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ABSTRACT 
In this article, we have introduced the new distribution named exponentiated inverse power Cauchy distribution, 
which presents more flexibility in modeling a real lifetime dataset. The proposed distribution is analytically appealing 
and easy to work with and can be used efficiently to analyze the real data sets. Its probability density function can 
include various shapes according to the value of the parameters. Different explicit expressions for its quantile, 
survival, hazard and generating function, density function of the order statistics, cumulative hazard function, and 
failure rate function are provided. The model’s parameters are estimated by using the maximum likelihood 
estimation method, and we also obtained the observed information matrix. We have also constructed the asymptotic 
confidence intervals for the estimated parameters of the proposed distribution. We have illustrated the goodness-of-
fit test and the application of the purposed distribution empirically through a real-life data set. All the computations 
are performed in R software (version 4.1.1). It is observed that the proposed distribution gets at least similar or a 
better fit than some selected distributions taken for comparison. 
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INTRODUCTION 
In the last decades, several families of probability 
models have been purposed. New distributions are 
often created from a modification of a baseline random 
variable Y by; linear transformation, inverse 
transformation (e.g. inverse Lindley, inverse 
Exponential models), power transformation (e.g. 
Weibull is achieved from the exponential), log 
transformation (e.g. log gamma, log-normal, log-
logistic), non-linear transformation (e.g. log-logistic 
from logistic), T-X family of distribution is presented 
by (Alzaatreh et al., 2013), the compounding of some 
discrete and important lifetime distributions (e.g. the 
Poisson-X family distribution) (Tahir et al., 2016). A 
given linear combination or mixture of baseline models 
usually defines a class of probability distribution having 
baseline as a special case. The Cauchy distribution is 
symmetric, uni-modal, and bell-shaped having a much 
heavier tail as compared to the Gaussian distribution. It 
can be used for the analysis of data that has outliers. 
The Cauchy distribution can be derived as the ratio of 
two independent normal variates. It is a well-known 
distribution that can be applied in many fields such as 
biological sciences, applied mathematics, medicine, 
neural network, engineering, physics, econometrics, 
clinical trials, queuing theory, stochastic or time series 
modeling of descending failure rate life event or 
component and reliability. The cumulative distribution 
function (CDF) and probability density function (PDF) 

of Cauchy distribution having location parameter α and 

non-negative scale parameter 𝛽 >  0 are expressed as, 
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The finite moment generating function (mgf) of the 
Cauchy distribution does not exist, because of this CLT 
does not hold. Further, the MLEs of its parameters are 
not the best because of the lack of a closed-form 
solution. Because of these reasons, the applicability of 
this distribution in modeling real-life data is doubtful/ 
unrealistic. Hence there is a need for modification of 
the Cauchy distribution to overcome the above-
mentioned deficiencies, Rider (1957) has introduced the 
generalized Cauchy distribution, whose PDF is  
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To solve the problem of 

the non-existence of the MLEs and moments of 
Cauchy distribution a truncated Cauchy distribution 
was introduced by (Nadarajah & Kotz, 2006; Dahiya et 
al., 2015) whose PDF is 
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Also, Manoukian and Nadeau (1988) and Kravchuk 
(2005) have introduced a relation between Cauchy and 
Hyperbolic secant distribution. Ohakwe and Osu 
(2011) obtained a modified version of the Cauchy 
distribution. Another modification of the Cauchy 
distribution was suggested by (Alshawarbeh et al., 2012; 
2013) and (Eugene et al. 2002). Further, some 
generalizations of the Half- Cauchy distribution are 
introduced by using Kumasaswamy-G (Cordeiro & de 
Castro, 2011). Similarly, there are some half- Cauchy 
families which were namely Marshall- Olkin- half 
Cauchy, beta- half Cauchy, Kumaraswamy-half Cauchy 
put forwarded by Cordeiro and Lemonte (2011), Jacob 
and Jayakumar (2012), and Ghosh (2014), respectively. 
  
