Phytochemical Screening and In Vitro Antioxidant Activity of Three Nepalese Plants

Samiksha Poudel¹, Sabina Adhikari¹, Anil Tiwari¹, Shiva Acharya¹, Sumit Bahadur Baruwal Chhetri¹,², Rupesh Adhikari¹,³, Prakash Poudel³, and Deepa Khatri¹,³*

¹Department of Pharmacy, Novel Academy, Purbanchal University, Pokhara 33700, NEPAL
²Separation, Eurofins, Malvern, Pennsylvania, USA
³Pharmacy Program, Gandaki University, Pokhara 33700, Nepal

Corresponding Author: Deepa Khatri
deejakhari1993@gmail.com
deepa.khatri@gandakiuniversity.edu.np

Abstract

Nepal is rich in plant resources and holds the 49th spot in the world’s biodiversity. The variation in altitude, climatic conditions, and geographical features across Nepal make it a rich source of Medicinal and Aromatic Plants (MAPs). The study was carried out to perform the preliminary phytochemical screening and assess antioxidant properties in Ficus neriifolia, Rubus treutleri, and Periploca calophylla. Plants were selected based on their ethnomedical use and scant scientific research. Ethanol (70%) and aqueous extracts were prepared by using the cold maceration method and preliminary phytochemical screening was conducted using the previously established method to test the presence of biologically active phytoconstituent. In vitro antioxidant activity was examined by DPPH free radical scavenging assay. The results revealed the variation in phytoconstituents among the 70% ethanol and aqueous extracts of all three plant samples. Among the samples, 70% ethanol extract of P. calophylla exhibited the highest antioxidant activity with an IC₅₀ value of 94.36 µg/mL, while the aqueous extract of F. neriifolia showed the minimum antioxidant activity with an IC₅₀ value of 902.23 µg/mL. This study indicates that these plant samples possess potent natural antioxidants capable of scavenging free radicals that cause cellular damage and contribute to various diseases in our bodies.

Keywords: DPPH, phytochemicals, Periploca calophylla, Ficus neriifolia, Rubus treutleri

ISSN: 2091-0304 (print)
DOI: 10.3126/jncs.v44i1.62681
1. Introduction
The diverse geographical, altitudinal, climatic, and ecosystem variation of Nepal has led to the availability of a wide range of flora and fauna. In Nepal, about 1515 to 2331 Medicinal and Aromatic Plants (MAPs) have been used for the treatment of several ailments [1]. Medicinal plants have been used as the source of medicine in allopathic systems and alternative systems of medicine like Ayurveda, Homeopathy, Unani, Siddha, and Shamanistic systems [2]. The knowledge about the use of medicinal plants has been transferred from one generation to another generation mainly through oral means of communication [3]. However, the lack of proper documentation, hesitation to share the knowledge with common people, and difficulties in the collection of medicinal plants have led to many medicinal plants being scientifically unexplored.

In the present study, three Nepalese plants were selected based on their traditional medicinal uses and limited scientific exposure. This study was conducted to explore the phytochemical constituents and antioxidant activity, which can be the basis for future investigations on their pharmacological properties. The selected plants for the study are briefly described here.

Ficus neriifolia Sm. is one of the common fodder species found in Nepal, Bhutan, India, China, Indochina, and Myanmar belonging to the Moraceae family. The twigs and foliage of the tree can be collected throughout the year for livestock purposes [4-5]. It is found at the altitude of 1400-2200 m in Nepal. Traditionally, its bark and stem juice were used in boils and conjunctivitis [6].

Rubus treutleri Hook. F. is a shrub belonging to the family Rosaceae, distributed throughout Nepal, India, Bhutan, and China. It is about 2 m tall with stalked, alternate leaves, slightly hairy on both surfaces, and the base is cordate. Flowers are white and fruits are red. The flowering season is from June to August and the fruiting season is in between September and November. It is propagated by roots, offshoots, or seeds [7]. In the Tanahun district of Nepal, the roots are traditionally used in combination with other plant species including *Ficus racemosa*, *Castanopsis indica*, *Poranopsis paniculata*, *Cheilocostus speciosus*, *Pogostemon benghalensis* for the treatment of burning sensation of stomach, urine, feet, and hands.

