ABSTRACT

Introduction: Pain is associated with higher perioperative morbidity in fracture patients. Fascia iliaca compartment block is a simple, inexpensive, and effective method of analgesia for femoral fracture surgeries. Many adjuvants have been used with local anaesthetics to prolong post-operative analgesia. Aims: To assess the effects of dexamethasone as an adjuvant to fascia iliaca compartment block on prolongation of post-operative analgesia in patients undergoing femoral fracture surgeries. Methods: Seventy patients aged, 18-65 years with American Society of Anaesthesiologist-Physical Status I and II, undergoing femoral fracture surgery, were randomly assigned to two groups, n=35 each, who received standard subarachnoid block. Ultrasound guided Fascia iliaca compartment block was given after completion of surgery with 20ml of 0.35% ropivacaine + 2ml normal saline to group one or 20ml of 0.35% ropivacaine + 2ml dexamethasone(4mg/ml) to group 2. Total duration of analgesia and total rescue analgesic requirement in the first post operative day were noted after successful block. Results: The demographic information for the two groups was comparable. The duration of postoperative analgesia was prolonged in patients receiving dexamethasone adjuvant (541 ± 167 vs. 638± 165 mins, p = 0.018; Mean difference -97). Patients receiving dexamethasone adjuvant required significantly less postoperative rescue analgesics for the first 24 hours (tramadol 88 ± 32 vs 65 ± 23 mg, p = 0.001; Mean difference 23). Conclusion: Dexamethasone, added to Fascia Iliaca Compartment Block, as an adjuvant, significantly prolongs the postoperative analgesic effect thereby, reducing the need for rescue analgesic in the first postoperative day.

Keywords: Dexamethasone, Fascia Iliaca Compartment Block, Postoperative analgesia, Ropivacaine

Authors:
1. Dr. Sagun Sharma
2. Dr. Pankaj Baral
3. Dr. Parasmani Shah
4. Ms. Asmita Rayamajhi

1Department of Anaesthesiology, Nepalgunj Medical College and Teaching Hospital, Banke, Nepal
2Department of Anesthesiology, Pokhara Academy of Health Sciences, Pokhara, Kashi, Nepal
3Department of Anesthesiology, Nobel Medical College and Teaching Hospital, Biratnagar, Nepal
4Kapilvastu Integrated Development Services (KIDS)

Address for Correspondence:
Dr. Sagun Sharma
Lecturer
Department of Anaesthesiology
Nepalgunj Medical College and Teaching Hospital
Kohalpur, Banke, Nepal
Email: sharmasagun001@gmail.com

INTRODUCTION

Pain is one of the important factors associated with higher perioperative morbidity in fracture patients.¹ Negative clinical outcomes associated with inadequately managed postoperative pain include atelectasis and pulmonary infection, tachycardia and hypertension, delayed normal process of healing, myocardial ischemia / infarct, cardiac failure, deep vein thrombosis, postoperative ileus, postoperative urinary retention and infection related complications in surgical patients.²³ Postoperative pain relief can be achieved by various methods including parenteral NSAIDS, neuraxial local analgesics and narcotics, epidural analgesia, peripheral nerve block, wound infiltration and patient controlled IV analgesia with opioids.¹ The fascia iliaca compartment block (FICB) is a simple, inexpensive, and effective method of analgesia for femoral shaft fracture.⁴ Compared to bupivacaine, ropivacaine, is less cardio/neurotoxic and produces more intense analgesia with lesser motor blockade.⁵ Many adjuvants like epinephrine, clonidine, opioids, ketamine, dexamethasone and dexmedetomidine have been used with local anaesthetics to prolong the post-operative analgesia.⁶ However, dexamethasone has been shown to be effective in a small number of preclinical⁷ and clinical studies⁸ hence, we designed this prospective, randomized double blinded study to investigate it’s analgesic effects as an adjuvant to ropivacaine on FICB. The aim of this study was to assess the duration of post-op analgesia in patients undergoing femoral fracture surgery.
operative analgesic effect of dexamethasone as an adjunct to ropivacaine in FICB in patients undergoing open reduction and internal fixation for fracture femur under spinal anaesthesia.