In recent days, extensive study has been done to obtain 
models that fit survival data, which can be positively 
skewed, negatively skewed, and can have the unimodal 
hazard function. Rooks et al. (2010) has presented a 
two-parameter model that performs well with the 
survival data called Power Cauchy (PC) distribution. 
The PDF of the Power Cauchy distribution has a 
slightly thicker right tail than the other well-known two-
parameter humped-shaped sub-model of the 
transformed beta family and it can be used for 
positively skewed data (Rooks et al., 2010). The CDF 
and PDF of Power Cauchy distribution are, 
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respectively. The Hazard function of PC distribution is 
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Chaudhary et al. (2020) have introduced truncated 
Cauchy power–inverse exponential distribution using 
truncated Cauchy power-G family of distribution. 
Further, Chaudhary et al. (2020a) have also defined a 
more flexible model called truncated Cauchy power–
exponential model with decreasing, increasing, and up-
side-down bathtub-shaped hazard function.  
 
The major objective of this research is to introduce a 
wide applicable model to enhance the goodness-of-fit 
to the real-life data by inserting just one extra shape 
parameter. In this paper, we have used a power 
transformation approach to generate a new model 
called Exponentiated inverse Power Cauchy (EIPC) 
distribution. Further, researchers have illustrated some 
mathematical as well as statistical characteristics and 
properties of the new model. The contents of this 
article are systematized as follows. We have introduced 
the new distribution EIPC along with some 
distributional properties like the shape of the density, 
quantile function, survival and hazard rate function, 
random number generation, order statistics, and 

kurtosis and skewness in section 2. In section 3 we 
discuss the estimation method of the model parameters. 
The MLE method is used to estimate the parameters of 
the purposed distribution. For the MLE, we have 
constructed the asymptotic 95% confidence intervals 
for the parameters of EIPC distribution using the 
observed information matrix. In section 4 we illustrate 
a goodness-of-fit test and model adequacy test by 
considering a real data set. In section 5 a brief 
conclusion about the findings is presented.   
 
 NEW DISTRIBUTION DEVELOPMENT  
In this section, we have introduced the new distribution 
named exponentiated inverse power Cauchy (EIPC) 
distribution and displayed some plots of its PDF and 
HRF. To define EIPC distribution we have first 
obtained the CDF of the inverse of PC distribution 
with shape parameter ‘α’ and scale parameter ‘λ’ using 
equation (5) is  
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And its corresponding PDF is obtained as, 
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This Inverse PC distribution is mainly related to the 
distribution introduced by Rooks et al. (2010) taking 

the random variable 𝑌 =  1/𝑋 as the inverse random 
variable. Consider X to be a continuous random 
variable that follows EIPC distribution if it’s CDF 
(using equation 8) with three parameters α, β and λ is  
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And its corresponding PDF can be defined as 
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Survival function of EIPC distribution 
The survival function of the EIPC model is 
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Hazard rate function (HRF) of EIPC distribution 
The HRF of X can be obtained as 
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The particular case of the EIPC distribution:  

If 𝛼 = 1, 𝛽 = 1, 𝑎𝑛𝑑 𝜆 = 1 in equation (11) the EIPC 
model reduces to two times the standard Cauchy 
distribution. 
 
The cumulative hazard function (CHF)  
The CHF of the EIPC model is 
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Failure rate average (FRA): 
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Where the term H(x) is the CHF of the EIPC model. 
The graph of PDF and HRF of the EIPC model for 
various values of the parameters α, β, and λ are 
displayed in Fig. 1.  

 

 
Figure 1. Graph of PDF (left panel) and HRF (right panel) for various values of α, β, and λ of EIPC distribution 

 
 
STATISTICAL PROPERTIES OF EIPC 
DISTRIBUTION 
The Quantile Function of EIPC distribution: 
The continuous random variable X follows 

( ),  ,   EIPC    with CDF F(x) then the quantile 

function is the inverse of the CDF and it is calculated 
as 
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The random number generating function 
The pseudo-random number can be produced from 

( ) , ,   EIPC    by 
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Where b follows the uniform distribution 𝑈(0,1) 
distribution. 
 

Mode of EIPC distribution 

A mode is the most repetitive value of the probability 
distribution of the given PDF. The necessary and 
sufficient conditions for calculating the mode are, 
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Manually it is difficult to solve the equation (18) 
because of nonlinear, so via the Newton-Raphson 
technique, we can solve it numerically which gives the 
model value of the proposed distribution. 
 