Periploca calophylla (Wight) Falc. is a trailing shrub under the family Apocynaceae, found in Nepal, India, Bhutan, Tibet, and Central West China. Leaves are lanceolate, long acuminate, leathery, and shiny stalked. Flowers occur in lax cymes. The flowering season is from April to May and the fruiting season is from November to January. It is propagated by seeds. In Nepal, it is used for treating multiple ailments such as bone fractures and muscle pain [8]. Stem of the plant is used for the treatment of traumatic injury and snakebite [9].

2. Materials and Methods
2.1 Plant Materials
The plant species (Table 1) were collected from the Kaski and Baglung districts of Nepal during April. Identification of plants was done with the help of a botanist and by comparing the herbarium plant databases. The herbarium of plant samples was prepared, registered, and stored at the Pharmacognosy Laboratory of Novel Academy, Purbanchal University, Pokhara, Nepal.
Table 1. List of plants used in the study

<table>
<thead>
<tr>
<th>S. N.</th>
<th>Plants</th>
<th>Local name</th>
<th>Parts collected</th>
<th>Place of collection</th>
<th>Herbarium registration number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ficus neriifolia</td>
<td>Dudhilo</td>
<td>Leaves</td>
<td>Baglung</td>
<td>NAH-2022-01</td>
</tr>
<tr>
<td>2</td>
<td>Rubus treutleri</td>
<td>Thulo aiselu</td>
<td>Stem</td>
<td>Kaski</td>
<td>NAH-2022-02</td>
</tr>
<tr>
<td>3</td>
<td>Periploca calophylla</td>
<td>Sikari laharo</td>
<td>Aerial parts</td>
<td>Kaski</td>
<td>NAH-2022-03</td>
</tr>
</tbody>
</table>

2.2 Extraction and Yield Value Calculation

The collected plant samples were dedusted, washed thoroughly with clean water, and chopped into pieces. The chopped plant materials were shade-dried and crushed into coarse powder by using an electric grinder. The dried plant samples (15 g) were macerated with 70% ethanol (150 mL) and distilled water (150 mL) at the sample: solvent ratio of 1:10 (w/v) for 48 hours at room temperature. The extracts obtained were concentrated using a rotary evaporator under reduced pressure (40°C, 90 rpm). Then, the extracts were packed in closed vials and stored at 4°C until further experiment was performed. The extract yield percentage was calculated using the formula:

\[
\text{Extract Yield Percentage} = \frac{\text{Weight of extract after solvent evaporation}}{\text{Weight of dried plant sample taken}} \times 100
\]

2.3 Phytochemical Screening

Freshly prepared plant extracts were subjected to

Table 2. List of phytochemical screening methods used in the study

<table>
<thead>
<tr>
<th>Phytoconstituents</th>
<th>Tests</th>
<th>Methods</th>
<th>Observations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbohydrates</td>
<td>Molisch’s test</td>
<td>Extract + Molisch’s reagent + sulphuric acid</td>
<td>Purple/violet ring at the junction</td>
</tr>
<tr>
<td></td>
<td>Benedict’s Test</td>
<td>(Extract + Benedict's reagent) heated</td>
<td>Green/orange/red precipitate indicates the presence of reducing sugars</td>
</tr>
<tr>
<td></td>
<td>Fehling’s test</td>
<td>(Extract + Fehling’s A + Fehling’s B) heated</td>
<td>Red precipitate indicates the presence of reducing sugars</td>
</tr>
<tr>
<td>Flavonoids</td>
<td>Shinoda test</td>
<td>Extract + ethanol + a few pieces of magnesium metal + conc. HCl</td>
<td>The orange color indicates the presence of flavones. Red or magenta color indicates the presence of flavonols.</td>
</tr>
<tr>
<td></td>
<td>Alkaline test</td>
<td>Extract + 2% NaOH</td>
<td>Yellow color that becomes colorless with the addition of HCl</td>
</tr>
<tr>
<td>Glycosides</td>
<td>Killer-killiani’s test</td>
<td>Extract + glacial acetic acid + 2% FeCl₃+ sulphuric acid</td>
<td>The formation of a brown ring between the layers indicates the presence of cardiac steroidal glycosides</td>
</tr>
<tr>
<td>Saponins</td>
<td>Froth test</td>
<td>The filtrate is shaken vigorously with distilled water</td>
<td>Persistent foam for 2-5 minutes</td>
</tr>
<tr>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>Extract + 5% ferric chloride</td>
<td>A dark blue precipitate indicates hydrolyzable tannin. Green precipitate indicates condensed tannin.</td>
</tr>
<tr>
<td>Quinones</td>
<td>Sulphuric acid test</td>
<td>Extract + isopropyl alcohol + conc. sulphuric acid</td>
<td>Red color</td>
</tr>
<tr>
<td>Terpenoids</td>
<td>Salkowski test</td>
<td>Extract + chloroform + conc. sulphuric acid</td>
<td>Reddish-brown precipitate at the interface</td>
</tr>
<tr>
<td>Proteins</td>
<td>Xanthoproteic Test</td>
<td>Filtrate + ethanol + conc. Nitric acid (few drops)</td>
<td>Yellow color</td>
</tr>
</tbody>
</table>
phytochemical screening to detect the presence of phytoconstituents such as carbohydrates, flavonoids, glycosides, saponins, tannins, quinones, terpenoids, and proteins by following the standard methods [10-15] as described in Table 2.

