Synthesis and Evaluation of Schiff Bases of 4-Amino-5-(chlorine substituted phenyl)-4H-1,2,4-triazole-3-thione as Antimicrobial Agents

Kishor Devkota¹, Govinda Pathak¹, Bhushan Shakya*¹

¹Department of Chemistry, Amrit Science Campus, Tribhuvan University, Kathmandu, Nepal
*Corresponding E-mail: bhusansakya@gmail.com

(Received: March 31, 2020; Revised: June 1, 2020 & Accepted: June 12, 2020)

Abstract

Triazole ring system has attracted a continuously growing interest of synthetic organic chemists and those dealing with the medicinal compounds due to its versatile potential to interact with biological systems. Schiff bases are also considered as one of the most biologically active compounds. The aim of the present study was to synthesize new Schiff bases bearing triazole nucleus and to assess their antimicrobial activities. Four new Schiff base derivatives of 1,2,4-triazole-3-thione were synthesized by combining two different pharmacophores viz. triazole nucleus and Schiff base moiety and were characterized by spectral techniques (UV, FT-IR, and NMR). The Schiff bases were evaluated for antibacterial (Staphylococcus aureus, Escherichia coli, and Klebsiella pneumoniae) and antifungal (Candida albicans) activities. The synthesized compounds exhibited good to moderate activities against different strains of bacteria and fungi tested.

Keywords: 1,2,4-triazole-3-thione, chlorophenyl, Schiff base, antibacterial activity, fungal inhibition

Introduction

Heterocyclic chemistry is a distinct field of chemistry with a long history and prospects due to its versatile biological activities. Heterocyclic compounds were the earliest compound known to mankind. Among the heterocycles, triazole ring systems have received considerable attention due to their applications in the fields of medicine, industry, and agriculture as agrochemicals [1-3]. All triazoles are of synthetic origin and there is no triazole ring system detected as yet in nature.

Triazoles are heterocyclic organic compounds having a five-member aromatic ring with three nitrogen atoms and two carbon atoms. It is one of a pair of isomeric chemical compounds with chemical formula C₂H₃N₃. The triazole exists in two isomeric forms viz. 1,2,3-isomer and 1,2,4-isomer, with respect to the location of nitrogen in the ring [4]. Triazoles and their derivatives are of great importance in medicinal chemistry and can be used for the synthesis of numerous heterocyclic compounds with different biological activities such as antiviral [5], antibacterial [6-8], antitubercular, antimalarial [9], antifungal [10-12], anticancer [13-15], anti-inflammatory [16], antidepressant [17], antioxidant [18], local anesthetic, antiobesity, antidiabetic, anti-Parkinson's[19], analgesic [20], anticonvulsant [21], antianxiety, antihistaminic, antiepileptic, antihypertensive [22], etc. Various drugs of medicinal uses that contains the 1,2,4-triazole nucleus have already been synthesized. Some of the drugs are anastrozole (anticancer) [23], Ribavirin (antiviral) [24], voriconazole (antifungal) [5], posaconazole (antifungal) [6], trazodone (antidepressant) [25], estazolam (anticonvulsant) [26], rizatriptan (antimigraine) [27], alprazolam (tranquilizer) [28], rilmazafone (sedative-hypnotic) [29], diniconazole (fungicidal in agriculture) [6], Bitertanol (fungicidal), triazomol (pesticidal) and paclobutrazol (plant growth regulator) [29].

One of the most investigated reactions of triazoles is the formation of Schiff bases by condensing 4-amino-1,2,4-triazole-3-thiones with aldehydes [30-
Schiff bases are the compounds carrying imine (\(>\text{C}=\text{N}<-\)) or azomethine (\(-\text{CH}=\text{N}<-\)) functional group [34]. Schiff bases possess structural similarities with natural biological substances and are also found in different enzymes such as tryptophan synthases, transaminases, transketolases etc. [35,36]. They are an important class of compounds in many fields such as analytical, biological, and inorganic chemistry and are a versatile pharmacophore [37].

Structural modifications of the triazole ring system by using different functionalities and aromatic rings are expected to result in potential candidates for antibacterial and antifungal agents. So, in the present work, some new compounds are synthesized by combining chemically different but pharmacologically compatible 1,2,4-triazole nucleus and Schiff base moiety in one frame to evaluate their antimicrobial activities.