Expression for Skewness and Kurtosis: 
The relation that measures the Skewness which is based 
on quantile is,  
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Expression for Kurtosis: 
The relation that measures the kurtosis based on octiles 
(Moors, 1988) can be computed as 
 

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠(𝑀) =
𝑄(0.875)−𝑄(0.625)+𝑄(0.375)−𝑄(0.125)

𝑄(3/4)−𝑄(1/4)
     (20) 

 
For the study of the nature and behavior of the 
proposed distribution, we have generated the random 
samples of size 100 each using equation (17) for EIPC 
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distribution for ten different combinations for triplet

( , , )   = .   

 
In Table 1 we have presented different measures of 
central tendencies and dispersion such as mean, 
median, mode, skewness (using equation 19), and 
kurtosis (using equation 20) of the EIPC distribution. 

Case-I shows that 0.5   mean, median, mode, 

skewness, and kurtosis are decreased. Since skewness is 
positive in cases I, II, and III, so the proposed 
distribution is positively skewed. The measure of 

kurtosis reveals that the proposed distribution is 
leptokurtic at the beginning and gradually it changes to 
platykurtic as increased the values α. Case-II shows that 

as 0.5   mean, median, modes, skewness, and 

kurtosis increase. For the case-III, the mean, median, 
and modes increase as the increase in value of λ but 
skewness and kurtosis do not alter. Also in all three 

cases, we noticed that     modmean median e  , 

so we conclude that the EIPC distribution is positively 
skewed. 

 
Table 1. Mean, median, mode, skewness, and kurtosis for various values of parameters 

α β λ mean median Mode skewness kurtosis 

Case-I 

0.5 5 10 38207.309 195.818 76.68382 9.7056 95.7023 

1 5 10 174.6615 44.2513 27.69184 7.9037 68.7568 

1.5 5 10 49.7329 26.9536 19.71974 5.8956 42.3526 

2 5 10 30.2088 21.036 16.64087 4.5127 26.9539 

2.5 5 10 23.221 18.1289 15.02937 3.6536 18.6984 

5 5 10 14.6869 13.4643 12.25943 2.12 7.0134 

10 5 10 12.0213 11.6036 11.07223 1.5047 3.7048 

20 5 10 10.9434 10.772 10.52247 1.2347 2.5661 

30 5 10 10.6151 10.5083 10.34535 1.1496 2.2515 

40 5 10 10.4562 10.3788 10.25791 1.1079 2.1054 

Case-II 

5 0.5 10 8.5363 8.1319 6.656049 0.8625 2.3877 

5 1 10 10.4409 9.7905 8.653295 1.4418 4.7041 
5 1.5 10 11.4848 10.6696 9.601269 1.7565 5.7961 
5 2 10 12.2196 11.2956 10.23097 1.9156 6.3388 
5 2.5 10 12.7964 11.7938 10.71249 2.0012 6.6299 
5 5 10 14.6869 13.4643 12.25943 2.1200 7.0134 
5 10 10 16.8180 15.3887 13.99657 2.1351 7.0230 
5 20 10 19.2694 17.6219 16.0063 2.1255 6.9548 
5 30 10 20.8753 19.0888 17.32838 2.1190 6.9181 
5 40 10 22.0993 20.2074 18.33785 2.1149 6.8966 

Case-III 
10 5 0.5 0.6011 0.5802 0.55361 1.5047 3.7048 
10 5 1 1.2021 1.1604 1.10722 1.5047 3.7048 
10 5 1.5 1.8032 1.7405 1.660835 1.5047 3.7048 
10 5 2 2.4043 2.3207 2.214446 1.5047 3.7048 
10 5 2.5 3.0053 2.9009 2.768058 1.5047 3.7048 
10 5 5 6.0107 5.8018 5.536116 1.5047 3.7048 
10 5 10 12.0213 11.6036 11.07223 1.5047 3.7048 
10 5 20 24.0427 23.2072 22.14446 1.5047 3.7048 
10 5 30 36.0640 34.8108 33.2167 1.5047 3.7048 
10 5 40 48.0854 46.4144 44.28893 1.5047 3.7048 
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Figure 2. Skewness and Kurtosis corresponding to the various values of the parameters   and   

