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ABSTRACT 
Sub-Gaussian type estimates are crucial when investigating the asymptotic behavior of symmetric independent random 
variables. This article aims to establish some sub-Gaussian type estimates for these variables, specifically for the summation 

of first 𝑛 number of variables and for the tail sums of  those variables. We derive three such estimates. 
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INTRODUCTION 
In various real-world situations, the distribution of a 
random variable may deviate significantly from a Gaussian 
distribution. In such cases, sub-Gaussian type estimates 
can be used to characterize the behavior of the random 
variables. In the theory of probability and statistics, a sub-
Gaussian type estimate is a mathematical property which 
characterizes the behavior of independent random 
variables. It provides a measure of how much the given 
variables deviate from their mean along with how closely 
their distribution is concentrated around the mean. More 
precisely, a sub-Gaussian type estimate implies that the 
distribution of the  random variable decays in exponential 
order. Consequently, the variable has limited variance and 
can not deviate significantly from its mean. This type of 
property is considered to be very useful whenever we need 
to accurately estimate the property of the random 
variables. The sub-Gaussian estimate has numerous 
applications in areas such as statistical inference, signal 
processing, machine learning and the law of the iterated 
logarithm. Additionally, sub-Gaussian estimates are 
necessary in the examination of high-dimensional data, 
where the number of variables is much greater than the 
number of observations.  In this context, the law of the 
iterated logarithm  can be used to control the deviation of 
the empirical mean from the true mean where we can use 
the sub-Gaussian type estimates to justify that the law of 
the iterated logarithm holds with high probability. Many 
important classes of random variables satisfy sub-Gaussian 
type estimates including Gaussian random variables and 
bounded random variables. 
 
In this article, we derive three sub-Gaussian type estimates 
for symmetric, bounded, and independent random 
variables. These types of estimates are useful while deriving 
the law of the iterated logarithm for the sums of 
independent random variables (Chung, 2005). One can 
find various applications of law of the iterated logarithm in 
various contexts. Please see Mingzhou and Cheng (2022),  

Chen and Qi (2006) and Schatte (1988) for the details.  
Before we prove our main results, we first recall some 
definitions and theorems.  

 
Definition 1.1 [Symmetric random variable] A random 
variable is a function that assigns a number to each point 
in a sample space. Thus, a random variable is a function 
from a sample space to the set of real numbers and is 

usually denoted by 𝑋. A random variable 𝑋 is said to be 

bounded if there exists a real number 𝑀 > 0 such that for 

all 𝑠 ∈ 𝑆 (sample space), we have |𝑋(𝑠)| ≤ 𝑀. The 

random variable 𝑋 is said to be symmetric if and only if 

both  the functions 𝑋 and −𝑋 have the same distribution 
(Chung, 2005). 
 

Definition 1.2 [Independent random variable] Let (𝑋, 𝑌) 
be a bivariate random vector with joint probability density 

function 𝑓(𝑥, 𝑦) and marginal probability density function 

𝑓𝑋(𝑥)  and 𝑓𝑌(𝑦). Then the random variables 𝑋 and 𝑌 are 

said to be independent random variables if for every 𝑥 ∈
ℝ and 𝑦 ∈ ℝ, we have 𝑓(𝑥, 𝑦) = 𝑓𝑋(𝑥). 𝑓𝑌(𝑦) (Casella & 
Berger, 2002). 
 
Definition 1.3 [Martingales] A sequence of random 

variables and Borel Fields {𝑋𝑛 , 𝔉𝑛} is said to a martingale 
if and only if the following conditions are satisfied: 
 

i. 𝔉𝑛 ⊂ 𝔉𝑛+1  for all 𝑛 and 𝑋𝑛 ∈ 𝔉𝑛; 
ii. 𝐸(|𝑋𝑛|) < ∞; 
iii. 𝐸(𝑋𝑛+1|𝔉𝑛) = 𝑋𝑛 a.e. 

 
where  a.e. stands for almost everywhere equal. The 
sequence is called the submartingale if and only if  the 

equality  =  in (iii) is replaced by ≤ and the sequence is 

called the super martingale  if and only if the equality =  
is replaced by ≥ (Banelos & Moore, 1991).   
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Definition 1.4 [Law of the Iterated Logarithm] The Law 
of the Iterated Logarithm (LIL) is a mathematical theorem 
that describes the behavior of the partial sums of 
independent and identically distributed random variables. 
It is a stronger version of the law of large numbers and 
provides information about the fluctuations of the sum of 
random variables around its expected value. For a 
sequence of independent and identically distributed 

random variables 𝑋1, 𝑋2, … . 𝑋𝑛with mean zero and  finite 

variance 𝜎2, the law of the iterated logarithm states that as 
the number of terms in the sum increases, the normalized 

sum oscillates between −√2 𝜎2 log log 𝑛   and 

√2 𝜎2 log log 𝑛  infinitely often, almost surely. 
Mathematically, it can be expressed as: 

limsup
n→∞

𝑆𝑛

√2 𝜎2 log log 𝑛  
= 1    

 a.s. 