Materials and Methods

Starting materials

4-chlorobenzoic acid, 2,4-dichlorobenzoic acid, and vanillin were purchased from Himedia, furfuraldehyde, methanol and potassium hydroxide from Fisher scientific, carbon disulphide from Merck and ethanol from Changshu Honsgsheng Fine Chemical. All chemicals and solvents used for the experiment were of synthetic grade and were used without further purification.

Physical measurements

Melting points of the synthesized compounds were determined on the Optics Technology electro-thermal apparatus by an open capillary tube. UV-Visible absorption spectra were monitored on a UV-Visible double beam spectrophotometer from Labtronics (Model LT-2802) using DMSO as a solvent. FT-IR spectra were recorded on spectrum GX Fourier transform infrared (FT-IR) spectrophotometer using the KBr pellet method. \(^1\)H-NMR and \(^{13}\)C-NMR spectra were recorded at ambient temperature on Varian VNMRS 400 MHz NMR spectrometer using DMSO as the solvent with TMS as an internal standard.

Synthesis and analyses

The compounds were synthesized from the starting materials according to Scheme 1.

Synthesis of methyl ester (1a,b) [38]

The respective substituted benzoic acid (0.1 mol) was dissolved in anhydrous methanol (50 mL) in a 250 mL round bottom flask fitted with a reflux condenser. Concentrated sulphuric acid (0.02 mol) was added and the reaction mixture subjected to reflux for 8-10 h. After the completion of the reaction, the excess methanol was removed and the contents were poured into water, neutralized with 20% (w/v) solution of sodium bicarbonate, and then dried over anhydrous magnesium sulphate.

Synthesis of acid hydrazide (2a,b) [38]

The ester (1) (0.10 mol) was dissolved in absolute ethanol (20 mL), 99% hydrazine hydrate (0.15 mol) and 99% potassium hydroxide in ethanol (0.15 mol) were added. The mixture was heated under reflux for 6-8 h. After completion of the reaction, the excess methanol was removed under reduced pressure, and the residue was poured into water and extracted with ethyl acetate. The ethyl acetate layer was dried over anhydrous magnesium sulphate. The solvent was removed under reduced pressure and the residue was purified by column chromatography using ethyl acetate:hexane (1:1). The purified product was recrystallized from methanol.

Scheme 1: Synthetic routes of Schiff bases of 1,2,4-triazole derivatives
mol) was added slowly with constant stirring and the reaction mixture was heated under reflux for 4 h. The mixture was concentrated and then cooled. The crude solid was filtered, washed with water and recrystallized from absolute ethanol to give aryl acid hydrazide.

Synthesis of dithiocarbazinate (3a,b) [39]
The acid hydrazide (2) (0.05 mol) was added to a solution of potassium hydroxide (0.075 mol) in water, and recrystallized from ethanol. A yellow solid separated was filtered, washed with water and recrystallized from absolute ethanol to give aryl acid hydrazide.

Synthesis of Schiff bases of 4-Amino-5-substituted-1,2,4-triazole-3-thione (4a,b) [40]
99% hydrazine hydrate (0.04 mol) was gradually added to the above potassium hydroxide (0.075 mol) dissolved in water (20 mL) with stirring and the mixture was refluxed gently till the evolution of hydrogen sulphide ceased. The mixture was then cooled to room temperature and diluted with 100 mL cold water containing some crushed ice and was acidified with concentrated hydrochloric acid. A yellow solid separated was filtered, washed several times with anhydrous diethyl ether, and dried in a desiccator.

Synthesis of Schiff bases of 4-Amino-5-substituted-1,2,4-triazole-3(2H)-thione (5a-5d)

To the hot ethanolic solution of aldehyde (0.01 mol) containing 5 drops of concentrated sulphuric acid, a hot ethanolic solution of the triazole (4) (0.01 mol) was added in small portions over a period of 1 h and refluxed for 3 h. The reaction mixture was cooled, filtered, and recrystallized from ethanol to give (5a-5d).