METHODS

This is an analytical, prospective, hospital based study, which was carried out from December 2022 to October 2023 in Nepalgunj Medical College Teaching Hospital, a tertiary care hospital of western Nepal. A sample size of 35 was taken in each group, as in a previous study conducted by Baral et al.1 After obtaining Institutional ethical committee approval and informed written consent from the patients, 70 patients were studied.

Inclusion Criteria: ASA grade I and II patients aged between 18 to 65 years who were planned for ORIF of fracture femur under spinal anaesthesia.

Exclusion Criteria: Patients not willing to participate, allergy to local anaesthetics, peripheral neuropathy, bleeding diathesis, inflammation or infection over injection site, morbid obesity, psychiatric disorders, polytrauma, use of other modes of anaesthesia or analgesia besides spinal anaesthesia

We enrolled a total of 70 patients. Based on the computer-generated random number sequence, patients were assigned to either group 1 or group 2. Group 1 patients received ropivacaine 0.35% 20 ml with normal saline 2ml and group 2 patients received ropivacaine 0.35% 20 ml with dexamethasone (4mg/ml) 2ml for Fascia Iliaca Compartment Block (FICB).1 Ultrasound guidance was used for location of the site and injection of the drug. Sequentially numbered opaque white envelopes were used with study medication mentioned inside. The investigator observing and recording the outcome parameter as well as the patients were made unaware about the medication used in the study. The group allocation was revealed only after analysis of the data. All the patients were pre-medicated with tablet clonidine 0.1mg given orally the night before and in the morning of surgery. During the preoperative assessment, patients were explained and made familiar to Numeric Rating Scale (NRS) for pain in simple comprehensible language. On arrival to operation theatre, venous access was established on the dorsum of non-dominant hand with 18 G intravenous (IV) cannula and Ringer’s lactate solution was infused. Electrocardiogram, heart rate, oxygen saturation and non-invasive blood pressure were monitored in the operating table. Spinal anesthesia was conducted in sitting position using 3ml 0.5% hyperbaric bupivacaine. The level of sensory block was checked using sterile needle. Motor block was evaluated by grading the motor power of the muscles (0 to 5). After the completion of surgery, patients were given injection paracetamol 15mg/ kg, (not exceeding 1 gm) after the surgery and then every six hours postoperatively. Dressing of the surgical wound was done, thereafter, the patients were positioned supine. Then, the skin was disinfected and femoral artery, ilio-pectineus muscle and fascia iliaca were identified with linear transducer (13-16MHz) of a sonoosite USG machine, positioned over the inguinal crease. The transducer was moved laterally to identify the sartorius muscle. After a skin wheal was made, a short beveled 25G Quincke needle was inserted in-plane as it is easily available and affordable to the patient. As the needle eventually pierced through the fascia, a pop was felt and the fascia was seen to “snap” back on the ultrasound image. The block was performed by injecting the drug in 5ml aliquots. This time point was considered as zero hour for our study. NRS for pain were recorded at 0 h, 4 h, 8 h, 12 h and 24 h postoperatively.

Inj. tramadol 50mg IV was administered slowly when Numerical Rating Scale (NRS) was more than 3 (rescue analgesia). Inj. ondansetron 4mg IV was administered at the same time to offset nausea and vomiting caused by tramadol. The time between the block and the first analgesic request was recorded as the duration of analgesia. Total dose of rescue analgesic (tramadol) consumed in the postoperative period was recorded. Data was entered in excel and analysed using IBM SPSS Statistics Version 25. Comparison between the groups was done using the appropriate statistical test (Independent Sample T-test for normal distribution). Categorical data were presented as numbers with a percentage (%). Significance was assessed at a 5% level of significance. Appropriate graphs were used to visualize the findings.

RESULTS

The inclusion criteria were fulfilled by 70 patients, who completed the study (Figure 2). The demographic patient characteristics (age, gender, weight) were comparable between the groups. (Table I).

Figure 2: Flow diagram of the study
The mean duration of analgesia with FICB was higher in group 2 as compared to group 1 with Mean difference being 22.86 minutes and the total dose of rescue analgesics (tramadol) required in the first postoperative 24 hrs was found to be lower in group 2 as compared to group 1 with the mean difference of 0.9 (Table II).

