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ABSTRACT 

Three parameters Kumaraswamy Uniform distribution has been derived from the Kumaraswamy family of distribution 

with uniform distribution, where 𝜃 is scale parameter, and 𝑎 𝑎𝑛𝑑 𝑏 are the shape parameters. The proposed model is 
unimodal and negatively skewed, whereas the hazard rate function is bathtub and inverted bathtub shaped. The statistical 
properties like as, the reliability/survival function, the hazard rate function, the quantile function, the median, and the 
mode have been derived from the proposed model. The parameters are obtained from the maximum loglikelihood 
function which is equivalent to the maximum likelihood function. Using real-data analysis, the proposed model is 
unimodal, and the negatively skewed distribution is well-fitted distribution observed by the P-P plot, estimated CDF with 
empirical distribution, and KS test value.  Finally, the proposed model is compared to various competitive models available 
in the literature, and the results revealed that the proposed model performs better than other models in terms of finding 
the least value of AIC, BIC, CIAC, and HQIC. Hence, the proposed model is an alternative model of lifetime data. 
 
Keywords: Kumaraswamy uniform distribution, maximum likelihood estimation, parameters, quantile function, total time 
on test (TTT) plot 
 
INTRODUCTION 
Recently, some efforts have been made to define new 
families of distributions in order to extend well-known 
models while providing great flexibility when modelling 
data in practice. A variety of techniques have been used to 
add extra parameters to an existing distribution, resulting 
in the formation of a new family of distributions or 
probability distributions. The distribution that 
Kumaraswamy (1980) first proposed is quite flexible, but it 
has not been explored much in the literature but, Jones 
(2009) introduced a new family of distribution is 
Kumaraswamy- G family having a cumulative distribution 
function (c.d.f.) with a simple form 𝐹(𝑥, 𝛩) = 1 −
[1 − (𝐺(𝑥, 𝜙))𝑎]𝑏 where a>0 and b>0 are the two shape 
parameters to introduce skewness and to vary the tail 
weights. The KW-G distribution can be used very 
successfully even with censored data due to its tractable 
distribution function. The corresponding density function 

is defined by 𝑓(𝑥, 𝛩) = 𝑎𝑏𝑔(𝑥, 𝜙)(𝐺(𝑥, 𝜙))𝑎−1[1 −
(𝐺(𝑥, 𝜙))𝑎]𝑏−1;0 < 𝑥 < 1 and 𝛩 = (𝑎, 𝑏, 𝜙𝑇)𝑇 is the 
parameter space of the family, which can be unimodal, and 
increasing, decreasing or constant, depending on the 
parameter values. Jones (2009) advocated the KW 
distribution as a generator since its quantile function takes 
a simple form. In his paper, mentioned several advantages 
over beta distribution: such as the simple normalizing 
constant, normal explicit formula for the distribution and 
quantile functions. It does not involve any distinct 

functions for quantile function and random variate 
generation. 
 
The existing one- or two-parameter models have been 
modified to create new classes of models. The distribution 
becomes richer and more adaptable for modelling data 
when one or more parameters are added. There are various 
approaches to adding a parameter or parameters to a 
distribution. The distribution that results from such 
parameter additions is richer and more adaptable for 
modelling data. So, the KW-G distribution is acquired by 