Theorem 1.5 [Continuity Property of measure] If {𝐴𝑛} is 

a sequence of sets on a sigma algebra with the property that 𝐴𝑛 ⊂
𝐴𝑛+1  for all 𝑛 and 𝐴 = ⋃ 𝐴𝑛,∞

𝑛=1  then we have  
 

|𝐴| = 𝑙𝑖𝑚
𝑛→∞

|𝐴𝑛| (Royden & Fitzpatrick, 2010). 

 

Lemma 1.6  If 𝑌𝑖 are independent random variable with mean 

𝐸(𝑌𝑖) = 0 , then the sum of 𝑌𝑖 i.e. 𝑆𝑚 = ∑ 𝑌𝑖
𝑚
𝑖=1 is a martingale 

and 𝑆𝑚
2  is a submartingale (Chung, 2005). 

 

Lemma 1.7  Let {𝑌𝑖}𝑖=1
∞ be a sequence of submartingale and 𝜑 

be a convex function which is increasing on ℝ.  If φ is integrable 

function on ℝ, then the  function 𝜑(𝑌𝑖) is a submartingale 
(Chung, 2005). 

Theorem 1.8 [Doob's Maximal Identity]  If  {𝑌𝑖}𝑖=1
∞  is a 

sequence of submartingale, then for any 𝑁 > 0, we have  
 

|{𝜔: 𝑚𝑎𝑥
1≤𝑖≤𝑀

𝑌𝑖 ≥ 𝑁}| ≤
1

𝑁
 𝐸(𝑚𝑎𝑥(𝑌𝑖 , 0)).  

 

Theorem 1.9 [Hoeffding]  Let  {𝑌𝑖}𝑖=1
𝑚  be independent 

random variables with mean zero and bounded ranges  such that 

𝑎𝑖 ≤ 𝑌𝑖 ≤ 𝑏𝑖 for all 𝑖 = 1, 2, . . 𝑚. Then for each 𝜆 > 0, we 
have  
 

|{𝜔: |∑ 𝑌𝑖
𝑚
𝑖=1 | > 𝜆}| ≤ 2 𝑒𝑥𝑝 (

−2 𝜆2

∑ (𝑏𝑖−𝑎𝑖)2𝑚
𝑖=1

).  

 

Theorem 1.10 [Levy's Inequality] If 𝑋1, 𝑋2 … 𝑋𝑛 be 

independent and symmetric random variables. Let 𝑆𝑚 = 𝑋1 +
𝑋2 + ⋯ + 𝑋𝑚. Then for all 𝜆 > 0, we have  

𝑃 ( 𝑚𝑎𝑥
1≤𝑘≤𝑚

|𝑆𝑘| ≥ 𝜆) ≤ 2 𝑃(|𝑆𝑚| ≥ 𝜆) 

P ( max
1≤k≤m

|Xk| ≥ λ) ≤ 2 P(|Sm| ≥ λ). 

 
MAIN RESULTS 
In this section, we derive three estimates for the sums of  
independent, bounded, symmetric and identically 
distributed random variables  with mean zero and variance 
one. We begin with the first estimate. 
 

Theorem 2.1  Let {𝑌𝑖}𝑖=1
∞  be random variables which are 

independent, bounded, symmetric and identically distributed with 

mean zero and variance 1 such that −1 ≤ 𝑌𝑖 ≤,  𝑋𝑖 = 𝑎𝑖𝑌𝑖 and 

{𝑎𝑖}𝑖=1
∞  are real constants, then for all 𝛼 > 0, 𝛽 > 0, we have  

 

|{𝑡: 𝑠𝑢𝑝
1≤𝑛≤𝑚

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤ 𝐴. 𝑁(𝛼) 𝑒𝑥𝑝 (

(−1 + 2𝛼)𝛽2

2 ∑ 𝑎𝑖
2𝑚

𝑖=1

). 