The intensity of pain (Figure 3) remained statistically comparable at all observation time points between the groups (p value 0.9).

Similarly, study done by Acharya et al, revealed that dexamethasone, in a dose of 8 mg, was superior to 4mg when used as an adjuvant with levobupivacaine in the FICB. Both doses of dexamethasone prolonged analgesia and were effective in reducing oral/intravenous analgesics, with higher postoperative analgesic requirement compared to ropivacine alone. Similar result was obtained in a study done by Suresh et al, in which the duration of analgesia was significantly longer in group receiving dexamethasone as an adjuvant in FICB with reduced requirement of total doses of rescue analgesics. However, VAS scores during positioning for spinal anaesthesia were similar in both groups as found in our study.

Kumar J et al, too, concluded that, the addition of dexamethasone to FICB provided adequate postoperative analgesia with prolonged time to first analgesic requirement after femur fracture surgeries. Compared to clonidine, dexamethasone added to FICB had analgesia for a noticeably longer period of time, 11.2 ± 2.19 hours vs 12.44 ± 2.54 hours (p-value = 0.010). There was less consumption of rescue analgesics in dexamethasone group as compared to clonidine group which was statistically significant and there was significant difference noted in both groups in terms of mean VAS score at rest with mean difference of 0.94 (p value of 0.006) and during movement at 12 hours after surgery with mean difference of 0.62 (p value of 0.015). Block prolongation was also observed when dexamethasone was combined with mepivacaine for supra-clavicular blocks which was statistically significant with a p value of 0.008 in a study done by Parrington et al. Similarly, Cummings et al also noted that dexamethasone significantly prolonged the duration of ropivacaine and bupivacaine when used for the inter-scalene block. More recent publications also suggest that 8mg dexamethasone added to perineural local anesthetic injections augments the duration of peripheral nerve block analgesia. A systematic review by Choi et al demonstrated the beneficial effects of the addition of

DISCUSSION

Femoral fractures are associated with a higher risk of perioperative morbidity, especially in geriatric patients. Pain has many undesirable effects on several physiological processes including pulmonary dysfunction, tachycardia and hypertension, negative effects on the immune system, and delayed wound healing. The frequent use of adequate parenteral analgesic is being reduced to these patients for fear of worsening intercurrent disease or of precipitating adverse effects. The field of regional anesthesia has evolved tremendously in the last 16 years. Regional anesthesia and analgesia techniques are used to effectively manage acute pain after a variety of orthopedic surgeries. The fascia-iliaca compartment block (FICB), first described in 1989, is easy to perform and is associated with minimal risk as the analgesic is injected at a safe distance from the femoral artery and femoral nerve. It is more effective in blocking lateral cutaneous nerve of thigh and femoral nerve. FICB is routinely used to provide analgesia following surgical procedures in the hip, femur, and knee, as well as treatment of burns on the thigh. FICB also prevents delirium, allows increased mobility and a shorter hospital stay. Our study has shown that dexamethasone added to ropivacaine for FICB significantly prolongs the duration of analgesia by 96.71 minutes, following femoral fracture surgeries with reduced 24-hour postoperative analgesic requirement compared to ropivacine alone. Similar result was obtained in a study done by Suresh et al, in which the duration of analgesia was significantly longer in group receiving dexamethasone as an adjuvant in FICB with reduced requirement of total doses of rescue analgesics. However, VAS scores during positioning for spinal anaesthesia were similar in both groups as found in our study.

![Figure 3: Mean NRS scores at different time interval](image-url)
REFERENCES

postoperative period undergoing femoral fracture surgeries. Ropivacine for FICB would significantly prolong postoperative pain. Our study concludes that, addition of dexamethasone to plain local anaesthesia would be better for pain relief in these patients. Patients above 65 years and those of ASA PS III or greater were excluded, though femur fractures are more common in these groups. Patient controlled analgesia for postoperative pain was not used which would be better for pain relief in these patients.

LIMITATIONS

Our study concludes that, addition of dexamethasone to plain ropivacaine for FICB would significantly prolong postoperative analgesia and decrease the need of oral and iv analgesics in the postoperative period undergoing femoral fracture surgeries.

CONCLUSION