incorporating two shape parameters 𝑎 and 𝑏 to the G 
distribution. It includes distributions with bathtub-shaped 
hazard rate functions, and unimodal. Likewise, Marshall-
Olkin extended inverted Kumaraswamy (MOEIK) 
distribution is discovered after the three parametric 
distributions with parameters 𝛼 > 0, 𝛽 > 0, 𝜆 > 0. This 
generalization includes some well-known sub-models, 
including the Lomax, Beta type II, and the log-logistic 
(Fisk) distribution (Usman & ul-Haq, 2018). Similarly, 
Almalki et al. (2021) developed a new distribution known 
as the partially constant-stress accelerated life tests 
(PALTs) model from the Kumaraswamy distribution with 
adaptive Type-II progressive censoring. To solve the 
problem of statistical inference, based on censored data has 
been used in this model. The Boots trap, MLEs, Bayes 
estimates of the unknown parameters and the acceleration 
factor are used to estimate the population parameters. A 
new distribution with two shape parameters α>0, β>0 
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developed by El-Sayed & Ahmed (2014) known as the 
Kumaraswamy –Kumaraswamy (KW-KW) distribution, a 
special model from the class of Kumaraswamy 
Generalized (KW-G) distributions. Furthermore, Lemonte 
et al. (2013) introduced the exponentiated Kumaraswamy 
distribution by generalization of the Kumaraswamy 
distribution with three parameters. For better fit than some 
known models which are available in the literature, the 
authors used lifetime data quite effectively in the analysis. 
They also proposed a related distribution, referred to as the 
log-exponentiated Kumaraswamy (log-EK) distribution 
and, which extends the generalized exponential and double 
generalized exponential distributions. The inverted 
Kumaraswamy distribution is derived by Hameed et al. 
(2020). The estimation of stress strength (S-S) reliability for 
two shape parameters α and β using this distribution. Eldin 
et al. (2014) conducted research on parameter estimation 
for the Kumaraswamy distribution using general 
progressive type II censoring. Alduais et al. (2022) 
proposed Bayesian estimators of the Kumaraswamy 
distribution (KD) to estimate the parameters using type-II 
censoring data. Bayesian estimation approaches have been 
used to examine the effectiveness of Bayesian estimators 
for the shape parameter of the KD. 
 
Moreover, for better suitability, as compared to 
competitive distributions a new probability distribution 
named Transmuted Inverted Kumaraswamy (TIK) 
distribution based on a quadratic rank transmutation map 
has been proposed by Sherwani et al. (2021). It is an 
extension of the inverted Kumaraswamy distribution. 
Ahmed (2020) introduced a distribution, the so-called 
alpha power Kumaraswamy (AK) distribution by applying 
alpha power transformation (APT) to the Kumaraswamy 
distribution. Similarly, new distribution known as type II 
half logistic Kumaraswamy (TIIHLKw) distribution, a 
simple and more flexible with a unit interval has been 
proposed by including an extra parameter in the existing 
model to improve its ability to fit complex data sets (Zein 
Eldin et al., 2020). A newly generated class (new G class) 
of models, that is the extended generalized inverted 
Kumaraswamy generated (EGIKw-G) family of 
distributions has been derived. Furthermore, another 
special model, the extended generalized inverted 
Kumaraswamy Burr XII (EGIKw-Burr XII) model with a 
four-parameter was also generated. The EGIKw-Frechet, 
EGIKw-Burr XII, EGIKw-Uniform, and EGIKw-
Normal distributions have been explained as sub models 
of the proposed class (Ramzan et al., 2022).  
 
Likewise, the other distribution, a new Exponentiated Odd 
Lomax Exponential (EOLE) to four-parameter by making 
the distribution of Lomax distribution as a generator with 
an exponentiated odd function (Dhungana & Kumar, 
2022). The three parameters, half logistic inverted Weibull 
distribution is developed by type I half logistic-G family 
with inverted Weibull distribution (Dhungana & Kumar, 

2022). Furthermore, a new Modified Half Logistic Weibull 
(MHLW) distribution is developed in the type-I half 
logistic-G family of distributions (Dhungana & Kumar, 
2022). Authors combined the Rayleigh distribution with 
exponentiated -G Poisson family formed exponentiated 
Rayleigh Poisson distribution (Joshi & Dhungana, 2020). 
Another new Poisson Inverted Exponential distribution 
having two parameters has developed from the Poisson 
family of distribution (Dhungana, 2020), and Tharu et al. 
(2021) proposed the new univariate continuous 
Exponentiated Marshall –Olkin Exponential distribution 
by compounding exponential distribution with Marshall-
Olkin family of distribution. The motivation for 
developing this model lies in its applicability to enhance 
reliability testing in industrial data. It aids in the 
measurement of risk tolerance, prediction, and forecasting 
of complex data modeling in the future. Hence, the aim of 
the study is to develop the sophisticated model 
Kumaraswamy Uniform “KwU” distribution which will be 
applied in different areas including engineering, medicine, 
environmental science, biology, demography, etc. in data 
modeling. 
 