![Figure 1: Structures of synthesized Schiff bases](https://www.nepjol.info/index.php/JNCS)
Antimicrobial (antibacterial and antifungal) screening

The antimicrobial activity of the newly synthesized compounds (5a-5d) in two different concentrations (1% and 3%) were evaluated against various microorganisms, representing Gram-positive bacteria (*Staphylococcus aureus*), Gram-negative bacteria (*Escherichia coli* and *Klebsiella pneumoniae*) and fungus (*Candida albicans*) according to the cup-plate assay. The overnight culture of bacterial and fungal species from nutrient agar and potato dextrose agar respectively was adjusted to 0.5 McFarland standards and was spread on the surfaces of Muller-Hinton agar plates using a sterile cotton swab to prepare microbial lawns. The suitably spaced apart wells of 6 mm diameter were made on each agar plate and the labeled wells were loaded with 50 μL of each triazole solution. Ciprofloxacin (3%) and Ketoconazole (3%) were used as reference antibacterial and antifungal respectively. DMSO was used as a negative control. The Petri dishes were kept 30 minutes for diffusion and incubated at 37 °C for 24 h. After incubation, the diameters of the inhibition zones were measured in mm and the results of antimicrobial activities were interpreted.

Results and Discussion

Chemistry

Four new Schiff bases of 4-amino-1,2,4-triazole-3-thione (5a-d) were synthesized according to the synthetic route illustrated in scheme 1. The esters of 1,2,4-triazole with hydrazine gave (5a,b) were prepared by heating the substituted benzoic acid with methanol and a catalytic amount of conc. H$_2$SO$_4$. The reaction of 1 with hydradine hydrate in ethanol yielded corresponding aryl hydrazides (2a,b). Treatment of 2 with alcoholic potassium hydroxide and carbon disulphide resulted in the formation of corresponding potassium 3-aryl dithiocarbazate (3a,b). The ring closure of potassium 3-aryl dithiocarbazate (3a,b) excess hydradine hydrate in ethanol yielded 4-amino-5(substituted phenyl)-1,2,4-triazole-3-thione (4a,b). Condensation of 1,2,4-triazole (4a,b) with furfuraldehyde in refluxing ethanol in the presence of conc. H$_2$SO$_4$ as catalyst gave (5a,b), and while condensation with vanilline gave (5c,d).

Spectroscopic studies

The structures of the Schiff bases (5a-d) were confirmed by UV, 1H-NMR, and 13C-NMR spectral analysis.

UV-Visible analysis

The UV-Vis spectra of the compounds were studied in DMSO. The absorption spectra of the compounds

\[\nu_{\text{max}} \text{ in KBr (selected bands)} \text{ cm}^{-1} = 3363 (\text{m}), 3062 (\text{m}), 1666 (\text{m}), 1597 (\text{s}), 1512 (\text{s}), 1463 (\text{s}), 1265(\text{s}), 1296(\text{s}), 1261(\text{s}), 1261(\text{s}), 1026(\text{s}), 817 (\text{m}), 717 (\text{m}); \]

1H NMR (400MHz, DMSO-d$_{6}$) $\delta = 10.145 (1\text{H}, \text{br s}, \text{HO-}), 9.731 (1\text{H}, \text{br s}, \text{H-13}), 7.828 (1\text{H}, \text{dd}, J = 8.4, 2.0 \text{ Hz}, \text{H-8}), 7.786 (1\text{H}, \text{d}, J = 8.4, \text{ Hz}, \text{H-15}), 7.746 (1\text{H}, \text{dd}, J = 8.8, 2.0 \text{ Hz}, \text{H-11}), 7.626 (1\text{H}, \text{m}, \text{H-9}), 7.530 (1\text{H}, \text{m}, \text{H-10}), 7.438 (1\text{H}, \text{dd}, J = 8.4, 2.0 \text{ Hz}, \text{H-19}), 6.918 (1\text{H}, \text{d}, J = 11.6, \text{ H-18}), 3.833 (3\text{H}, \text{br s}, \text{CH$_3$});$ 13C NMR (100MHz, DMSO-d$_{6}$) $\delta = 178.9 (\text{C-3}), 155.0 (\text{C-13}), 152.2 (\text{C-17}), 150.7 (\text{C-16}), 148.0 (\text{C-5}), 137.3 (\text{C-11}), 134.0 (\text{C-7}), 132.4 (\text{C-9}), 131.1 (\text{C-14}), 130.9 (\text{C-8}), 125.4 (\text{C-10}), 123.5 (\text{C-6}), 122.9 (\text{C-19}), 117.6 (\text{C-18}), 113.4 (\text{C-15}), 46.0 (\text{CH$_3$}).$

