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ABSTRACT 

One of the challenges in operations research is to route numerous commodities from particular supply locations to 
the corresponding demand points across the lanes of a network infrastructure while maintaining capacity restrictions. 
The quickest multi-commodity flow problem would be one of those that reduces the time it takes to complete the 
process. Reorienting lanes toward demand sites can increase outbound lane capacity. The quickest multi-commodity 
contraflow problem is NP-hard computationally. We use a ∆-condensed time-expanded graph to propose an FPTAS 
for this problem by including the lane reversal technique. We look into asymmetric transit times on anti-parallel arcs 
to address the unequal road conditions and flow dependency. 
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INTRODUCTION 
The multi-commodity network flow challenge involves 
delivering diverse commodities from specified source 
nodes to corresponding sink nodes while staying within 
arc capacity constraints. Railway networks, message 
routing in Telecommunications, industrial planning, 
logistics, supply chains for essential products and 
pharmaceuticals during catastrophes are only a few 
examples of network routing difficulties that may be 
considered as multi-commodity flow problems. The 
network topology is characterized as a road network that 
corresponds to the transshipment of various 
commodities, with nodes being distribution centers, 
demand sites, intersections of road segments, and arcs 
being links between nodes. The starting and ending 
destinations of commodities are called supply and 
demand nodes, respectively. The collection of items that 
have been carried via a network is referred to as flow. 
Capacity and trip times are assigned to the arcs in 
networks having temporal dimensions. For further 
information see (Assad, 1978; Kennington, 1978; Ahuja 
et al., 1993; Wang, 2018; Salimifard & Bigharaz, 2020).  
 
Six decades ago, Ford and Fulkerson (1962) were 
credited with creating network flow over time. The 
opposite of this problem is the quickest flow problem, 
in which supplies and demands at the supply and 
demand points are known, and the goal is to discover the 
shortest time to meet demand. By performing a binary 
search on the maximum flow computation of Ford and 
Fulkerson (1962), authors in Burkard et al. (1993) 
discovered the first polynomial-time solution to the 
quickest flow problem.  
 
By applying a parametric search strategy to the minimum 
cost flow problem, they reduce the complexity of the 
problem and established time bounds depending on the 
input size only. This problem was expanded to include 

multi-source and multi-sink scenarios. However, one 
extension is the quickest transshipment problem, 
wherein the supply and demand vectors at the endpoints 
are provided, and the aim is to create a dynamic flow that 
fulfills all supplies and demands in the minimum amount 
of time.  
 
Multi-commodity flow problems are more difficult to 
solve than problems with the same type of flows. Even 
with series-parallel networks or flow with only two 
commodities, according to Hall et al. (2007). As a result, 
the quickest multi-commodity flow problem is NP-hard, 
whether with or without intermediate node storage and 
a simple flow path. Fleischer and Skutella (2002, 2007) 
offered two approximation approaches to solve this 
problem due to NP-hardness. The first is length-
bounded flow, while the second involves discretizing a 
bigger time step rather than a single time step. Lozovanu 
and Fonoberova (2006) and Kappmeir (2015) employed 
a time-expanded network to address maximum multi-
commodity flow over time, and Kappmeier (2015) 
extended their solution to multi-source single-sink multi-
commodity earliest arrival transshipment difficulties 
with pseudo-polynomial time complexity.  
 
The flipping of arc configurations to enhance capacity 
and improve traffic flow is known as lane reversal. For 
two-terminal maximum and quickest flow problems, 
Rebennack et al. (2010) provided models and highly 
polynomial-time algorithms. These lane reversals start at 
the beginning and are fixed as time goes on. The 
fundamental purpose of partial lane reversals is to utilize 
unused arc capacity on a network. Pyakurel et al. (2019) 
proposed a partial lane reversal technique that 
maximizes flow value by only flipping essential arc 
capacity. The capacity of unused arcs might be utilized 
for logistical help and facility placement in an emergency.  
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Nath et al. (2021) modified the algorithm of Rebennack 
et al. (2010) and solved the dynamic contraflow 
problems with non-symmetric transit times on anti-
parallel arcs within the same time complexity. Gupta et 
al. (2021a, 2021b) extended the approach of Nath et al. 
(2021) to lexicographic flow, earliest arrival 
transshipment and generalized flow problems, and 
provided the solution for single-commodity. The 
approximate solution of the quickest multi-commodity 
flow problem was developed in Fleisher and Skutella 
(2002, 2007), using a T-length bounded function and ∆-
condensed time-extended networks. Dhamala et al. 
(2020) and Gupta et al. (2020) introduced a partial lane 
reversal approach with symmetric transit times in this 
problem.  
 