 

for some constant  𝐴 and number 𝑁(𝛼), depending on 𝛼. 
 

Proof: Using an elementary fact " sup|𝐴| > 𝛽 implies that sup 𝐴 > 𝛽 or  sup(−𝐴) > 𝛽",  we have  
 

{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽} = {𝑡: sup

1≤n≤m
∑ 𝑋𝑘(𝑡)

𝑛

𝑘=1
> 𝛽} ⋃ {𝑡: sup

1≤n≤m
− ∑ 𝑋𝑘(𝑡)

𝑛

𝑘=1
> 𝛽}. 

 

So, for any 𝜂 > 0, we have  
 

|{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤ |{𝑡: sup

1≤n≤m
∑ 𝑋𝑘(𝑡)

𝑛

𝑘=1
> 𝛽}| + |{𝑡: sup

1≤n≤m
− ∑ 𝑋𝑘(𝑡)

𝑛

𝑘=1
> 𝛽}| 

≤ |{𝑡: sup
1≤n≤m

exp (𝜂 ∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
) > 𝑒𝜂𝛽}| + |{𝑡: sup

1≤n≤m
exp (−𝜂 ∑ 𝑋𝑘(𝑡)

𝑛

𝑘=1
) > 𝑒𝜂𝛽}| 

 

Employing Lemma 1.5, the sum  ∑ 𝑋𝑘
𝑛
𝑘=1  is a martingale. 

Moreover, the function 𝑒𝜂𝑥 is convex and an increasing 

function. Then the functions exp(𝜂 ∑ 𝑋𝑘(𝑡)𝑛
𝑘=1 )  and 

exp(−𝜂 ∑ 𝑋𝑘(𝑡)𝑛
𝑘=1 ) are both submartingales. Let 𝜇 

denote Lebesgue's measure. Then using Doob's maximal 
inequality (Theorem 1.7) for submartingales, we get 
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|{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤

1

𝑒𝜂𝛽
 ∫ exp (𝜂 ∑ 𝑋𝑘(𝑡)

𝑚

𝑘=1
)  𝑑𝜇

𝐼

+
1

𝑒𝜂𝛽
 ∫ exp (𝜂 ∑ 𝑋𝑘(𝑡)

𝑚

𝑘=1
)  𝑑𝜇

𝐼

≤
2

𝑒𝜂𝛽
 ∫ exp (𝜂 ∑ 𝑋𝑘(𝑡)

𝑚

𝑘=1
)  𝑑𝜇

𝐼

 

Hence, we have  

|{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤

2

𝑒𝜂𝛽
 ∫ exp (𝜂 ∑ 𝑋𝑘(𝑡)

𝑚

𝑘=1
)  𝑑𝜇

𝐼

… … … … … . (1) 

 
Employing Hoeffding's theorem (Theorem 1.8), we have 
 

|{𝑡: |∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
| ≥ 𝛽}| ≤ 2 exp (−

𝛽2

2 ∑ 𝑎𝑖
2𝑚

𝑖=1

) … … … … … … … … … … … … … … . (2) 

 

Now for all 𝛼 > 0 and for 𝐼 = [0,1), we claim that: 
 

∫ exp (𝜂 ∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
)  𝑑𝜇

𝐼

≤ 𝑀√8𝜋 exp ([
1

2
+ 𝛼] 𝜂2 ∑ 𝑎𝑖

2
𝑚

𝑖=1
) 

 
With the help of Fubini's theorem, one can show that  
 

∫ 𝑒𝑔  
𝐼

𝑑𝜇 = ∫ 𝑒𝛽  𝜇({𝑡: 𝑔(𝑡) > 𝛽}) 𝑑𝛽
∞

−∞

… … … … … … … … … … … … … … … . (3) 

 
Then from (2) and (3), we get 
 

∫ exp (𝜂 |∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
|)  𝑑𝜇

𝐼

 

= ∫ 𝑒𝛽 𝜇 ({𝑡: 𝜂 |∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
| > 𝛽})  𝑑𝛽

∞

−∞

 

= ∫ 𝑒𝛽 𝜇 ({𝑡: |∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
| >

𝛽

𝜂
})  𝑑𝛽

∞

−∞

 

≤ ∫ 𝑒𝛽  exp (−
𝛽2

2𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1

)  𝑑𝛽
∞

−∞

 

= 2 ∫  exp (
−1

2𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1

[𝛽2 − 2𝜂2 ∑ 𝑎𝑖
2

𝑚

𝑖=1
𝛽])  𝑑𝛽

∞

−∞

 