5-(2,4-dichlorophenyl)-4-(4-hydroxy-3-methoxybenzylideneamino)-1,2,4-triazole-3(2H)-thione (5d)

Yellowish brown solid, yield 48% (1.879 g); mp 124 °C; UV-Visible spectrum (λ_{max}) nm = 302, 309, 322; IR ν_{max} in KBr (selected bands) cm$^{-1}$ = 3280 (m), 3209 (m), 1654 (m), 1581 (s), 1482 (s), 1463 (s), 1261(m), 1291 (s), 1261 (s), 1031 (m), 814 (s), 734 (m); 1H NMR (400MHz, DMSO-d$_{6}$) $\delta = 10.255, 10.029 (1\text{H}, \text{br s}, \text{HO-}), 7.965, 9.508 (1\text{H}, \text{br s}, \text{H-13}, \text{E and Z geometrical isomers}), 7.929, 7.736 (1\text{H}, \text{d}, J = 8.4 \text{ Hz}, \text{H-11}, \text{E and Z geometrical isomers}), 7.908, 7.859 (1\text{H}, \text{d}, J = 2.0 \text{ Hz}, \text{H-8, E and Z geometrical isomers}), 7.663-7.608 (1\text{H}, \text{m}, \text{H-15}, \text{E and Z geometrical isomers}), 7.428, 7.228 (1\text{H}, \text{dd}, J = 8.4, 2.0 \text{ Hz}, \text{H-10, E and Z geometrical isomers}), 7.383, 7.260 (1\text{H}, \text{d}, J = 1.6 \text{ Hz}, \text{H-19, E and Z geometrical isomers}), 6.964, 6.881 (1\text{H}, \text{d}, J = 8.4 \text{ Hz}, \text{H-18, E and Z geometrical isomers}), 3.835, 3.751 (3\text{H}, \text{br s}, \text{CH$_3$}, \text{E and Z geometrical isomers});$ 13C NMR (100MHz, DMSO-d$_{6}$) $\delta = 178.8 (\text{C-3}), 159.5 (\text{C-13}), 150.0 (\text{C-17}), 149.7 (\text{C-15}), 148.0 (\text{C-5}), 134.2 (\text{C-7}), 133.4 (\text{C-14}), 129.1 (\text{C-11}), 128.9 (\text{C-8}), 127.4 (\text{C-9}), 127.0 (\text{C-10}), 122.9 (\text{C-19}), 121.1 (\text{C-6}), 117.0 (\text{C-18}), 112.1 (\text{C-15}), 46.0 (\text{CH$_3$}).$
(5a – 5d) exhibited three-bands around 302 nm, 309 nm, and 344 nm. The first two peaks are attributable to aromatic C=C and azomethine C=N (π→π*) transitions while the third band is attributable to the n→π* transitions associated with the non-bonding electron pair of the azomethine nitrogen and sulphur atoms [42].

FT-IR analysis

In the IR spectra of compounds 5a-d, no absorption bands were detected at about 1651–1707 cm⁻¹ indicating the absence of C=O group of compound 3a-b which is evidence for the conversion of dithiocarbinate to triazoles [43]. The most characteristic absorptions due to the triazole nucleus are observed at 1666-1614 cm⁻¹ (C=N), and 1290-1261 cm⁻¹ (C=S) [35]. The absence of medium intensity bands in the region 3500-3200 cm⁻¹ attributable to NH₂ protons of 4a-b demonstrates the formation of Schiff bases [44]. Since the 1,2,4-triazole contains thioamide –NH-C=S functional group, the sulphur at 3-position of the ring can be incorporated as a thiol (Fig. 2a) [45] or thione (Fig. 2b) [46] function. There is no absorbance band in the region c.a. 2600 cm⁻¹ attributable to stretching of S–H, but the presence of band ν(N–H) stretching vibration at 3084-3092 cm⁻¹ indicating that the triazole Schiff base remains in thione form [47]. The strong absorption at 814 cm⁻¹ is due to the stretching vibration of the (C-Cl) group.