We present a fully polynomial-time approximation 
scheme (FPTAS) in this research that uses ∆-condensed 
time-expanded networks to solve the quickest multi-
commodity contraflow (QMCCF) problem in the case 
of asymmetric transit times on anti-parallel arcs. The 
time span for transshipping commodities from supply 
nodes to demand nodes is reduced by using the lane 
reversal approach in a routing problem. The most 
important outcome of this research is the minimization 
of delivery time.  
 
The following is a breakdown of how the paper is 
structured. The second part below contains the article’s 
basic notations and models. In the third part, the 
QMCCF problem with asymmetric transit times on anti-
parallel arcs is introduced. We provide an FPTAS in this 
part that provides a fully polynomial-time approximate 
solution to the problem. The final portion concludes the 
paper. 
  
PRELIMINARIES AND MATHEMATICAL 
MODEL  
To fulfill the complete demand for each commodity, the 
multi-commodity flow problem includes transferring 
numerous commodities from their respective supply 
points to their corresponding demand points throughout 
a given transportation network. We describe appropriate 
denotations and mathematical formulations for this 
problem, in which arc reversals can minimize the 
traversal time and increase flow value by switching their 
orientations as needed. 
  

QMCCF MODEL  

Let us consider a network architecture 𝐺 =  (𝑉, 𝐴, 𝐾,
𝑢, 𝜏,  𝑏𝑖 ,  𝑆+, 𝑆−, 𝑇), where 𝑉 stands for the set of 

nodes, and 𝐴 set of arcs, with set of commmodity 𝐾 
having k number of commodities. The number of nodes 

and arcs are denoted by 𝑛 and 𝑚, respectively. Any 

object 𝑖 ∈  𝐾 with demand 𝑏𝑖 is shipped via its origin-

destination pair (𝑠𝑖 , 𝑡𝑖), with 𝑠𝑖 ∈  𝑆+ ⊂  𝑉 and 𝑡𝑖 ∈
 𝑆− ⊂  𝑉. A travel time function 𝜏 ∶  𝐴 →  𝑅+ quantifies 
the time it takes to transship the flow from the beginning 

point 𝑥 to the terminal point 𝑦 of arc  𝑒 =  (𝑥, 𝑦), and 

the capacity function 𝑢: 𝐴 →  𝑅+ controls the flow of 

commodities on each arc 𝑒 =  (𝑥, 𝑦). The time period 

𝑇 is specified in advance in both discrete and 

continuous-time settings, is represented by 𝑻 =  {0, 1,
. . ., 𝑇 } and 𝑻 =  [0, 𝑇 +  1), respectively.   
 

The sets 𝛿+(𝑥)  =  {(𝑥, . ) | . ∈  𝑉} and 𝛿
_
(𝑥)  =

 {(. , 𝑥) | . ∈  𝑉} represent arcs passing and joining node 

𝑥, respectively, such that 𝛿+(𝑆−) = 𝛿−(𝑆+) =  ∅, 
except in the contraflow network. The auxiliary network 

for a given network 𝐺 is denoted by 𝐺𝑎
 
=   (𝑉, 𝐴𝑎  ,

𝐾,  𝑢𝑎 , 𝜏𝑎  , 𝑏𝑖 , 𝑆+ , 𝑆−, 𝑇), with arcs having no 

direction in 𝐴𝑎 =  {(𝑥, 𝑦): (𝑥, 𝑦) or (𝑦, 𝑥) ∈  𝐴}, 

where 𝑒𝑟 =  (𝑦, 𝑥) is the backward arc of 𝑒 =  (𝑥, 𝑦). 
The sum of the capacities of forward and backward arcs 

is the  capacity of arcs in the network 𝐺𝑎. The capacity 

of arc 𝑢𝑒  =  0 if 𝑒 ∉   𝐴. The transit time of auxiliary 

arc 𝜏𝑎 is the capacity of non-flipped arc. In the case of a 

single arc, we assume 𝜏𝑎 =  𝜏𝑒 = 𝜏𝑒𝑟 .  
 

