Shigeno, 2017) and quickest flow problem with time-

dependent attributes (Tjandra, 2003; Miller-Hooks & 

Patterson, 2004). 
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The main contributions of Tjandra (2003) were pseudo-

polynomial time algorithms for finite waiting capacities as 

well as for infinite waiting capacities at nodes in a time-

dependent network. Similarly, Miller-Hooks and Patterson 

(2004) also developed a pseudo-polynomial time 

algorithm (the TDQFP algorithm) for solving the time-

dependent quickest flow problem for infinite waiting 

capacities and that does not require an explicit space-time 

expansion. They showed how the algorithm can be used to 

solve both the time-dependent evacuation and the time-

dependent quickest transshipment problems by adding a 

small number of nodes and arcs to the existing network. In 

both algorithms, they have maintained FIFO property 

using scan eligible (SE) list to determine the earliest 

arrival time at every node for departure at a given time 

from a single source node in the time-dependent network. 

Example 1: Consider an example of a time-dependent 

network Fig. 3 for infinite waiting at every node and 

attributes in Table 1. 

 

Fig. 3. A dynamic network 

Table 1:    ( )    ( ) 

 (   ) (   ) (   ) (   ) (   ) 

0 1, 9 1, 8 1, 5 2, 8 1, 7 

1 2, 9 1, 9 2, 11 1, 7 3, 11 

2 2, 5 2, 3 1, 6 2, 5 2, 4 

3 1, 5 2, 5 1, 8 2, 5 2, 5 

4 1, 9 1, 8 2, 9 1, 7 2, 12 

5 2, 2 1, 4 1, 5 1, 4 1, 1 
 

Supply contents,   ( )  {
        
       
          

 

It introduces super source to adjust the supply contents 

and update the table of the attributes, as given in Table 2 

and Fig. 4. 

After implementing Tjandra’s algorithm, we have found 

the quickest time      as a minimum time to clear 25 

units of supply contents. The final solution can be shown 

in time-expanded network as given in Fig. 5. 

From Fig. 6,           
            and      were 

for the path        . Using the formula given in 

equation (6) it gets     . Implementing the TDQFP 

algorithm with     , it gets the following results. 

Table 2.    ( )    ( ) 

 (    ) (   ) (   ) (   ) (   ) (   ) 

0 0, 21 1, 9 1, 8 1, 5 2, 8 1, 7 

1 1, 4 2, 9 1, 9 2, 11 1, 7 3, 11 

2 0, 0 2, 5 2, 3 1, 6 2, 5 2, 4 

3 0, 0 1, 5 2, 5 1, 8 2, 5 2, 5 

4 0, 0 1, 9 1, 8 2, 9 1, 7 2, 12 

5 0, 0 2, 2 1, 4 1, 5 1, 4 1, 1 

 

 

Fig. 4. A dynamic network 

 

Fig. 5. The final representation of the solution  

Example 2: Consider a dynamic network with time-

varying attributes, as given in Table 3 for TDQFP 

algorithm. 

Table 3. Piecewise defined constant attributes 

(i,j) (s,x) (s,y) (x,y) (x,l) (y,l) 

uij(t) 
2, t ≤ 2 

3, t ≥ 3 
3 

 1, t ≤ 3 

 2, t ≥ 4 

2, t ≤ 2 

3, t = 3 

2, t ≥ 4 

4, t ≤ 1 

3, t ≥ 2 

τij(t) 

 3, t ≤ 

1 

2, t ≥ 2 

2, t = 0 

3, t = 1 

3, t ≥ 2 

1 

5, t ≤ 2 

3, t = 3 

4, t ≥ 4 

3, t ≤ 3 

4, t = 4 

2, t ≥ 5 

 

Let excess supply at the source   at time   be  ( ). Since 

 ( )     , starting time  ̂   . The TDEAT algorithm 
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gives an earliest arrival time path          with path 

capacity     , augmenting flow      * ( ̂)   +   . 

It takes 5 units of time to reach the sink node   from the 

source node   at time 0.  