1H-NMR analysis

In 1H-NMR spectra of 5a-d, the absence of signals approximately at δ_H 5.76 ppm (NH₂) and the presence of a sharp azomethine group (H–C=N) singlet at δ_H 9.741-9.508 ppm demonstrate the formation of Schiff bases. [48]. The lack of the exchangeable SH signal c.a. 4.0 ppm indicated the predominance of the thione tautomer in DMSO-d₆ [49]. A singlet appeared in the downfield region at δ_H 10.145 and 10.255 ppm in the 1H-NMR spectra of 5c and 5d respectively corresponded to the phenolic OH, proton [50]. The signals for the aromatic ring protons appeared at their usual chemical shifts with δ_H 6.741–7.989 ppm [51]. Besides, -OCH₃ group of compound 5c and 5d resonated at 3.833 and 3.835 ppm respectively integrating three protons as a singlet. [52].

13C-NMR analysis

The 13C-NMR signals at δ_C 134.0 ppm (5a), 138.8 ppm (5b), 155.0 ppm (5c), and 159.5 ppm (5d) due to the azomethine carbon confirm the formation of Schiff bases [53]. Moreover, a downfield chemical shift at δ_C 179.9–178.8 ppm indicates the existence of the C=S group and thus the predominance of the thione tautomer in solution [54]. The aromatic carbons of the phenyl rings gave signals between δ_C 112.1–152.2 ppm while those of the furanyl ring gave signals between δ_C 111.5–149.0 ppm [55]. In 5b and 5d the signal at 46.0 ppm i.e. in the aliphatic region is attributable to the methoxy carbon (OCH₃) [52].

Antimicrobial screening

The antimicrobial screening revealed that the tested compounds showed moderate to good activity at the concentrations of 1% and 3% in DMSO.

A) *Staphylococcus aureus*

B) *Escherichia coli*

C) *Klebsiella pneumoniae*

D) *Candida albicans*

Figure 2: Tautomeric forms of Schiff base (a) thiol and (b) thione

Figure 3: Antimicrobial activities of synthesized compounds against (A) S. aureus (B) E. coli (C) K. pneumonia, and (D) C. albicans
The compounds showed comparatively good activity against Gram-negative bacterial strains compared to the ciprofloxacin reference.

The results are summarized in Table 1.

All four Schiff bases showed promising antibacterial activity against *E. coli* than other bacterial strains. Based on the zone of inhibition produced against the tested bacterial species, compound 5b showed was found to be more effective than other compounds (5a, 5c, and 5d).

In the case of antifungal activity, all the synthesized compounds exhibited moderate activity against a fungal strain *Candida albicans* (yeast) compared to the standard drug ketoconazol. The compound 5d showed more potent activity than other compounds (5a, 5b, and 5c) against a fungal strain.

Compounds 5a and 5c with 2-chlorophenyl group at C-5 showed greater antibacterial activity than compounds 5b and 5d containing 2,4-dichlorophenyl group. The addition of electron-withdrawing Cl atom on the phenyl ring at C-5 therefore tends to decrease antibacterial activity [56]. On the other hand, Compounds 5a and 5b with a furanyl group on azomethine carbon (–CH=N–) showed more antibacterial activity compared to compounds 5c and 5d with a 4-hydroxy-3-methoxyphenyl group. The bulkiness of group on the azomethine carbon tends to decrease antibacterial activity. In the case of antifungal activity, the observations were just reverse. The results are in agreement with the observation that electron density of substituent at the C-5 position of the 1,2,4-triazole nucleus and on the azomethine carbon determine the antibacterial and antifungal activities [57]. The small difference in the antimicrobial activity of synthesized compounds suggests that the triazole nucleus may be playing an important role in the microbial inhibition.

Conclusion

The four new novel 1,2,4-triazole derivatives (5a, 5b, 5c & 5d) were prepared successfully in the laboratory. All the synthesized compounds were obtained in good yield. The spectroscopic techniques (UV, FT-IR, 1H-NMR, and 13C-NMR) confirmed the structure of the newly-synthesized derivatives. The synthesized compounds act as better antibacterial agents than as antifungal agents. The compound 5a showed prominent bacterial inhibition whereas compound 5d exhibited good fungal inhibition among the synthesized compounds. The increase in electron deficiency of the phenyl group at C-5 tends to decrease the antibacterial activity, while it tends to enhance the antifungal activity. Moreover, the bulkiness of substituent at azomethine carbon also tends to decrease the antibacterial activity, but increase the antifungal activity.