= 2 ∫  exp (
−1

2𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1

[𝛽2 − 2𝜂2 ∑ 𝑎𝑖
2

𝑚

𝑖=1
𝛽] ±  (𝜂2 ∑ 𝑎𝑖

2
𝑚

𝑖=1
)

2

)  𝑑𝛽
∞

−∞

 

= 2 exp (
𝜂2 ∑ 𝑎𝑖

2𝑚
𝑖=1

2
) ∫  exp (

−[𝛽 − 𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1 ]2

2 𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1

)  𝑑𝛽
∞

−∞

 

 

Setting   𝑣 =
𝛽−𝜂2 ∑ 𝑎𝑖

2𝑚
𝑖=1

𝜂√∑ 𝑎𝑖
2𝑚

𝑖=1

, we get  𝜂√∑ 𝑎𝑖
2𝑚

𝑖=1  𝑑𝑣 = 𝑑𝛽. Then the above relation becomes: 

∫ exp (𝜂 |∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
|)  𝑑𝜇

𝐼

= 2 exp (
𝜂2 ∑ 𝑎𝑖

2𝑚
𝑖=1

2
) ∫ 𝑒

−𝑣2

2

∞

−∞

 𝜂√∑ 𝑎𝑖
2

𝑚

𝑖=1
 𝑑𝑣 

= 2𝜂√∑ 𝑎𝑖
2

𝑚

𝑖=1
exp (

𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1

2
) ∫ 𝑒

−𝑣2

2

∞

−∞

 𝑑𝑣 

= 2√2𝜋 𝜂√∑ 𝑎𝑖
2

𝑚

𝑖=1
exp (

𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1

2
) 
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Thus, we have  

∫ exp (𝜂 |∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
|)  𝑑𝜇

𝐼

≤ 2√2𝜋 𝜂√∑ 𝑎𝑖
2

𝑚

𝑖=1
exp (

𝜂2 ∑ 𝑎𝑖
2𝑚

𝑖=1

2
). 

 

We recall that for a given 𝛼 > 0, there exists 𝑁 = 𝑁(𝛼) > 0 such that for all 𝑉 > 0,  
 

𝑉. exp (
𝑉2

2
) ≤ 𝑁(𝛼) exp ([

1

2
+ 𝛼] 𝑉2)  

 
Employing this inequality in the above relation, we have  
 

∫ exp (𝜂 |∑ 𝑋𝑘(𝑡)
𝑚

𝑘=1
|)  𝑑𝜇

𝐼

≤ 2√2𝜋  𝑁(𝛼) exp ([
1

2
+ 𝛼] 𝜂2 ∑ 𝑎𝑖

2
𝑚

𝑖=1
) … … … … … … … … (4) 

 

Let us choose 𝜂 =
𝛽

∑ 𝑎𝑖
2𝑚

𝑖=1

.  Using this 𝜂 in equation (1) and (4), we have  

|{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤

2

𝑒𝜂𝛽
  ∫ exp (𝜂 ∑ 𝑋𝑘(𝑡)

𝑚

𝑘=1
)  𝑑𝜇

𝐼

 

≤
2

𝑒𝜂𝛽
  2√2𝜋  𝑁(𝛼) exp ([

1

2
+ 𝛼] 𝜂2 ∑ 𝑎𝑖

2
𝑚

𝑖=1
) 

 = √8𝜋  𝑁(𝛼) exp ([
1

2
+ 𝛼 − 1]   

𝛽2

∑ 𝑎𝑖
2𝑚

𝑖=1

) 

= √8𝜋  𝑁(𝛼) exp ([
−1

2
+ 𝛼]   

𝛽2

∑ 𝑎𝑖
2𝑚

𝑖=1

). 

Hence, we have  

|{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤ 𝐴. 𝑁(𝛼) exp (

(−1 + 2𝛼)𝛽2

2 ∑ 𝑎𝑖
2𝑚

𝑖=1

). 