 
 
 

Linear representation of EIPC distribution 
The PDF and CDF of EIPC distribution are extended 
by using the generalized binomial theorem as 
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Applying equation (21) in equation (11) the PDF of 
EIPC distribution is expressed as 
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Order Statistics 
Order statistics can be used in many fields of 
probability theory and applied statistics. Hence we 
explore some properties and characteristics of order 
statistics for the proposed distribution.  Consider 

1  ,..., nX X be n independently and identically distributed 

random variates, each with CDF F(x). If these variables 
are sorted in increasing order of magnitude and they are 
written as

(1) ( )... nX X  . The term X(r) is called the rth 

order statistic, where   1,2,...,r n= .  Suppose 
:r nX  

represents the rth order statistic and :r nf denote the 

PDF of rth order statistic for 
1  ,..., nX X  be n identically 

and independently (IID) distributed random variables 
from CDF F(x) and can be defined as 
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ESTIMATION METHOD OF THE 
PARAMETERS OF EIPC DISTRIBUTION 
In this segment, we discuss the maximum likelihood 
method for estimating the constants of the EIPC 
distribution and we use them to obtain the confidence 

intervals. Let ( )1  , , nx x x=   be a non-negative 

random sample of size ‘n’ taken from ( ),  ,  EIPC     

then the log-likelihood function is 
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1 1

2 1

1 1
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taking /i iu x=  and after differentiation (25) w.r.t. 𝛼, 𝛽 𝑎𝑛𝑑 𝜆, gives 
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By solving these non-linear equations for the 

parameters of the EIPC distribution (𝛼, 𝛽, 𝜆) by setting 
them to zero we will find the ML estimators of the 
EIPC distribution. Computer software like R, 
Mathematica, Matlab, etc can be used to solve them 

manually. Let the vector of parameter ( , , )   =  and 

the corresponding MLE of   as ˆ ˆˆ ˆ( , , )   =  then 

( ) ( )( )
1

3ˆ 0,N K  
− − →

  
 follows the normal 

distribution, where ( )K   is the Fisher’s information 

matrix obtained by, 
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Taking second-order differentiation of (25) we get 
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Practically  is unknown hence it is inadequate that the 

MLE has a variance ( )( )
1

G 
−

 so we approximate this 

variance by putting the estimated value of the model 

parameters. Here ( )G   represents the Fisher’s 

information matrix. The observed information matrix is 
calculated by maximizing the likelihood function 
through the Newton-Raphson algorithm and the var-
cov matrix can be obtained as, 

 (𝐺(𝜄̱))
−1

=

(

𝑉(𝛼̂) 𝑐𝑜𝑣( 𝛼̂, 𝛽̂) 𝑐𝑜𝑣( 𝛼̂, 𝜆̂)

𝑐𝑜𝑣( 𝛼̂, 𝛽̂) 𝑉(𝛽̂) 𝑐𝑜𝑣( 𝛽̂, 𝜆̂)

𝑐𝑜𝑣( 𝜆̂, 𝛼̂) 𝑐𝑜𝑣( 𝜆̂, 𝛽̂) 𝑉(𝜆̂)

).      (26) 

 
Hence using the matrix (26) we can construct the 

100(1-ϑ) % asymptotic CI for α, β, and λ as, 
 
𝛼 ± 𝑍𝜗/2𝑆𝐸(𝛼̂), 𝛽̂ ± 𝑍𝜗/2𝑆𝐸(𝛽̂) and 𝜆̂ ± 𝑍𝜗/2𝑆𝐸(𝜆̂)           (27) 
 
APPLICATIONS TO REAL DATASET 
In this section, we illustrate the capability and 
applicability of the proposed model using a real data set 
used by former researchers. The dataset contains the 
failure times (in hours) of 59 conductors originally used 
by (Nelson & Doganaksoy, 1995). The data set doesn’t 
contain any censored observations.  