2.4 Antioxidant Activity

DPPH free radical scavenging assay [16] was used to determine the antioxidant activity of the plant extracts. 50 μL of each extract of various concentrations (250 μg/mL, 125 μg/mL, 62.5 μg/mL, 31.25 μg/mL, 15.62 μg/mL, and 7.81 μg/mL) was mixed with 150 μL of ethanolic solution of DPPH (150 μM) in 96 well plates. The reaction mixture was incubated for 30 minutes at room temperature in dark condition and the absorbance value of the resulting solution was measured at 517 nm using an ELISA plate analyzer. Upon reduction, the color of the solution faded from violet to pale yellow. Percent DPPH free radical scavenging activity was calculated as follows:

\[
\text{DPPH free radical scavenging activity} = \left(\frac{\text{Absorbance of control} - \text{Absorbance of sample}}{\text{Absorbance of control}} \right) \times 100
\]

Control was the test solution without a sample. Ascorbic acid was used as the standard. The antioxidant activity was expressed in terms of IC_{50} and was calculated by plotting a graph of percentage DPPH free radical scavenging activity against concentration.

2.5 Statistical Analysis

Antioxidant assay was performed in triplicate and the results were expressed as mean±standard deviation (SD). The IC_{50} was calculated using a linear regression equation. All statistical analysis was carried out through Microsoft Excel 2007.

3. Results and Discussion

3.1 Extract Yield Percentage

The extraction of the selected plant samples was carried out in 70% ethanol and distilled water. The extract yield percentage of the plant samples is given in Table 3. Among the different plant samples, the yield percentage was found the highest in the aqueous extract of P. calophylla.

Table 3. Extract yield percentage of plant samples

<table>
<thead>
<tr>
<th>Plants names</th>
<th>Weight of extract after solvent evaporation (70% Ethanol extract)</th>
<th>Yield % (70% Ethanol extract)</th>
<th>Weight of extract after solvent evaporation (Aqueous extract)</th>
<th>Yield % (Aqueous extract)</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. nerifolia</td>
<td>2.05 g</td>
<td>13.67</td>
<td>1.60 g</td>
<td>10.67</td>
</tr>
<tr>
<td>R. treutleri</td>
<td>1.31 g</td>
<td>8.73</td>
<td>1.67 g</td>
<td>11.13</td>
</tr>
<tr>
<td>P. calophylla</td>
<td>1.46 g</td>
<td>9.73</td>
<td>2.49 g</td>
<td>16.6</td>
</tr>
</tbody>
</table>

Wide varieties of solvents such as water, ethanol, methanol, acetone, etc., have been used for the extraction of phytoconstituents and their choice depends on the bioactive constituents to be extracted [17]. In the present study, 70% ethanol and distilled water were used as the extraction solvents and the effect of these extraction solvents on extraction yield, phytochemical constituents, and antioxidant activity were studied. More bioactive compounds are extracted in 70% ethanol than absolute ethanol as the addition...
of water to ethanol improves the extraction rate. Water is known as a universal solvent and has been reported to be the better solvent for the extraction of phenolic compounds [18-21]. Traditionally, medicinal plants were taken with water, therefore, to explore the phytochemicals extracted with water; water was used as an extraction solvent in the present study.

In the present study, the yield value of *F. neriifolia* was found higher in 70% ethanol extract than in aqueous extract. This result was consistent with previous studies [21-23], where the ethanol extract of different plants showed a high yield value in comparison to the aqueous extract. In our study, the yield value of *R. treutleri* and *P. calophylla* was found higher in aqueous extract than in 70% ethanol extract. Several studies [17, 24-26] have also reported a similar finding, where yield value was found higher in aqueous extract than in ethanol extract. The differences in the extract yield values of these plant samples are due to the differences in the presence of bioactive constituents in them. The higher the solubility of phytoconstituents in the solvent, the higher is their extract yield value [27].