 
With the above estimate in hand, we now use continuity property of Lebesgue measure to derive the following estimate: 
 

Theorem 2.2  Let {𝑌𝑖}𝑖=1
∞  be random variables which are independent, bounded, symmetric and identically distributed with mean zero and 

variance 1 such that −1 ≤ 𝑌𝑖 ≤,  𝑋𝑖 = 𝑎𝑖𝑌𝑖 and {𝑎𝑖}𝑖=1
∞  are real constants, then for all 𝛼 > 0, 𝛽 > 0, we have  

 

|{𝑡: 𝑠𝑢𝑝
𝑛≥1

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤ 𝐴 𝑁(𝛼). 𝑒𝑥𝑝 (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=1

) 

 

for some constant  for some constant  𝐴 and number 𝑁(𝛼), depending on 𝛼. 
Proof: Using Theorem 2.1, we have  
 

|{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤ 𝐴. 𝑁(𝛼) exp (

(−1 + 2𝛼)𝛽2

2 ∑ 𝑎𝑖
2𝑚

𝑖=1

) 

 

Let 𝐴𝑚 = {𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)𝑛
𝑘=1 | > 𝛽}  and let us write 𝐴 = ⋃ 𝐴𝑚

∞
𝑚=1 . One can check that 𝐴𝑚 ⊂ 𝐴𝑚+1 which follows 

simply by the property of supremum.  By continuity property of Lebesgue measure (Theorem  1.4), we have |𝐴| =
lim

m→∞ 
|𝐴𝑚|. This gives 

|{𝑡: sup
n≥1

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| = lim

m→∞
|𝐴𝑚| 

= lim
m→∞

|{𝑡: sup
1≤n≤m

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| 
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≤  lim
m→∞

 𝐴. 𝑁(𝛼) exp (
(−1 + 2𝛼)𝛽2

2 ∑ 𝑎𝑖
2𝑚

𝑖=1

) 

≤   𝐴. 𝑁(𝛼) exp (
(−1 + 2𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=1

) 

Thus, we have  

|{𝑡: sup
n≥1

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤   𝐴. 𝑁(𝛼) exp (

(−1 + 2𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=1

) 

 

With the appropriate choice of 𝛼, we have  
  

|{𝑡: sup
n≥1

|∑ 𝑋𝑘(𝑡)
𝑛

𝑘=1
| > 𝛽}| ≤   𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=1

). 

 
With the help of the above estimate, we now derive an estimate for tail sums of independent random variables as 
follows. 
 

Theorem 2.3 Let {𝑌𝑖}𝑖=1
∞  be random variables which are independent, bounded, symmetric and identically distributed with mean zero and 

variance 1 such that −1 ≤ 𝑌𝑖 ≤,  𝑋𝑖 = 𝑎𝑖𝑌𝑖 and {𝑎𝑖}𝑖=1
∞  are real constants, then for all 𝛼 > 0, 𝛽 > 0, we have  

 

|{𝑡: 𝑠𝑢𝑝
𝑛≥𝑚

|∑ 𝑋𝑖(𝑡)
∞

𝑖=𝑛+1
| > 𝛽}| ≤ 𝐴 𝑁(𝛼). 𝑒𝑥𝑝 (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) 

 

for some constant  𝐴 and number 𝑁(𝛼), depending on 𝛼. 
Proof: Let 𝑚 be fixed. Then define 𝑏𝑖 as follows: 

𝑏𝑖 = {
0 ,    𝑖𝑓  𝑖 ≤ 𝑚
𝑎𝑖 ,    𝑖𝑓 𝑖 > 𝑚

 

 

Using  Theorem 2.2, for the sequence {∑ 𝑏𝑖𝑌𝑖}
𝑛
𝑖=1  we have  

 

|{𝑡: sup
n≥1

|∑ 𝑏𝑖𝑌𝑖(𝑡)
𝑛

𝑖=1
| > 𝛽}| ≤   𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑏𝑖
2∞

𝑖=1

) 

 

As 𝑏𝑖 = 0 for 𝑖 ≥ 𝑚, we get 
 

|{𝑡: sup
n≥m

|∑ 𝑎𝑖𝑌𝑖(𝑡)
𝑛

𝑖=𝑚+1
| > 𝛽}| ≤   𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) 

This gives 

|{𝑡: sup
n≥m

|∑ 𝑎𝑖𝑌𝑖(𝑡) − ∑ 𝑎𝑖𝑌𝑖(𝑡)
𝑚

𝑖=1

𝑛

𝑖=1
| > 𝛽}| ≤   𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) 

|{𝑡: sup
n≥m

|∑ 𝑋𝑖(𝑡) − ∑ 𝑋𝑖(𝑡)
𝑚

𝑖=1

𝑛

𝑖=1
| > 𝛽}| ≤   𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) … … … … … . (5) 

 

Let 𝑀 ≫ 𝑚 where 𝑚 is fixed number. Applying Levy's inequality (Theorem 1.9), we get 
 

|{𝑡: sup
m≤j≤M−1

|∑ 𝑋𝑀−𝑖(𝑡)
𝑗−𝑚

𝑖=1
| > 𝛽}| ≤   2  |{𝑡: |∑ 𝑋𝑀−𝑖(𝑡)