𝐺 =  (𝑉, 𝐴, 𝐾, 𝑢, 𝑏𝑖 , 𝑆+, 𝑆−) represents the static 

network without the time dimension. The function 𝑓 ∶
 𝐴 →  𝑅+ is the static multi-commodity flow. Many 
useful features derived from static network topology 
serve as foundational tools for the majority of real-world 
dynamic flow challenges.  
 

A multi-commodity flow over times Φ for a given 

network 𝐺 with fixed transit time on arcs is a collection 

of commodities defined by Φ𝑖: 𝐴𝑎 ×  𝑇 →  𝑅+, for 

each arc 𝑒 ∈  𝐴 such that Φ𝑖(𝜎) =  0 , for 𝜎 ≥  𝑇 −

 𝜏𝑒  . We  define  the  excess  of  node  𝑥  induced  by  Φ𝑖 

at time  𝜎  is

  
 

𝑒𝑥𝑐Φ
𝑖 (𝑥, 𝜎) = ∑ ∑ Φ𝑒

𝑖 (𝜃)

𝑒∈𝛿+(𝑥)

𝜎

𝜃=0

 − ∑ ∑ Φ𝑒
𝑖 (𝜃 − 𝜏𝑒)

𝑒∈𝛿−(𝑥)

𝜎

𝜃=𝜏𝑒

, ∀𝑥 ∈ 𝑉  

 
satisfying the constraints (2 - 4). 

                                  min 𝑇             (1) 
subject to, 

𝑒𝑥𝑐Φ
𝑖 (𝑥, 𝑇) = {

   𝑏𝑖 𝑖𝑓 𝑥 = 𝑠𝑖

−𝑏𝑖 𝑖𝑓 𝑥 = 𝑑𝑖

   0 otherwise,
   ∀ 𝑖 ∈ 𝐾            (2)     

𝑒𝑥𝑐Φ
𝑖 (𝑥, 𝜎) ≤  0 ∀ 𝑥 ∉ {𝑠𝑖 , 𝑡𝑖}, 𝑖 ∈ 𝐾, 𝜎 ∈ 𝑇,           (3) 
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0 ≤  Φ𝑒(𝜎) = ∑ Φ𝑒
𝑖 (𝜎)𝑖∈𝐾 ≤  𝑢𝑒 +  𝑢𝑒𝑟 , ∀𝑒 ∈ 𝐴𝑎 , 𝑖 ∈ 𝐾, 𝜎 ∈ 𝑇.      (4) 

 

Flow conservation constraints at time horizon 𝑇 are the 
last condition of the constraints in (2), whereas  
constraints in (3) represent non-conservation of flow at 

intermediate time points 𝜎 ∈  𝑇 . The capacities with 
lane reversals also limit the bundle limitations in (4). The 
purpose is to move a certain quantity of flow to meet the 

demand 𝑏𝑖 of each commodity 𝑖 from 𝑠𝑖  to 𝑡𝑖 , as 
indicated in the first two conditions of the equation (2). 
The strict inequality in (3) denotes modest flow 
conservation restrictions that enable the flow to be 
stored at intermediate nodes, waited for a short time 
(storage is permitted), and then continued ahead. Flow 

conservation at intermediate nodes is represented by the 
flow over time obeying the equality condition in (3).  
 
Example 1. Consider the asymmetric capacity and 
transit time on some anti-parallel arcs of a two-
commodity network as indicated in Figure 1. 

Commodity-1’s flows must be transshipped from 𝑠1 to 

𝑡1, whereas Commodity-2’s flows must be transshipped 

from 𝑠2 to 𝑡2. Figure 1(b) shows the auxiliary network 
of Figure 1(a). We split the two-commodity flow 
problem as two single-commodity flow problems, 
redefining capacity for every arc per commodity that 
meets the arc capacity limit.

 
 

 
(a) capacity, transit time                               (b) capacity, transit time 

 
Figure 1: (a) Represents dynamic multi-commodity network (b) the auxiliary network of (a). 