MATERIALS AND METHODS  
Jones (2009) introduced a new family of distribution 
known as the Kumaraswamy- G family having a 
cumulative distribution function (c.d.f.) which has a simple 
form as 
 

𝐹(𝑥, 𝛩) = 1 − [1 − (𝐺(𝑥, 𝜙))𝑎]𝑏  (1) 
 
where b >0 and a>0.The corresponding density function 
is given by 
 
𝑓(𝑥, 𝛩) = 𝑎𝑏𝑔(𝑥, 𝜙)(𝐺(𝑥, 𝜙))𝑎−1[1 − (𝐺(𝑥, 𝜙))𝑎]𝑏−1;0 < 𝑥 < 1 
     (2) 
The uniform probability distribution is a continuous 
probability distribution that deals with events that are 
equally likely to occur. When solving problems with a 
uniform distribution, keep in mind whether the data is 
inclusive or exclusive of endpoints. The CDF of Uniform 
distribution is defined as, 
 

𝐺(𝑥) =
𝑥

𝜃
    (3) 

 
The corresponding probability density function (pdf) of 
uniform distribution is 
  

𝑔(𝑥) =
1

𝜃
, 0 < 𝑥 < 𝜃   (4) 

 
Now, the equation (3) and (4) are used in equation (2), we 
have to explore the new Kumaraswamy Uniform “KwU” 
distribution having the three parameters, the 
corresponding cdf of the proposed model is  
 

𝐹(𝑥, 𝛩) = 1 − [1 − (
𝑥

𝜃
)

𝑎
]

𝑏

   (5) 
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Having the corresponding PDF of the proposed model is  
 

𝑓(𝑥, 𝜃) =
𝑎𝑏

𝜃
(

𝑥

𝜃
)

𝑎−1

[1 − (
𝑥

𝜃
)

𝑎

]
𝑏−1

; 𝑎 > 0; 𝑏 > 0; 0 < 𝑥 < 𝜃 < 1 

            (6) 

 
The proposed model of pdf curve explorer has different 
characteristics such as unimodal, shifted to low peak as the 
value of each parameter is increased but there is no change 
in flatness. The cumulative density function curve has 
provided a good approximation of cdf nature.

 

 
Figure 1. Plot of probability density function (left panel) and cumulative density function (right panel) 

 
 
Similarly, the reliability function and hazard rate function 
of the proposed model is defined as  

𝑅(𝑥) = 1 − 𝐹(𝑥, 𝛩) = [1 − (
𝑥

𝜃
)

𝑎
]

𝑏

  (7) 

 
And hazard function is the defined as  

ℎ(𝑥) =
𝑓(𝑥)

1−𝐹(𝑥)
=

𝑎𝑏

𝜃
(

𝑥

𝜃
)

𝑎−1
[1 − (

𝑥

𝜃
)

𝑎
]

−1

 (8) 

 

The proposed model of survival curve explores the 
different characteristics as well as its hazard rate function. 
The hazard rate function is inverted bath tube shaped 
which exhibit the good characteristics of proposed 
distribution because the inverted bathtub shape of hazard 
rate function is a special characteristic. 
 
 

 
Figure 2. Plot of survival function (left panel) and hazard rate function (right panel) 
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Statistical Properties  
Some characteristics of the KuU distribution have been 
derived in this section. To derive distribution from the 

generalized binomial and exponential series. For, |𝜍| <
1, 𝑛 > 0; we have, 
 

(1 + 𝜍)−𝑛 = ∑ (−1)𝑖 (
𝑛 + 𝑖 − 1

𝑖
)∞

𝑖=0  𝜍𝑖 ; and (1 − 𝜍)𝑛 =

∑ (−1)𝑗 (
𝑛
𝑗 )∞

𝑗=0  𝜍𝑗; 

 
The PDF of proposed distribution (6) derived by using the 
generalized binomial series as, 
 

𝑓(𝑥) =
𝑎𝑏

𝜃
(

𝑥

𝜃
)

𝑎−1
∑ (−1)𝑗 (

𝑏 − 1
𝑗

) (
𝑥

𝜃
)