 

Fig. 6. A dynamic network with time-varying supply 

content 

Update excess  ( ̂)   ( ̂)     . Update the residual 

capacities  ( ) and travel times of the arcs of the path    

at the appropriate departure periods in the residual 

network as in Fig. 7. 

 

Fig. 7. The first iteration of TDQFP algorithm 

Again at time  ̂   , excess  ( ̂)   . So, applying the 

TDEAT algorithm we get another earliest arrival time 

path              with path capacity     , 

augmenting flow      * ( ̂)   +   . And it takes 6 

units of time to clear 2 units of supply content from   to   
along the path   . 

 

Fig. 8. A second iteration of TDQFP algorithm 

Now, update excess  ( ̂)   ( ̂)     . Update the 

capacities and travel times of the arcs of the path    at the 

respective departure periods in the residual network as in 

Fig. 8. But at time  ̂   , excess  ( ̂)   . So, we have to 

check excess value for  ̂    excess  ( ̂)   . Again, for 

 ̂    excess  ( ̂)   . Now, applying the TDEAT 

algorithm we have another earliest arrival time path 

         with waiting at   path capacity     , 

augmenting flow      * ( ̂)   +   . We can send 

this flow to the sink node   along the path    at time 7. 

The updated residual network is given in Fig. 9. 

 

Fig. 9. The third iteration of TDQFP algorithm  

Now, the demand has been fulfilled. After updating the 

final residual arc capacities and travel times, we may have 

the residual arc capacities and arc travel time as in Table 

4. 

Table 4. Final table of example 2 

(i,j) (s,x) (s,y) (x,y) (x,l) (y,l) 

uij(t) 

0, t=0 

2, 1≤ t≤ 2 

3, t ≥ 3 

0, t = 0 

1, t = 1 

3, t ≥ 2 

1, t ≤ 3 

2, t ≥ 4 

2, t ≤ 2 

3, t = 3 

0, t = 4 

2, t ≥ 5 

4, t ≤ 1 

0, t =2 

3, 3 ≤ t ≤ 4 

1, t = 5 

3, t ≥ 6 

τij(t) 
3, t ≤ 1 

2, t ≥ 2 

2, t = 0 

3, t = 1 

3, t ≥ 2 

1 

5, t ≤ 2 

3, t = 3 

4, t ≥ 4 

3, t ≤ 3 

4, t=4 

2, t≥5 

(i,j) (x,s) (y,s) (l,x) (l,y) 

uij(t) 

 0, t ≤ 2 

 2, t = 3 

 0, t ≥ 4 

 0, t ≤ 1 

 3, t = 2 

 2, t = 4 

 0, t ≥ 5 

 0, t ≤ 5 

 2, t = 6 

 0, t ≥ 7 

 0, t ≤ 4 

 3, t = 5 

 0, t = 6 

 2, t = 7 

 0, t ≥ 8 

τij(t) 

14, t ≤ 2 

 -2, t = 3 

14, t ≥ 4 

14, t ≤ 1 

-3, t = 2 

-3, t = 4 

14, t ≥ 5 

14, t ≤ 5 

-4, t = 6 

14, t ≥ 7 

14, t ≤ 4 

-2, t = 5 

14, t = 6 

-2, t = 7 

14, t ≥ 8 
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CONCLUSION 

In this paper, variant models and different algorithmic 

approaches were investigated to solve the time-varying 

quickest flow problem in a single source and single sink 

discrete-time dynamic network. The studied algorithms 

are pseudo-polynomial time algorithms. The algorithms 

used the SE list to maintain the FIFO nature while finding 

the earliest arrival paths in the time-varying network. The 

main reviewed papers were dedicated to determining the 

earliest arrival time paths along which a given amount of 

flow can be sent in the minimum time. In this paper, the 

performance of the algorithms was checked with different 

examples. 

In the real world situation, the problems are time-varying. 

Most of the researchers in network optimization have 

chosen evacuation as an applied field of a time-dependent 

quickest flow problem. The existing algorithms for 

solving the time-varying quickest flow problem are not 

efficient. Therefore, if the QFP-TDA is solved efficiently 

then the evacuation network flow problem and quickest 

transshipment problem will be solved more accurately and 

efficiently in a time-dependent environment.  
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