 
The quickest contraflow problem for a single 
commodity is described as an integer programming 
problem (Kim et al., 2008). For the numerical solution, 
they also developed greedy and bottleneck relief 
strategies. It can be solved polynomially in its single-
source and single-sink variant (Rebennack et al., 2010). 
However, as it is equivalent to 3-SAT and PARTITION, 
the issue with numerous sources and/or sinks is NP-
hard. Pyakurel and Dhamala (2017) and Pyakurel et al. 
(2017) have shown that how to solve the continuous-
time variant in polynomial-time. The problem with 
partial lane reversals is investigated in Pyakurel et al. 
(2019).  
 
APPROXIMATION SCHEME  

Consider problem 𝑋 to be an optimization problem. For 

example, let 𝑂𝑃𝑇(𝐼) be the optimum solution of the 

objective function, and let  𝜖 > 0. For each instance 𝐼 of 

𝑋, an algorithm 𝐴 is considered a (1 + 𝜖) (or (1 − 𝜖)) 
approximation algorithm if it yields a feasible solution 

with objective value 𝐴(𝐼) such that |𝐴(𝐼) −  𝑂𝑃𝑇(𝐼)| ≤
𝜖𝑂𝑃𝑇(𝐼). 
 
An approximation scheme is a polynomial-time 
approximation scheme if its computational time depends 
on input size of the problem, whereas it becomes 
FPTAS if its computational time is polynomial in input 

size as well as 1/𝜖.  
 

In many cases, it is better to generate an approximate 
solution rapidly rather than an optimum one. As a result, 
a concerted effort was undertaken to develop effective 
FPTAS for the multi-commodity flow problem.  
 
QMCCF WITH ASYMMETRIC TRANSIT 
TIMES  
This section discusses the approximation approach for 
solving the QMCCF problem with asymmetric transit 
times on anti-parallel arcs. In a network where arc 
reversals are permitted, a solution to this problem 
satisfies specific demands at specific nodes in the 
quickest time possible. We also devise a method for 
getting an approximate solution to this problem that is 
both efficient and effective. Our method may also be 
used to save lanes that don’t need to be reversed to save 
time. This method extends the network flow models 
introduced in the lane reversal framework introduced in 
Dhamala et al. (2018) and Pyakurel et al. (2019) in the 
case of asymmetric transit times on anti-parallel arcs.  
 
Problem 1.  Consider the following network with 

asymmetric transit times on arcs 𝐺 =  (𝑉, 𝐴, 𝐾, 𝑢,
𝜏,  𝑏𝑖 ,  𝑆+, 𝑆−, 𝑇). The QMCCF problem aims to 
compute the minimum feasible time that is needed to 
transship a given number of commodities bi from initial 

points to the corresponding terminal points for each 
commodity by flipping the orientation of arcs required 
at time zero and satisfying the criteria (2), (3), and (4).  
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Even with series-parallel networks dynamic multi-
commodity flow problem having only two commodities, 
with or without intermediate node storage is NP-hard 
(Hall et al., 2007). The proof uses reductions from the 
NP-hard PARTITION and 3-PARTITION problems. 
The NP-hardness of the maximum dynamic multi-
commodity flow is also a concern. By using modified 
time-expanded network this problem can be solved as a 
static flow problem in a pseudo-polynomial time and no 
storage limitations on intermediate nodes. According to 
Hall et al. (2007), the quickest multi-commodity flow 
without intermediate node holding and the simplest flow 
path are complicated. Using 3-SAT, Kim et al. (2008) 
have shown that the lane reversal problem is NP- 
complete. As a result, We have the following Theorem 
1.  

Theorem 1. The QMCCF problem with asymmetric 
transit times on anti-parallel arcs is NP-hard.  
 
Due to its NP-hardness, Fleischer and Skutella (2007) 
proposed two techniques to provide an approximate 
solution to the quickest multi-commodity flow problem. 
The first is length-bounded flow, while the second 
involves discretization of bigger instead of unit time 
steps. Dhamala et al. (2020) and Gupta et al. (2020) 
introduced the partial lane reversal approach in the 
quickest multi-commodity flow problem and provided 
the approximate solution in both cases. We extend the 
approach of Dhamala et al. (2020) and Gupta et al. 
(2020) in the case of non-symmetric transit times on 
anti-parallel arcs and provide the solution of the problem  
by using a ∆-condensed time-expanded network. 