𝑎𝑗
∞
𝑗=0 ; (9)  

 
Similarly, the CDF of proposed distribution (5) derived by 
using the generalized binomial series as,  

𝐹(𝑥) = 1 − ∑ (−1)𝑗 (
𝑏
𝑗

) (
𝑥

𝜃
)

𝑎𝑗
∞
𝑗=0               (10)  

 
Quantile Function and Median 
In theoretical aspects of probability theory, quantile 
functions are used. It is an alternative to CDF and PDF is 
used to get statistical measure like as median, kurtosis, and 

skewness. The quantile function defined as 𝑄(𝑢) =
𝐹−1(𝑥). Consequently, the corresponding quantile 
function of proposed distribution becomes: 

𝑄(𝑢) = 𝜃 [1 − (1 − 𝑢)
1

𝑏]

1

𝑎
;0<u<1.  (11)  

 

Where, 𝑢 ∼ 𝑈(0,1). In particular, the median is derived by 

placing 𝑢 =
1

2
 in equation (11), then we obtain: 

𝑀𝑒𝑑𝑖𝑎𝑛 = 𝜃 [1 − (
1

2
)

1

𝑏

]

1

𝑎

 

Mode 
The mode is maximum recurring value of proposed 
distribution. To calculate the mode, we have to 

differentiate with respect to 𝑥 in equation (6) or which is 
equivalent to log of equation (6), which is: 
 

𝑙𝑛 𝑓 (𝑥, 𝜃) = 𝑙𝑛 (
𝑎𝑏

𝜃
) + (𝑎 − 1) 𝑙𝑛 (

𝑥

𝜃
) + (𝑏 − 1) 𝑙𝑛 [1 −

(
𝑥

𝜃
)

𝑎
]    (12) 

The equation (12) is differentiated with respect to 𝑥 and 

apply the condition 𝑓(𝑥, 𝜃) ≠ 0 and 𝑓 ′(𝑥, 𝜃) = 0, the 
mode of proposed distribution is 

(𝑎 − 1) (
1

𝑥
) − (𝑏 − 1) (

𝑎

𝑥
) (

𝑥

𝜃
) [1 − (

𝑥

𝜃
)

𝑎

]
−1

= 0 

 
The above equation is a nonlinear equation which is solved 
by analytical methods. 
 
 

 
Maximum Likelihood Estimation  
We have to estimate unknown parameters of the proposed 
model using maximum likelihood estimation. Let, 

𝑥1, 𝑥2, . . . , 𝑥𝑛 are random sample drawn from KwU 
distribution with parameters (𝑎, b, and 𝜃), then likelihood 

function of proposed distribution is product of 𝑛𝑡ℎ time 
of sample of proposed distribution. Mathematically, 

ℓ(𝑥; 𝜁̰) = ∏ 𝑓(𝑛
𝑖=1 𝑥𝑖; 𝜁̰) where, 𝜁̰ is the parameter space 

belong to (𝑎, b, and 𝜃). The likelihood function is 
equivalent to the log likelihood function. Therefore, log 
likelihood function of proposed distribution becomes: 
 

ℓ(𝑥; 𝜁̰) = 𝑙𝑛 (
𝑎𝑏

𝜃
) + (𝑎 − 1) 𝑙𝑛 ∑ (

𝑥𝑖

𝜃
)𝑛

𝐼=1 + (𝑏 −

1) 𝑙𝑛 ∑ [1 − (
𝑥𝑖

𝜃
)

𝑎
]𝑛

𝑖=1    (13) 

 
The parameters are obtained by differentiating (13) 

partially with respect to (𝑎, b, and 𝜃). We have 
 
𝜕ℓ(𝑥;𝜁̰)

𝜕𝑎
=

𝑛

𝑎
+ ∑ 𝑙𝑛 (

𝑥𝑖

𝜃
)𝑛

𝑖=1 − (𝑏 − 1) ∑ (
𝑥𝑖

𝜃
)

𝑎
𝑙𝑛 (

𝑥𝑖

𝜃
) [1 −𝑛

𝑖=1

(
𝑥𝑖

𝜃
)