3.2 Phytochemical Screening

The results obtained from qualitative phytochemical screening of different plant extracts are presented in Table 4. The phytochemical evaluations were graded as (−) absence, (+) poor, (++) moderate, (+++) abundant based on the intensity of the colored reaction product of the test compared to the control in each case.

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Phytocemicals</th>
<th>Tests</th>
<th>F. neriifolia</th>
<th>R. treutleri</th>
<th>P. calophylla</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Carbohydrates</td>
<td>Molisch’s test</td>
<td>+++</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Benedict’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fehling’s test</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>Flavonoids</td>
<td>Shinoda test</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alkaline test</td>
<td>+++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>3</td>
<td>Glycosides</td>
<td>Killer-killani’s test</td>
<td>-</td>
<td>-</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>Saponins</td>
<td>Froth test</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Tannins</td>
<td>Ferric chloride test</td>
<td>++</td>
<td>+</td>
<td>++</td>
</tr>
<tr>
<td>6</td>
<td>Quinones</td>
<td>Sulphuric acid test</td>
<td>+++</td>
<td>-</td>
<td>++</td>
</tr>
<tr>
<td>7</td>
<td>Terpenoids</td>
<td>Salkowski test</td>
<td>++</td>
<td>+</td>
<td>+++</td>
</tr>
<tr>
<td>8</td>
<td>Proteins</td>
<td>Xanthoproteic test</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note: E = 70% Ethanol extract; A = Aqueous extract
The 70% ethanol extract of *F. neriifolia* contains phytochemicals like carbohydrates, flavonoids, tannins, saponins, quinones, terpenoids, and proteins in different amounts, while the aqueous extract was devoid of quinones and protein. Both 70% ethanol and aqueous extracts were devoid of cardiac glycosides. In Shinoda test for flavonoids, *F. neriifolia* extract showed an orange color appearance, which indicates the presence of flavones. Phytochemical screening of different *Ficus* species has previously revealed the presence of flavonols, pentacyclic triterpenes, triterpenoids, alkaloids, balsams, carbohydrates, free anthraquinones, tannins, glycosides, resins, sterols and saponins [28].

Both the 70% ethanol and aqueous extract of *R. treutleri* contain phytochemicals such as carbohydrates, flavonoids, tannins, and terpenoids. Saponins were absent in both extracts, whereas quinones and protein were present only in the aqueous extract and cardiac glycoside was present only in the 70% ethanol extract. In the shinoda test for flavonoids, *R. treutleri* extract showed a magenta color appearance, which indicates the presence of flavonol. Basak et al. [2018] have previously reported the presence of phytochemical constituents such as proteins, tannins, phlobatannin, terpenoid, alkaloids, saponins, lipids, anthocyanins/betacyanin in a 70% methanol extract of ripe fruits of *R. treutleri* [29]. In the present study, the 70% ethanol extract of the *R. treutleri* stem was devoid of saponins. The differences in phytochemical constituents may be due to differences in plant parts used, solvent used, extraction method, geographical location of plants collected, etc.

Similarly, the 70% ethanol and aqueous extracts of *P. calophylla* revealed the presence of carbohydrates, flavonoids, saponins, tannins, and terpenoids. Both extracts were devoid of quinones, whereas cardiac glycosides and proteins were present only in the 70% ethanol extract. In Shinoda test for flavonoids, *P. calophylla* extract showed an orange color appearance, which indicates the presence of flavones. The relative amounts of phytochemicals were found to be more in 70% ethanol extract than in aqueous extract.

Many studies [30-33] have reported that different phytoconstituents such as tannins, flavonoids, terpenoids, saponins, phenols, and glycosides possess several biological activities such as anti-inflammatory, antioxidant, antidiabetic, antimicrobial, anticancer, antioxidant activities, etc. The presence of various phytoconstituents in these plant extracts might also contribute to the various biological actions, so further research should be conducted to explore their biological activity.