𝑀−𝑚−1

𝑖=0
| > 𝛽}| 

|{𝑡: sup
m≤n ≤M−1

|∑ 𝑋𝑖(𝑡)
𝑀

𝑖=1
− ∑ 𝑋𝑖(𝑡)

𝑛

𝑖=1
| > 𝛽}| ≤   2  |{𝑡: |∑ 𝑋𝑀−𝑖(𝑡) − ∑ 𝑋𝑖(𝑡)

𝑚

𝑖=1

𝑀

𝑖=0
| > 𝛽}| 

 
Thus, 

|{𝑡: sup
m≤n ≤M

|∑ 𝑋𝑖(𝑡)
𝑀

𝑖=1
− ∑ 𝑋𝑖(𝑡)

𝑛

𝑖=1
| > 𝛽}| ≤   2  |{𝑡: |∑ 𝑋𝑀−𝑖(𝑡) − ∑ 𝑋𝑖(𝑡)

𝑚

𝑖=1

𝑀

𝑖=0
| > 𝛽}| … … . (6) 
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Since 𝑀 ≫ 𝑚, we have (using (5)) 
 

|{𝑡: |∑ 𝑋𝑖(𝑡) − ∑ 𝑋𝑖(𝑡)
𝑚

𝑖=1

𝑀

𝑖=1
| > 𝛽}| ≤   𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) … … … … … . (7) 

 
From the equations (6) and (7), we have  
 

|{𝑡: sup
m≤n ≤M

|∑ 𝑋𝑖(𝑡)
𝑀

𝑖=1
− ∑ 𝑋𝑖(𝑡)

𝑛

𝑖=1
| > 𝛽}| ≤   2 𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) 

 

Let us define 𝐴𝑀 = {𝑡: sup
m≤n ≤M

|∑ 𝑋𝑖(𝑡)𝑀
𝑖=1 − ∑ 𝑋𝑖(𝑡)𝑛

𝑖=1 | > 𝛽} and 𝐴 = ⋃ 𝐴𝑀
∞
𝑀=1 .  

 

Then using Theorem 1.4, we get lim
M→∞

|𝐴𝑀| = |𝐴|.  

 

If we choose 𝑀 sufficiently large, then for this 𝑀, we have  
 

sup
n≥m

|∑ 𝑋𝑖(𝑡)
∞

𝑖=1
− ∑ 𝑋𝑖(𝑡)

𝑛

𝑖=1
| > 𝛽  ⇒ sup

M≥n≥m
|∑ 𝑋𝑖(𝑡)

𝑀

𝑖=1
− ∑ 𝑋𝑖(𝑡)

𝑛

𝑖=1
| > 𝛽  

 

Consequently, we have 𝑡 ∈ 𝐴𝑀 for sufficiently large 𝑀. This means that 𝑡 ∈ 𝐴. Hence 
 

|{𝑡: sup
n≥m

|∑ 𝑋𝑖(𝑡)
∞

𝑖=1
− ∑ 𝑋𝑖(𝑡)

𝑛

𝑖=1
| > 𝛽}| ≤ |𝐴|  

≤ lim
M→∞

|𝐴𝑀| 

                                                                                  ≤ lim
M→∞

|{𝑡: sup
M≥n≥m

|∑ 𝑋𝑖(𝑡)𝑀
𝑖=1 − ∑ 𝑋𝑖(𝑡)𝑛

𝑖=1 | > 𝛽 }|    

                                          ≤ lim
M→∞

2 𝐴. 𝑁(𝛼) exp (
(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) 

                           = 2 𝐴. 𝑁(𝛼) exp (
(−1+𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

) 

This gives,  

|{𝑡: sup
n≥m

|∑ 𝑋𝑖(𝑡)
∞

𝑖=1
− ∑ 𝑋𝑖(𝑡)

𝑛

𝑖=1
| > 𝛽}| ≤ 2 𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

). 

 
Thus, we have  

|{𝑡: sup
n≥m

|∑ 𝑋𝑖(𝑡)
∞

𝑖=𝑛+1
| > 𝛽}| ≤ 2 𝐴. 𝑁(𝛼) exp (

(−1 + 𝛼)𝛽2

2 ∑ 𝑎𝑖
2∞

𝑖=𝑚+1

). 

 
This completes the proof of the Theorem. 
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