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 ABSTRACT  
This article presents a brief study on the review of the Burgers' equation. It also gives some concepts/ideas and techniques 
to solve Burgers' equation. Applying Burgers' equation to traffic flow requires concentrated effort for the solution. We 
develop our insights on how to obtain the Navier-Stokes equation through our inquiry into Burgers' equation. We also 
demonstrate how the Cole-Hopf transformation for the viscous Burgers' equation is derived. Finally, we use Burger's 
equation function as a model for the flow of traffic. Additionally, by employing the linear system method, we are able to 
obtain the answer to the one-way traffic flow problem. The Navier-Stokes equation has been derived to get in-viscid 
Burger's equation. The principle of Traffic flow and Navier-Stokes models have also been derived. 
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INTRODUCTION 
Numerous applications of Burgers' equations include gas 
dynamics, nonlinear elasticity, shallow water theory, 
geometric optics, combustion theory, cancer treatment, 
petroleum engineering, irrigation systems, traffic, and mob 
panic. It frequently manifests as a simplification of more 
intricate or complex models. Lagerstrom (1949) - Cole- 
provided an initial illustration. The Burgers equation is 
produced as a limiting simplified form of the compressible 
Navier-Stokes momentum equation in the context of the 
study of viscous compressible fluids in supersonic regime. 
Burgers' equations are most important because they serve 
as a foundation for understanding more generic models 
and how to analyze the behavior of events where the 
effects of nonlinear transport and dissipation (like 
viscosity) are inherently incongruent with time. 
 
An important area of mathematics that serves as a model 
for explaining phenomena that appear in all fields is the 
study of the Burger equation.  
 
A non-linear partial differential equation of the sort 
represented by Burgers' equation can have a solution that 
can be calculated from a linear partial differential equation. 
It is a fairly straightforward one-dimensional 
representation of the Navier-Stokes equation. Burger's 
equation was stated by Bateman as 
 
𝜕𝑢

𝜕𝑡
 + u

𝜕𝑢

𝜕𝑥
  =  𝑣

𝜕2𝑢

𝜕𝑥2,     a< 𝑥 < 𝑏, 𝑡 < 0 (1) 

with initial condition 

U(x,0) = ∅(𝑥),𝑎 < 𝑥 < 𝑏                   (2) 
and 

U(a, t) = f(t)  and u(b, t) = g(t), t> 0,      (3) 

where 𝑣 > 0 is the coefficient of kinematic viscosity and 

𝜙, 𝑓 𝑎𝑛𝑑 𝑔  are the prescribed function of the variables 
(Bateman, 1915). 
Equation (1) is the steady solution, which was firstly 
introduced by Bateman. The first term 
𝜕𝑢

𝜕𝑡
 signifies time evolution, and second convection term 

u
𝜕𝑢

𝜕𝑥
  denotes non-linearity of shock wave, and third term 

associated to the viscosity  𝑣
𝜕2𝑢

𝜕𝑥2  is diffusion term. 

 
It was further treated by Burger in 1948 who gave a model 
for shock and turbulence and to whom the equation has 
been named.  
 
LITERATURE REVIEW 
The study of the Burgers equation has received a lot of 
recent research attention. The method most frequently 
employed is the Cole-Hopf transformation.Burgers'  
equation is solved in terms of parabolic cylinder functions 
or Airy functions using the symmetry reduction approach. 
Recent research by (Veksler and Zarmi, 2007) used 
exponential wave solutions of the Lax pair connected to 
the Burgers equation to generate fronts. A helpful study 
was presented to deal with the perturbed and unperturbed 
Burgers’ equation. A variety of characteristics of freedom 
and the Normal Form analysis of the perturbed equation 
were looked into in (Veksler and Zarmi, 2007). 
 
Burgers' equation has been studied for more than 60 years 
as a straightforward representation of numerous physically 
intriguing issues and convective diffusion phenomena, 
including shock waves, turbulence, collapsing free 
turbulence, traffic flows, and flow-related issues. In a 1915 
work by Bateman, the quasi-linear parabolic equation first 
emerged. This study provides two types of stationary 
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solutions to the infinite domain issue by modeling the 
motion of a viscous fluid using equations as its viscosity 
approaches zero. In an effort to create a straightforward 
mathematical model that illustrates the fundamental traits 
of turbulence in hydrodynamic flow more than 30 years 
later, Johannes Martinus Bergers introduced the equation 
(Burgers, 1948). 
 
There was a ton of research, including equation-related 
study, after the Hamburger initiative. The equation was 
officially obtained by Lighthill and Cole (1951) as a 
quadratic approximation of the unstable Navier-Stokes 
equation in one dimension. By using the fitted asymptotic 
expansion method, Fletcher (1982) attained comparable 
outcomes and observations. using cabbage Independently, 
Hopf (1950) and Lighthill (1956) discovered that by 
altering the variables, it is possible to convert the Burgers 
equation with beginning conditions in the infinite zone to 
a linear heat equation. 
 