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 
8.687, 2.997, 8.591, 6.129, 11.038, 5.381, 6.958, 4.288, 
6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 
5.807, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 
7.945, 6.869, 6.352, 4.700, 6.948, 9.254, 5.009, 7.489, 
7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 
7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 
6.071, 10.491, 5.923. 
 
 Estimation of the model parameters 
In this subsection, the parameters of the proposed 
distribution are obtained using the MLE method for 
the above real data set. Maximizing the log-likelihood 
function (25) we have computed the MLEs employing 
the AdequacyModel package in R software (R Core 
Team, 2021; Dalgaard, 2008). We have presented the 
MLEs along with their standard errors (SE) and 95% 
asymptotic confidence interval (ACI). 
 

 
Table 2. MLE with SE and 95% confidence interval 

Parameter MLE SE 95% ACI 

alpha 7.2367      1.4256    (4.4425, 10.0309) 
beta 0.7421      0.2592    (0.2341, 1.2501) 

lambda 7.2478      0.4694 (6.3278, 8.1678) 

 
The Hessian variance-covariance matrix is, 

ˆ ˆˆ ˆ ˆ( ) cov( , ) cov( , ) 2.0324256  -0.29502216  0.4654014

ˆ ˆ ˆ ˆˆvar cov  cov( , ) ( ) cov( , ) -0.2950222  0.06717508   -0.1088797

ˆ ˆ ˆ ˆ 0.4654014   -0.10887975    0.ˆcov( , ) cov( , ) ( )

V
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Model validation and goodness-of-fit 
The Kolmogorov-Smirnov (KS) test is employed to 
substantiate the validity of the proposed model. This 
test is used to compare the distance between the 
empirical distribution function (EDF) and the fitted 
distribution function. In Fig. 3 (left panel) the graph of 
the KS plot exhibits that our model EIPC fits the 

dataset very nicely. Also, we have obtained the  𝑝 −
𝑣𝑎𝑙𝑢𝑒 = 0.9852 for the KS test to our EIPC 
distribution, which indicates a better fit for the real data 
set taken under study. To dig up the behavior and 
shape of the hazard function, we have plotted the total-
time-on test (TTT) plot of the empirical version of the 

scaled TTT transform of the data set (Fig. 3, right 
panel) (Aarset, 1987). It is seen that the graph of the 
TTT plot is concave; which indicates that the hazard 
function of the failure times of conductors is 
increasing. Further, in Fig. 4 the probability-probability 
(P-P) and the quantile-quantile (Q-Q) plots are 
displayed for the verification of empirical distribution 
versus theoretical distribution fitting. The graphs of Q-
Q and P-P have revealed that the empirical distribution 
versus theoretical distribution is strong for EIPC 
distribution. Hence, we hope that EIPC distribution 
will be an alternative model for real data analysis in the 
future.

 
 

\

 
Figure 3. KS plot for Empirical vs. Fitted CDF (left panel) of EIPC distribution and TTT-plot (right panel) of the data under 

study 

 
 

  
Figure 4. The graph of the Q-Q plot (left panel) and P-P plot (right panel) 

 
Model Comparison 
In this sub-section, the proposed distribution EIPC 
is mainly based on the Cauchy distribution so we 
have considered four well-known distributions for 
comparison purposes where three of them are related 
to Cauchy based distributions, which are as follows 

 
a) Power Cauchy distribution 
The PDF of Power Cauchy (PC) distribution (Rooks 

et al., 2010) with two parameters ( ),    is 
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Lindley half-Cauchy distribution 
The PDF of Lindley half-Cauchy (LHC) distribution 
(Chaudhary & Kumar, 2020) with two parameters is 
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Half-Cauchy distribution 
Paradis et al. (2002) used the half-Cauchy distribution 
(HC) with PDF    
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b) Weibull Extension distribution 
The PDF of the Weibull extension (WE) distribution 

(Tang et al., 2003) with three parameters ( ), ,     

is 
1

, , )

( ; , , ) exp

   exp exp 1 ; 0, 0(

WE
x x

f x

x
x

 



   
 




  

−
   

=    
   

    
 − −       





 