3.3 Antioxidant Activity

The antioxidant activity of the plant samples was carried out by DPPH free radical scavenging assay. The DPPH free radical scavenging activity of 70% ethanol and aqueous extract of plant samples are shown in Figure 1 and Figure 2, respectively. In the present study, the antioxidant activity increases with an increase in the concentration of the extract. The antioxidant activity was found higher in 70% ethanol extract in comparison to aqueous extract.
In the 70% ethanol extract, DPPH radical scavenging activity was found highest in *P. calophylla* (IC$_{50}$ value = 94.36 µg/mL) and lowest in *F. neriifolia* (IC$_{50}$ value = 233.36 µg/mL) in comparison to standard ascorbic acid (IC$_{50}$ value = 24.28 µg/mL).

In aqueous extract, DPPH radical scavenging activity was found highest in *R. treutleri* (IC$_{50}$ value = 274.64 µg/mL) and lowest in *F. neriifolia* (IC$_{50}$ value = 902.23 µg/mL) in comparison to standard ascorbic acid (IC$_{50}$ value = 24.28 µg/mL).

In the present study, the lowest antioxidant activity was found both in 70% ethanol and an aqueous extract of *F. neriifolia*. The relative number of secondary metabolites was also found less in *F. neriifolia* than in other extracts. This could be the possible reason behind the lowest antioxidant activity exhibited by *F. neriifolia*. Similarly, in this study, 70% ethanol and aqueous extracts of *R. treutleri* stem have shown antioxidant activity with an IC$_{50}$ value of 105.4 µg/mL and 274.64 µg/mL, respectively. In a previous study, it was reported that a methanol extract from fruits of *R. treutleri* showed DPPH free radical scavenging activity with an IC$_{50}$ value of 60.13 µg/mL [29]. Poudel et al. (2019) had previously reported that ethanol and aqueous extracts of *P. calophylla* stem exhibit antioxidant activity with an IC$_{50}$ value of 11.69 µg/mL and 9.03 µg/mL, respectively [26]. The variation in antioxidant activity in different studies may be due to the difference in the amount and types of phytochemicals present in different parts of the plant and the disparity between the solvents and methods used for the extraction.

The antioxidant activity of plant samples may be attributed to the presence of different phytochemicals such as flavonoids, saponins, tannins,
terpenoids, proteins, etc. Flavonoids have been reported to be an antioxidant by inhibiting free radical-generating enzymes like xanthine oxidase, lipoygenase, protein kinase C, cyclooxygenase, microsomal monoxygenase, and NADPH oxidase [34, 35]. Tannins function as antioxidants because of their capacity to interfere with oxidation reactions, chelate metal ions, and primarily can donate hydrogen atoms to oxidants [36]. Saponins show antioxidant activity by inhibiting the production of ROS and scavenging free radicals [37]. Terpenoids are an important class of phytoconstituents that show prominent antioxidant activity through their hydrogen-donating capacity and radical scavenging properties [38]. The protein shows unique antioxidant activity by inactivating ROS, reducing hydroperoxides, and chelating prooxidative transition metals [39].

4. Conclusion
The result of this study revealed that both the 70% ethanol and aqueous extract of all three plants F. nerifolia, R. treutleri, and P. calophylla contain a diverse array of secondary metabolites. Among the studied plant samples, the 70% ethanol extract of P. calophylla displayed notable antioxidant activity, which might be due to the presence of phytoconstituents such as polyphenols, flavonoids, and tannins. This plant can be a potent source of natural antioxidants, which could aid in preventing various oxidative stress-related conditions potentially harmful to cellular physiology and cause several diseases. Further investigations can be performed to determine the particular mechanism and identify the specific chemical constituents responsible for exhibiting antioxidant activity.

Disclosure
The authors declare no conflicts of interest for this study.

Acknowledgments
The authors would like to acknowledge Novel Academy, Purbanchal University, and Gandaki Province Academy of Science and Technology (GPAST), Gandaki Province, Nepal, for providing the necessary laboratory facilities to conduct this study.

References
4. Y.R. Subedi, R. Mulia, E. Cedamon, B. Lusiana, K. Shrestha and I. Nuberg, Local knowledge on factors

19. P. Siddhiraju and K. Becker, Antioxidant properties of various solvent extracts of total phenolic
constituents from three different agroclimatic origins of drumstick tree (*Moringa oleifera* Lam.) leaves, *Journal of Agricultural and Food Chemistry*, 2003, **51**(8), 2144-2155.

33. Y. Zhang, P. Cai, G. Cheng and Y. Zhang, A brief review of phenolic compounds identified from plants: Their extraction, analysis, and biological activity, *Natural Product Communications*, 2022, **17**(1), 1934578X211069721.