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) + 𝑢(𝑡, 𝑥)

𝜕𝑢

𝜕𝑡
(𝑡, 𝑥) = 𝜀

𝜕2𝑢

𝜕𝑥2
(𝑡, 𝑥) + 𝑓(𝑡, 𝑥)     

   (4) 
 
The time development of the u(t, x) under nonlinear 
convection and linear dissipation is described by the 
Burgers equation, a quasi-linear parabolic PDE. A shock 
may result from the production of the function u(t, x) when 
the viscosity is zero. A strong gradient will develop when 

perturbation 𝜀  is small and will be resolved as t → ∞. 
 

In equation (4), the quadratic linear term 𝜀
𝜕2𝑢

𝜕𝑥2  is an elliptic 

operator. 
 
Numerous characteristics of this issue are particular to 
non-linearity. Fletcher (1982) provided an explanation for 
this observation in his dissertation [9]. He emphasized how 
the Burgers equation serves as a model for the equilibrium 
between the nonlinear convection term and the diffusion 
term, which can lead to computational issues in, for 
instance, fluid mechanics. To elaborate further, if  the 
convection term uux is omitted, equation (4) becomes a 

classical heat equation. If the diffusion term εuxx  is omitted 
from equation (4), the inviscid Burgers'  equation is 
obtained. 
 
The inviscid Burgers equation is produced if the diffusion 
term uux in equation (4) is left out. Modeling the 
perturbation convection of an inviscid flow using a 
hyperbolic equation is possible. A point on the solution of 
the non-viscous Burgers equation with a large u convect 
faster than a point with a small u, causing the u to become 
discontinuous (that is, an impact state) later. Removing the 
time derivative term from equation (4) leaves the 
equilibrium equation of Burgers' equation. This is a 
nonlinear elliptic equation that shows the balance between 
the convection and diffusion terms. Figure 1 shows a 

typical solution of an elliptic equation in infinite space. As  

ε approaches zero, the solution changes discontinuously. 

 
Figure 1. A typical solution of 𝒖𝒖𝒙 = 𝜺𝒖𝒙𝒙 

 
Fletcher(1982) described that Burgers'  equations can be 
used to model a variety of issues. Because of the shape of 
the nonlinear convection factor and the presence of a 
viscosity term, Burgers' equation can also be seen as a 
simplified and modified version of the Navier-Stokes 
equation. Burgers'   equation can be converted to the linear 
diffusion equation and the boundary condition solved. The 
equation was utilized by Lighthill (1956) as a second order 
approximation of the unstable one-dimensional Navier-
Stokes equations. For a large variety of beginning and 
boundary conditions, it has proven possible to get the 
exact solutions to the Burgers equation. Due to the slow 
convergence of solutions, numerical solutions to the 
Burgers equation were shown to be impractical for tiny 
viscosities. The viscid solution demonstrated how viscid 
form is derived using the Cole-Hopf transformation. To 
arrive at the viscous Burgers equation, they solved the 
Navier-Stokes equation. Additionally, they included a 
traffic flow in viscid Burgers' equation. 
 
In macroscopic car-following models, Nagatani (2002) 
used analytical and numerical methods to study the 
phenomenon of traffic bottlenecks. Different density 
waves can be seen in the traffic flow from uncongested, 
lower density traffic to crowded, higher density traffic. The 
non-linear map is used to explain the bunching and delay 
of the vehicles. 
 
Despite the fact that there is a vast amount of material on 
Burgers' equation. Through the equation's maximal sub 
algebras, Ouhadan et al. (2011) were able to obtain some 
exact solutions, including exponential, rational, and 
periodic ones that formed a new class of Lie point 
symmetries. The modified Hopf-Cole transformation is 
used to create the precise solutions to the forced Burgers' 
equation for both stationary and transient external forces. 
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DISCUSSION AND METHODS 
The Navier- Stokes equation and in viscid Burgers 
equation has been applied in this paper. The Burger's 
equation  
 
𝜕𝑦

𝜕𝑡
+u

𝜕𝑢

𝜕𝑥
  =   v

𝜕2 𝑢

𝜕𝑥2       (5)   

 
Is a mathematical model of viscous Burger's equation and 
when v=0 then it takes form 
 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
= 0            (6) 

is in viscid Burgers’ equations. 
 
In (6), u, ν, x and t are respectively the speed, kinematic 
viscosity, spatial coordinate and time. 
 