AN FPTAS FOR THE QMCCF PROBLEM WITH 
ASYMMETRIC TRANSIT TIMES  

For multi-commodity flows, consider a network 𝐺 =
 (𝑉, 𝐴, 𝐾, 𝑢, 𝜏,  𝑏𝑖 , 𝑆+, 𝑆− , 𝑇), assuming that 
parameters are integers. By rescaling the transit time as 
defined above, we get a fully polynomial-time solution. 
According to Fleischer and Skutella (2002, 2007) by 
rescaling the time, the condensed time-expanded 

network may be defined as 𝐺𝑇
Δ =  (𝑉𝑇

Δ, 𝐴𝑀
Δ ∪ 𝐴𝐻

Δ

 
), 

assuming that arc transit times are multiple of ∆ > 0, 
where the sets of vertices and arcs are specified as  

𝑉𝑇
Δ

 
=  {𝑥𝛼Δ: 𝑥 ∈ 𝑉, 𝛼 = 0, 1, 2, … , ⌈

𝑇

∆
⌉} 

𝐴𝑀
Δ =  {(𝑥𝛼Δ, 𝑦𝛼Δ+𝜏𝑒

): 𝑒 = (𝑥, 𝑦) ∈ 𝐴,  

 𝛼 = 0, 1, … , ⌈(𝑇 − 𝜏𝑒)Δ⌉}  
   𝐴𝐻

Δ =  {(𝑥𝛼Δ,  𝑥𝛼Δ+1 ): 𝑒 = (𝑥, 𝑦) ∈ 𝐴,  
                            𝛼 = 0, 1, . . . , ⌈𝑇/∆⌉ − 1}  
 

The replicas of 𝑉𝑇
Δ correspond to commodity flow via 𝑉 

in time 𝑇 =  {𝛼∆} or [𝛼∆, (𝛼 + 1)∆) for discrete-time 

or continuous-time, wherein 𝛼 =  {0, 1, 2, … , ⌈𝑇/Δ⌉}. 
In this configuration, capacities are rescaled by ∆𝑢𝑒 for 
each arc corresponding to a discrete-time with multiple 
of ∆. Any dynamic multi-commodity that accomplishes 
by time T corresponds to a static multi-commodity flow 

of similar value in 𝐺𝑇
Δ (Fleischer & Skutella, 2007; Gupta 

et al., 2022), while 
𝑇

∆
 is an integral and arc length is 

defined as before. In the same way, each flow in 𝐺𝑇
Δ 

corresponds to an equal-valued flow over time that 
completes by time T. This network transforms to the 

standard time-expanded network, if we assume ∆ =  1. 
When arc travel times are not multiple of ∆, then they 

are rounded up to the nearest multiple of ∆ by 𝜏𝑒
′ =

⌈
𝜏𝑒

∆
⌉ ∆, 0 ≤ 𝜏𝑒

′ − 𝜏𝑒 < ∆ for all arcs 𝑒 ∈ 𝐴 , then we 

have,   0 ≤  𝜏𝑝
′ −  𝜏𝑝  <  𝑛∆ = 𝜖2𝑇 . 

 
A simple concept is to decrease the size of the time-
expanded network by substituting unit- length time steps 
with larger ones. A condensed time-expanded network 
of polynomial-size results from a suitably rough 
discretization of time. Furthermore, there is a tradeoff 
between the need to shrink the time-expanded network 

and the aim to keep the resultant flow model as precise 
as possible because the latter leads to a reduction in the 
quality of feasible solutions. This tradeoff can be solved 

in a suitable manner. For every 𝜖 >  0, an acceptable 
choice of step length results in a condensed time-
expanded network of the polynomial-size that 

nevertheless permits a (1 + 𝜖)-approximate accuracy in 
time.  
 
In theory, we may choose a ∆ and round all travel times 
to the nearest multiple of ∆. This introduces a rounding 
error, which results in two issues: increased path length 
and path length distortion.  
 

• route lengths should increase by no more than 1 + 𝜖 

for 𝜖 >  0. 
• and the number of time layers after scaling should be 
polynomial in the original network’s size, with         

𝜖−1: 𝑇/Δ ∈  𝑂(𝑝𝑜𝑙𝑦(𝑛, 𝜖−1)).  
 

We will go with ∆ =
𝜖2𝑇

𝑛
 for now. Because the maximum 

rounding for a path is 𝜖2𝑇 and the number of time layers 

𝑛𝜖−2, this meets both conditions.  
 