Acknowledgements

Authors express our sincere thanks to Dr. Deval Prasad Bhattarai (Chonbuk National University, South Korea) for the FT-IR spectra, Dr. Agni Koirala (Sogang University, South Korea) for NMR spectra,
Hari Bhakta Oli (Department of Chemistry, Amrit Campus) for the UV-Visible data acquisition and NIST College, Khusibu, Kathmandu for the antimicrobial screening.

References

3. L. Shao, X. Zhou, Q. Zhang, J-B. Liu, J. Zhong and J-X. Fang, Synthesis, structure, and biological activity of novel 1H-1,2,4-triazol-1-yl-thiazole derivatives, _Synthetic Communications_, 2007, **37**(2), 199-207. (DOI: 10.1080/00397910601031629)

8. M. Koparr and C. Orek, Synthesis and biological activities of some novel aminomethyl derivatives of 5,5'-butane-1,4-diyl-bis[4-allyl-2,4-dihydro-3H-1,2,4-triazole-3-thiones, _Chemical Science Transactions_, 2013, **2**(S1), 181-191. (DOI: 10.7598/cst2013.480)

14. K. Sztanke, T. Tuzimski, J. Rzymowska, K. Pasternak and M. Kandefer-Szerszen, Synthesis, determination of the lipophilicity, anticancer and antimicrobial properties of some fused 1,2,4-triazole, _European Journal of Medicinal Chemistry_, 2007, **43**(2), 404-419. (DOI: 10.1016/j.ejmech.2007.03.033)

20. M. Amir, H. Kumar, and S. A. Javed, Non-carboxylic analogues of naproxen: design, synthesis, and pharmacological evaluation of some 1,3,4-oxadiazole/thiadiazole and 1,2,4-triazole derivatives, Archiv Pharmazie (Weinheim), 2007, 340(11), 577-585. (DOI: 10.1002/ardp.200700065)

30. F. Zhang, Q. Wen, S-F. Wang, B. S. Karim, Y-S. Yang, J-J. Liu, W-M. Zhang and H-L. Zhu, Design synthesis and antibacterial activities of 5-(pyrazin-2-yl)-4H-1,2,4-triazole-3-thiol derivatives containing Schiff base formation as FabH inhibitory, Bioorganic Medicinal

33. G. Roman, Schiff bases and triazolothiadiazines derived from a thiophene-substituted 4-amino-3-mercapto-1,2,4-triazole-3-thiones and 6-aryl-3-(2-furanyl)-7H-1,2,4-triazole[3,4-b][1,3,4] thiadiazines, Archiv der Pharmazie, 1996, 329(8-9), 427-430. (DOI: 10.1002/ardp.19963290811)

34. J. R. Reid and N. D. Heindel, Improved synthesis of 5-substituted-4-amino-3-mercaptopo-(4H)-1,2,4-triazoles, Journal of Heterocyclic Chemistry, 1976, 13, 925-926. (DOI: 10.1002/jhet.5570130450)

37. O. D. Cretu, S. F. Barbuceanu, G. Saramet and C. Draghici, Synthesis and characterization of some 1,2,4-triazole-3-thiones obtained from intramolecular cyclization of new 1-(4-(4-X-phenylsulfonyl)benzoyl)-4-(4-iodophenyl)-3-thiosemicarbazides, Journal of Serbian Chemical Society, 2010, 75(11), 1463-1471. (DOI: 10.2298/JSC091221122C)

39. N. S. Habib, R. Soliman, F. A. Ashour and M. El-Taiebi, Synthesis and antimicrobial testing of 4H-1,2,4-triazole, 1,2,4-triazolo[3,4-b][1,3,4] thiadiazole and 1,2,4-triazolo[3,4-b][1,3,4] thiadiazine derivatives of 1H-benzimidazole, Die Pharmazie, 1997, 52(11), 844-847.

48. M. R. Aouad, Synthesis, characterization and antimicrobial evaluation of some new Schiff, Mannich and acetylenic Mannich bases incorporating a 1,2,4-triazole nucleus, *Molecules*, 2014, **19**(11), 18897-18910. DOI: 10.3390/molecules191118897

53. Y. M. Issa, H. B. Hassib and H. E. Abdelaal, 1H NMR, 1C NMR and mass spectral studies of some Schiff bases derived from 3-amino-1,2,4-triazole, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, 2009, **74**(4), 902-910. (DOI: 10.1016/j.saa.2009.08.042)