Burgers' Model 
Burgers'   model is a mathematical tool that is used to 
understand some of the inside behavior of the general 
problem. (Landajuela, M. 2011) has presented two models 
which are very useful. Now the two examples are 
mentioned and discussed below. 
 
Navier-Stokes Burger’s equations model 
Suppose the Navier -Stokes equations 
 

(𝜌𝜈)𝑡+∇. (𝜌𝜈𝜈 )+∇p− µ∇2v=0        (7) 
 

Here 𝝆 is density, p is the pressure, v is velocity and µ be 
the viscosity of a fluid. But when gravitational effect is 

negligible, 𝝆t=0 then ∇𝑝 = 0. Equation (7) can also 
written as 
 

𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑣. ∇𝑣) = µ∇2v +F, where F is an external force  

 
And 
 

∇𝑣 =
𝜕𝑣

𝜕𝑥
𝑖 +

𝜕𝑣

𝜕𝑦
𝑗 +

𝜕𝑣

𝜕𝑧
𝑘⃑⃑               (8) 

 

Now, substituting the value of ∇𝑣  from  (8) in equation 
(7) and breaking the term results in 
 

𝝆 
𝜕𝑣

𝜕𝑡
 +𝝆𝑣𝑥 𝜕𝑣

𝜕𝑥
 + 𝝆𝑣𝑦 𝜕𝑣

𝜕𝑦
  + 𝝆𝑣𝑧 𝜕𝑣

𝜕𝑧
+ - -

𝜕𝑝

𝜕𝑥
 -

µ(
Ə2𝑣

Ə𝑥2 +
Ə2𝑣

Ə𝑦2 +
Ə2𝑣

Ə𝑧2) =0            (9) 

 
For no pressure gradient equation (4) reduces to  
 

𝝆
𝜕𝑣

𝜕𝑡
+𝝆𝑣𝑥 𝜕𝑣

𝜕𝑥
−µ

Ə2𝑣

Ə𝑥2=0            (10) 

 
If viscosity µ=0 then  
 

𝝆 
𝜕𝑣

𝜕𝑡
 + 𝝆𝑣𝑥 𝜕𝑣

𝜕𝑥
=0                     (11) 

This equation (11) is used to solve the Burgers’ equations.  
 
Traffic flow model 
This is an important model that can be used to solve 
several problems of traffic jam on the road. Traffic flow is 
of matter of interest to anyone. It includes travelling 
shocks and refraction waves. The majority of situations 
that have solutions stem from traffic. Traffic lights used to 
flash red and green to stop cars in line from colliding.  

Suppose the flow of vehicles on the road and let 𝝆(x,t) is 

the density of vehicles and f(x,t) is the traffic flow. If 𝑝∗ is 

prohibited density defined in 0≤ 𝑝∗ ≤ 𝑝𝑚𝑎𝑥 , the density 
of vehicles and it's flow must be continuous  
 
 𝜕𝑝∗

𝜕𝑡∗ +
𝜕𝑓

𝜕𝑥∗=0           (12) 

 
The speed of vehicles reduced with increase in density of 
vehicles on the road, so the flow of vehicles is a function 
of density gradient that is  
 

f= v 𝑝∗                         (13) 

f𝑝∗=𝑝∗v(𝑝∗)-c
𝜕𝑝∗

𝜕𝑥∗       (14) 

 
where, c is constant. When density of vehicles increases on 
the road or heavy traffic, automatically speed will decrease. 
We have 
 

V(𝑝∗) =
𝑣𝑚𝑎𝑥

𝑝𝑚𝑎𝑥
 (𝑝𝑚𝑎𝑥−𝑝∗)            (15) 

 
Substituting the equation (14) and equation (15) into 
equation (13) then 
 

 𝜕𝑝∗

𝜕𝑡∗  +
𝑑

𝑑𝑥∗ [
𝑣𝑚𝑎𝑥

𝑝𝑚𝑎𝑥
− 𝑝∗] =c 

𝜕𝑝∗2

𝑑𝑥∗2(x)   (16) 

 
This equation (16) can be written in another form 
 
𝜕𝜌

𝜕𝑡
= −

𝜕

𝜕𝑥
[(𝛼 +

1

2
  𝛽𝜌)]    (17) 

 
This is the Burgers' traffic flow model. 
 

𝛼 = 𝑣𝑚= Maximum Velocity 

𝛽 = -2 
𝑣𝑚

𝑝𝑚
 = Density 

 
 
CONCLUSIONS 
The study concludes the brief review, idea, and concepts 
about the Burgers' equation and its applications in real life. 
The concepts developed by various researchers has also 
been presented in this study. The inviscid Burgers' has 
been used to derive the burger’s equation and applied this 
equation into the traffic flow. The principles of Navier- 
stokes model and Traffic flow model have also been 
discussed.  
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