We describe Algorithm 1 to provide the solution to 
Problem 1  by employing a ∆-condensed time-expanded 
network. We build a ∆-condensed auxiliary network in 
which arc capacities are ∆ times the sum of the capacities 
of forward and backward arcs of the provided network. 

Commodities are shipped via transformed network 𝐺 
provides the solution to QMCCF problem with 
asymmetric transit times using FPTAS of Fleischer and 
Skutella (2007) and the lane reversal approach of Gupta 
et al. (2021a).  
 
Algorithm 1. An FPTAS for QMCCF problem with 
asymmetric transit times.  
 

Input : Consider multi-commodity network 𝐺 =  (𝑉,
𝐴, 𝐾, 𝑢, 𝜏,  𝑏𝑖 , 𝑆+, 𝑆−, 𝑇), with asymmetric transit 
times on anti-parallel arcs 
  
Output: The quickest multi-commodity contraflow 
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1. The network 𝐺𝑎 is converted to ∆-condensed auxiliary 
network  

𝐺Δ𝑎 = (𝑉Δ𝑎 , 𝐴Δ𝑎 , 𝐾, 𝑢′,  𝜏′, 𝑏, 𝑆+
′ ,  𝑆−

′ , 𝑇) with 

        𝑢𝑎
′ =  ∆(𝑢𝑒 + 𝑢𝑒𝑟) 

𝜏𝑎
′ =  {

⌈
𝜏𝑒

Δ
⌉ Δ, if arc er  reversed towards  𝑒

⌈
𝜏𝑒𝑟

Δ
⌉ Δ, if arc e reversed towards  er.

 

2. Compute the quickest multi-commodity flow on 𝐺Δ𝑎 

by using Fleischer and Skutella (2007) with intermediate 
node storage.  

3. Remove the flows in cycles, ∀𝑖 by decomposing the 

flow along the 𝑠𝑖 − 𝑡𝑖 pathways and cycles.  

4. Reverse 𝑒𝑟 ∈  𝐴 up to the arc capacity 𝑓𝑒  −  𝑢𝑒  if and 

only if 𝑓𝑒 >  𝑢𝑒, 𝑢𝑒replaced by 0,          whenever 𝑒 ∉

𝐴, ∀𝑖,where 𝑓𝑒 = ∑ 𝑓𝑒
𝑖𝑘

𝑖=1  and 𝑢𝑒 =  ∑ 𝑢𝑒
𝑖𝑘

𝑖=1 . 

5. For each 𝑒 ∈ 𝐴, if 𝑒 is reversed, 𝑠𝑐(𝑒) = 𝑢𝑎 − 𝑓𝑒  and 

saved capacity of arc 𝑒 is zero. If neither forward nor 
backward arc is reversed, the saved capacity of the 

forward arc is 𝑢𝑒  −  𝑓𝑒  >  0.  
 
In the first step of the algorithm ∆-condensed auxiliary 

network 𝐺Δ𝑎 is constructed. This  transformation allows 
us to reduce the QMCCF problem to the quickest multi-
commodity flow problem on the transformed graph in 
Step 2. Hence, we can calculate the quickest multi- 
commodity flow according to Fleischer and Skutella 
(2007). Step 3 removes the cycle flows on the 
transformed network, so the flow moves in only one 
direction, but not both. Thus, Step 4 of the algorithm is 
well defined. Step 5 saves the unused capacity of the arcs. 
Hence all the steps of the algorithm are feasible. As a 
consequence, we have Lemma 1.  
 
Lemma 1. The solution of the QMCCF with non-
symmetric transit times obtained by Algorithm 1 is 
feasible.  
 
Theorem 2. An FPTAS provides an approximate 
solution to the QMCCF problem with non-symmetric 
transit times by using Algorithm 1.  
 
Proof: The theorem will be proved in two steps 
feasibility and optimality. Lemma 1 proves the feasibility 
of the algorithm. In the next step, we prove optimality. 
  

On the converted network 𝐺Δ𝑎 , an optimum solution to 

Problem 1 on network 𝐺 is likewise a feasible solution 
to the approximate QMCF. By reducing dynamic multi-
commodity flow to a static flow problem, the pseudo-
polynomial time solution, on time-expanded networks is 

produced (Skutella, 2009). The reduction of the network 
size by a factor of ∆ yields an approximate polynomial-
time bound.  
 