𝑎
]

−1

     (14) 

 
𝜕ℓ(𝑥;𝜁̰)

𝜕𝑏
=

𝑛

𝑏
+ ∑ 𝑙𝑛 (1 − (

𝑥𝑖

𝜃
)

𝑎
)𝑛

𝑖=1   (15) 

 

𝜕ℓ(𝑥;𝜁̰)

𝜕𝜃
= −

𝑎𝑛

𝜃
+

𝑎(𝑏−1)

𝜃
∑ (

𝑥𝑖

𝜃
)

𝑎
[1 − (

𝑥𝑖

𝜃
)

𝑎
]

−1
𝑛
𝑖=1  (16) 

 

Finally, solve non-linear equations 
𝜕ℓ(𝑥;𝜁̰)

𝜕𝑎
= 0,  

𝜕ℓ(𝑥;𝜁̰)

𝜕𝑏
= 0,

𝜕ℓ(𝑥;𝜁̰)

𝜕𝜃
= 0 and estimate (𝑎̂, b̂,and 𝜃̂) for 

parameters (𝑎, b, and 𝜃). Additionally, the asymptotic 

normality of MLEs, and approximate 100(1 − 𝛾)% 

confidence intervals of (𝑎, b, and 𝜃) can be formed as: 𝑎̂ ±

𝑧𝛾/2𝑆𝐸(𝑎̂), 𝑏̂ ± 𝑧𝛾/2𝑆𝐸(𝑏̂),and 𝜃̂ ± 𝑧𝛾/2𝑆𝐸(𝜃̂) and; 

𝑧𝛾/2is the upper percentile of standard normal variate. 

 
DATA ANALYSIS 
Data analysis is a technique for arriving at a sound 
conclusion based on facts or information. We used 
real data analysis to determine the proposed model's 
suitability for the given data set. The data set has been used 
in several studies, including Dasgupta (2011), the 
distribution of burr with applications and Bakouch (2020), 
family of extended half-distributions. The data set contains 
50 observations on Burr (in millimeters) with hole 
diameters of 12 mm and sheet thicknesses of 3.15 mm. 
 
0.24, 0.06, 0.06, 0.14 ,0.22, 0.08, 0.04, 0.26, 0.02, 0.14 ,0.08, 
0.26, 0.04, 0.14, 0.12, 0.16, 0.16, 0.04, 0.02, 0.16, 0.28, 0.12, 
0.26, 0.32, 0.18, 0.14, 0.24, 0.24, 0.18, 0.22, 0.18, 0.32, 0.24, 
0.12, 0.24, 0.18, 0.16, 0.14, 0.08, 0.16, 0.22, 0.32, 0.22 ,0.06, 
0.16, 0.08, 0.14, 0.12,0.24, 0.16 
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The summary of the finding of the given data set is follows: 
 

Table 1. Descriptive statistic of proposed data set. 

Sample(n) Min. 𝑄1 Median Mean 𝑄3 Max. Skewness Kurtosis Standard 
deviation 

50 0.020 0.120 0.160 0.163 0.235 0.320 0.07233 2.216649 0.08105 

 
 
 

 
Figure 3. Histogram and density plot (left panel) and boxplot (right panel). 

 
 
Similarly, we have to present the graphical representation 
of data set as follows. The data set has the symmetrical with 
there is no outliers. The kernel density plot is provided of 
the symmetrical pattern in all over the data set.  
 
We have estimated the value of parameters with standard 
error by using the method of maximum likelihood 
estimation which maximizes the log-likelihood function 
(13) directly using maxlik () function in “BFGS” method 
from R software (R core team, 2022). Likewise, the 
estimated parameters with standard error (SE) are 
presented in table (Table 2). 
 
Table 2. Estimated value of MLE with SE of given data set. 