For the comparison we have fitted the above 
mentioned four distributions and also calculated log-
likelihood (-LL), Akaike information criterion (AIC), 
Corrected Akaike Information Criterion (AICC), 
Bayesian information criterion (BIC), and Hannan-
Quinn information criterion (HQIC) statistic to 
verify the potentiality of the EIPC model. To 
compute the above criteria we have used the 
following expressions 
 

ˆ2 ( ) 2AIC l p= − +  

( )ˆ2 ( ) logBIC l p n= − +  

( )2 1

1

p p
AICC AIC

n p

+
= +

− −
 

           ( )ˆ2 ( ) 2 log logHQIC l p n= − +      

where p is the parameters contained in a model and n 
is the sample size under consideration. From table 3 
we found that the proposed model EIPC is good as 
compared to WE, LHC, and HC models and nearly 
similar compared to the PC distribution taken under 
study. 

Table 3. Goodness of fit statistics 

Model -LL AIC BIC AICC HQIC 

EIPC 111.7294 229.4588 235.6914 229.8799 231.8918 

PC 112.0913 228.1826 232.3376 228.3968 229.8045 

WE 113.5215 233.0430 239.2756 233.4793 235.4795 

LHC 170.3326 344.6653 348.8204 344.8796 346.2873 

HC 182.1991 366.3982 368.4757 366.4684 367.2092 

 
By using the MLE method we have calculated the 
parameter of all of the above models taken for 
comparison. Also, to assess the potentiality of the 
EIPC distribution we have calculated the Anderson-
Darling (W), Kolmogorov-Simnorov (KS), and the 
Cramer-Von Mises (A2) statistics presented in Table 
4. These statistics are extensively applied to evaluate 
the non-nested models and also used to show how 
closely a specific CDF fits the EDF of a given data 
set.  The mathematical expression to obtain these 
statistics are  
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where xi’s are the ordered samples and 

( )i i d CDF x= . 

From the Table 4, we have noticed that the EIPC 
model attains the lowest value of the test statistic and 
the highest p-value so we confirm that the proposed 
model acquires a superior fit as compared to WE, 
LHC, and HC models and is nearly similar as 
compared to PC distribution and can produce more 
reliable and consistent results. In Fig. 5, the 
histogram with the fitted PDF (left panel) and the 
empirical CDF with theoretical CDF (right panel) for 
the dataset under study are presented. Therefore, for 
the given data set it is found that the proposed 
distribution gets a better fit than WE, LHC, and HC 
models and is nearly similar as compared to the PC 
model selected for comparison. 
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Table 4. The goodness-of-fit statistic with p-value 

Model KS(p-value) AD(p-value) CVM(p-value) 

EIPC 0.0569(0.9852) 0.1437(0.999) 0.0212(0.9961) 

PC 0.0480(0.9982) 0.1780(0.9953) 0.0199(0.9973) 

WE 0.1063(0.4852) 0.6648(0.5886) 0.1139(0.5222) 

LHC 0.4151(1.01e-09) 15.555(1.01e-05) 3.2399(7.18e-09) 

HC 0.3517(4.95e-07) 14.226(1.01e-05) 2.8148(9.60e-08) 

 
 

  
Figure 5. The PDF of fitted density with histogram (left panel) and estimated CDF with empirical CDF (right panel) 

 
 
CONCLUSIONS 
In this study, we have suggested a new continuous 
distribution named exponentiated inverse power 
Cauchy (EIPC) distribution. We have discussed some 
chief characteristics and properties of the new model 
like the shapes of the PDF, CDF, and hazard rate 
functions; also we derive the expressions for survival 
function, quantile function, reverse hazard rate 
function, skewness, kurtosis measures, and order 
statistics. The MLE method is applied to estimate the 
parameters of the proposed model. A real lifetime 
data set is taken to investigate the suitability and 
applicability of the EIPC distribution. By comparing 
exponentiated inverse power Cauchy distribution 
with some other lifetime models taken into 
consideration, it is concluded that the proposed 
distribution performs well and provides a better fit as 
compared to WE, LHC, and HC models and is 
nearly similar as compared to the PC model. We 
expect that this new model may be a choice in the 
areas of probability theory, survival analysis, and 
applied statistics.  
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