An estimated quickest flow solution can be optimally 

computed on network 𝐺. Multi-commodity flow 
problems can be reduced to single-commodity flow 

problems by sending flow 𝑠𝑖 to 𝑡𝑖 , ∀𝑖 ∈  𝐾. 

Furthermore, any optimum solution on 𝐺Δ𝑎 is the same 

as the possible solution to the specified network 𝐺. 

Thus, on network 𝐺, an approximate QMCCF solution 
with non-symmetric transit times can be calculated 
optimally. 
 
Corollary 1. An approximate solution to the QMCCF 
problem with non-symmetric transit times can be 
computed in fully polynomial-time complexity.  
 
Proof: The complexity of Algorithm 1 is dominated by 
Steps 2 and 3. The remaining steps can be accomplished 

in 𝑂(𝑚) times. Step 3 is executed in 𝑂(𝑚𝑛) times. A 

(1 +  𝜖) approximate solution of static multi-
commodity flow problem can be computed by 𝑂(log 1/𝜖) 

computation in a 𝐺𝑇
Δ

 , [7]. There are (
𝑛

𝜖2) layers with 

vertices (
𝑛2

𝜖2)  and arcs (
𝑚𝑛

𝜖2 )  in 𝐺𝑇
Δ. The complexity of 

the algorithm depends on input size as well as 1/𝜖. 
According to [20], the complexity of lane reversal 
problems with non-symmetric transit time is the same as 
symmetric transit times on anti-parallel arcs. As a result, 
the solution can be obtained in fully polynomial-time. 
  
Example 2. Consider the two-commodity network 

from Figure (1)(a) having demands 𝑏1 =  10 and 𝑏2 =
 12. Figure 1(a) is used to calculate the quickest time 
without lane reversals by using ∆-condensed time-

expanded network taking ∆ =  2, and rescaling the 
capacity and transit times, respectively. We have only 

one path for commodity-1, i.e., 𝑠1 −  𝑥 −  𝑦 − 𝑡1 
having transit time 6, and flow along the path is 4. 

Similarly, commodity-2 has path 𝑠2 −  𝑥 −  𝑦 −  𝑡2  
having transit time 6, and flow along the path is 4. The 

minimum time to fulfill both the demands is 𝑇 =  10.  
 
Although, if we flip the orientation of arcs, i.e., with lane 
reversals (c.f. Figure 1(b)) and rescale the capacity and 

transit times on arcs, which takes 𝑇 =  6 units of time 
to satisfy both the demands (c.f. Figure 2(a), (b)). So, 
approximately 40% of the time is saved due to lane 
reversal.
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(a) condensed capacity, transit times   (b) condensed capacity transit times 

 
(c) Δ-condensed time-expanded graph, with Δ = 2. 

Figure 2: (a) and (b) represent condensed network after contraflow for Commodity-1 and 2, respectively.      
(c) condensed time-expanded network for Commodity-1 and 2. 

 
The outcomes of Example 2 are summarized as follows. 
 

Table 1: Quickest time without and with lane reversals by using ∆-condensed network 

Δ-condensed without lane reversals Δ-condensed with lane reversals 

10 6 

 
 

CONCLUSIONS  
One of the fundamental difficulties in operations 
research is routing many commodities from their origin 
to their destination over a shared network. The 
reduction of time (cost) is critical. A well-known quickest 
flow problem was explored to meet the demand in the 
shortest feasible period. The quickest flow problem can 
be solved in polynomial-time in the single-commodity 
situation, but NP-hardness exists for the multi-
commodity case. However, a polynomial-time 
approximation technique based on a length bound 
function as well as an FPTAS based on a ∆-condensed 
time-extended network have been developed. Lane 
reversals technique is a significant tool for improving the 
quickest time in a two-way network. This approach is 
used for both length-bounded approximation and 
condensed time-expanded networks.  
 
The quickest multi-commodity contraflow problem with 
asymmetric transit time over anti-parallel arcs was 
explored in this work. We introduce its mathematical 
model and provide an FPTAS to solve the problem. We 
are interested in extending these techniques to flow-
dependent attributes, as we have examined the problem 

with constant transit time. The findings of this research 
are both theoretical and practical in nature. Researchers 
that wanted to expand their concepts for time-
dependent, flow-dependent, and load-dependent 
attributes would find this study useful. 
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