Parameters MLE SE t-value p-value 

𝑎̂   1.53821 0.33721 4.562 <0.001 

𝑏̂ 1.72213 0.80541 2.138 0.0325 

𝜃̂ 0.33657 0.02616 12.863 <0.001 

 
where the variance covariance matrix as follows 

           𝑎          b             𝜃 
𝑎
𝑏
𝜃

(
0.11371 0.22826 0.00597
0.22826 0.64867 0.01896
0.00597 0.01896 0.00068

)  

The total time on test (TTT) plot is used to determine the 
behavior of the HRF in the data. We know the data has a 
constant HRF when we get a diagonal line. A concave TTT 
plot shows that the data's HRF is increasing, while a 
convex TTT plot shows the data's HRF is decreasing. The 
increasing HRF of plotted data indicates that the proposed 
distribution is appropriate for modeling. Similarly, the 
empirical distribution is closed with the theoretical 
distribution. We have tested the goodness of fit by 
Kolmogorov-Smirnov test (D = 0.078852, p-value = 
0.7798). The finding revel that proposed distribution is 
valid by presenting the empirical cumulative distribution 
function versus theoretical cumulative distribution 
function (Fig. 4). 
 
We have to plot the P-P plot of proposed models; it 
provides the good fit of proposed distribution. Likewise, 
after estimation of the parameter value of proposed 
distribution, the predicated hazard rate function of 
proposed model is bathtub shaped which indicates the 
model has satisfied every characteristic of data handling 
(Fig. 5).
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Figure 4. TTT plot (left panel) and empirical distribution verses theoretical distribution (right panel) 

 

 
Figure 5. P-P plot (left panel) and fitted hazard rate function (right panel) 

 
Descriptive statistics of proposed Model 
After estimating the parameters, we have to compute the 
descriptive characteristic of the proposed distribution, 
which reveals that it is negatively skewed and leptokurtic 
distribution. The finding shows that mean<median<mode 
(Table 3). 
 
Table 3. Descriptive statistics of proposed model 

Mean Median Mode Standard 
deviation 

Skewness Kurtosis 

1.161 1.267 1.386 0.324 -2.022 6.354 

 
DISCUSSION  
We have to compare the proposed model with the 
following competitive models which are available in 
literature. A new extension of the exponentiated Weibull 
model formed Lomax exponentiated Weibull distribution 
having three parameters (Ansari & Nofal, 2021).  
 

𝑓𝐿𝐸𝑊(𝑥) =
𝛼𝛽𝜗𝑥𝛽−1𝑒−𝑥𝛽

(1 − 𝑒−𝑥𝛽
)

𝛼−1

[1 − (1 − 𝑒−𝑥𝛽
)

𝛼
]

2  

{1 +
(1 − 𝑒−𝑥𝛽

)
𝛼

1 − (1 − 𝑒−𝑥𝛽
)

𝛼}

−(𝜗+1)

; 𝑥 ≥ 0, 𝛼 ≥ 0, 𝛽 ≥ 0, 𝜗 ≥ 0 

 
The PDF of the LxEW distribution has important shapes, 
such as right skewed, symmetric, left skewed, and bimodal. 
Similarly, the hazard rates of the LxEW distribution is 
constant bathtub, increasing, decreasing, unimodal. It 
demonstrates that LxEW distribution is empirically 
important in the modeling of lifetime data. Likewise, Badr 
(2019) proposed the compound Rayleigh model. Initially, 
Wu and Kus (2009) introduced the compound Rayleigh 
distribution (CRD) based on a new life test plan termed as 
a progressive first failure-censored plan. This was 
accomplished by employing the conjugate prior for the 
shape parameter, and the discrete prior for the scale 
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parameter. The symmetric and asymmetric Bayes 
estimators have been acquired in closed forms of CR 
distribution having the pdf 
 

𝑓𝐶𝑅(𝑥) = 2𝛼𝛽𝛼𝑥(𝛽 + 𝑥2)−(𝛼+1); 𝑥 > 0, 𝛼 > 0, 𝛽 > 0. 
 
Furthermore, Exponentiated Rayleigh Poisson distribution 
(ERP) derived by Joshi and Dhungana (2020) which is 
developed from the Exponentiated-G Poisson family of 
distribution with the Rayleigh distribution. The hazard 
function shows the upside curve (concave) shape of this 
distribution. The flexibility and significance of the new 
distribution formed which is illustrated by various field for 
modeling having the pdf: 
 

𝑓(𝑥) =
𝛼𝛽𝜆2 𝑥  𝑒−(𝜆𝑥)2

 [1 − 𝑒−(𝜆𝑥)2
]

𝛼−1
𝑒−𝛽[1−𝑒−(𝜆𝑥)2

]
𝛼

1 − 𝑒−𝛽
; 𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜆 > 0 

Finally, unimodal and increasing hazard function 
distribution called Exponentiated Chen distribution 
derived by Dey et al. (2017). The proposed model has the 
good qualities of the method such as asymptotic efficiency, 
normality, consistency, and invariance. Hence, EC 
distribution is recommended for all practical purposes 
having the pdf  
 

𝑓(𝑥) = 𝛼𝛽𝜆𝑥𝛽−1𝑒𝑥𝛽
𝑒𝜆(1−𝑒𝑥𝛽

) [1 − 𝑒𝜆(1−𝑒𝑥𝛽
)]

𝛼−1

; 𝑥 > 0, 𝛼 > 0, 𝛽 > 0, 𝜆 > 0 

 
Firstly, we have estimated parameters of proposed model 
and competitive models. Each models’ parameters are 
estimated by maximum likelihood estimation technique by 
maximizing the log-likelihood function by using R (R core 
team, 2022) and Henningsen et al. (2011). The estimated 
value of each parameter is presented in the following table 
(Table 4). 

 
Table 4. Estimated value of competitive models, along with proposed model. 

Models 𝛼̂ 𝛽̂ 𝜆̂ 𝑎̂ 𝑏̂ 𝜃̂ 

KwU 
- - - 

1.53821 
(0.33721) 

1.72213 
(0.80541) 

0.33657 
(0.02616) 

LEW 
0.0040 

(-) 
2.4802 

(-) 
  - 

1.6220 
(-) 

CR 
41.262 

(-) 
1.336 

(-) 
 - - - 

ERP 
4.8385 

(1.4303)   
3.6490 
(0.944)   

11.8152 
(0.977)    

- - - 

EC 
0.5347 

(0.0994) 
3.1131 

(0.1404) 
98.8044 
(8.8110) 

- - - 

 
 
Now, we have compared the proposed model with all 
other competitive models by various goodness of fit 
criteria’s like; (i) Akaike’s information criterion, (ii) Value 
of log likelihood, (iii) Hannan-Quinn information 
criterion, (iv) Corrected Akaike’s information criterion, 
and (v) Bayesian information criterion. In comparison to 
all other competitive models, the estimated values of the 

log-likelihood function −ℓ(𝜁̰̂), BIC, AIC, HQIC, and 

CIAC of proposed model are least. Hence, the suggested 
model is significantly superior to other competitive models 
(Table 5). 
 
Table 5. Goodness of fit value of competitive models and 

proposed models. 
Models −ℓ(𝜁̰̂) AIC BIC CIAC HQIC 

KwU -58.029 110.059 185.787 110.5589 124.458 
LEW -211.08 416.168 644.952 416.6684 430.568 
CR -154.92 305.845 321.544 306.1448 315.444 
ERP -67.464 128.920 214.092 129.4200 143.327 
EC -57.110 108.219 183.029 108.7193 122.619 

 
 
 
 

CONCLUSIONS 
This study is based on a proposed new distribution having 

three parameters 𝑎, 𝑏 and, 𝜃 called Kumaraswamy 
Uniform distribution. The proposed distribution derived 
from the Kumaraswamy family of distribution with 

uniform distribution, whereas 𝜃 is scale parameters and 

𝑎 𝑎𝑛𝑑 𝑏, are the shape parameter. We have derived some 
important properties like cumulative probability density 
function, probability density function, reliability function, 
hazard rate function, quintile and median, mode. The 
parameters are estimated by loglikelihood function which 
has been used MLE technique. We have concluded that the 
proposed distribution is negatively skewed distribution 
unimodal and inverted bathtub, and bathtub hazard rate 
function model. After analyzing the sample data, we 
concluded that the proposed model provides an admirably 
better fit than some other well-known models. Therefore, 
the proposed distribution can be applied as an alternative 
model life-testing model.  
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