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INTRODUCTION

The 2015 Nepal Earthquake (Mw= 7.8), also called the
Gorkha Earthquake, was the worst natural disaster to hit Nepal
since the 1934 Nepal-Bihar earthquake. The earthquake had
triggered almost 19,000 slope failures (Gnyawali and Adhikari,
2017). Not only had the landslides taken the lives of so many
people, but they had also given a big impact on infrastructures.
18 existing hydropower plants were stopped due to the earthquake
and subsequent landslides, resulting in an outage of 171 MW
(Government of Nepal National Planning Commission, 2015).
Furthermore, unstable rock masses still sitting atop of exposed
bare slopes will cause long lasting problems. The Trishuli 3A
hydropower plant located in the Rasuwa District was under
construction when the Gorkha Earthquake hit. Its construction
was intermittently interrupted by the subsequent landslides and
its completion were delayed for 34 months. This paper attempts
to assess the remaining risk of slope failures through numerical
simulations and field surveys, focusing on areas along Trishuli
River in Rasuwa district, the district hardest hit by this earthquake.

The study area covers an about 10 km stretch of steep
valley walls of the Trishuli River, which runs from northeast
to southwest between Dhunche and Ramche in the Rasuwa
District, about 70 km northwest of Kathmandu (Fig. 1). The
Trishuli 3A Hydropower plant is currently under construction
at the very center of the study area. About halfway or a little
higher up the left valley wall of the Trishuli River, the Pasang
Lhamu Highway goes windingly through the upper flank of
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mountains in the study area. Given the obstruction to the Araniko
Highway, which had been the nation’s vital road going through
a large section of the quake-ravaged mountains, only the Pasang
Lhamu Highway is now connecting Kathumandu and China.

METHODOLOGY

With thousands of landslides triggered by the Gorkha
Earthquake, a straightforward approach to analyze every detail
of slope movement is unrealistic for seeing the whole picture
of the risk. Therefore, Depth Integrated Particle Method (DIPM)
proposed by Nakata and Matsushima (2014) was used herein.
DIPM traces initiating, sliding and depositing processes of
landslide mass with only three corresponding parameters.
Through a batch of simulations, the optimum set of parameters
that minimize the error in estimating areas affected by landslides
was nominated. The set of parameters reflecting the overall
regional nature could be used for risk assessments of remaining
unstable soil masses in the same and/or similar mountainous
regions. The simulation consisted of the following two main
steps.

Step 1: Preparation of Digital Surface Model

In the simulations, a Digital Surface Model (DSM)
representing the surface of the terrain before the earthquake
was needed. Authors used ‘AW3D’ global DSM provided by
Remote Sensing Technology Center of Japan. This DSM was
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Fig. 1: Study area

created using images from PRISM sensor built in ALOS satellite
(Tadono.et al., 2014). The spatial resolution of this DSM was
5 m by 5 m.

Step 2: Flow simulations

In DIPM, it was assumed that the target area was
uniformly covered up with debris mass with the same unit
thickness and the same mechanical properties over its entire
stretch. Under these assumptions, the model traces initiating,
sliding and depositing processes of landslide mass with only
three corresponding parameters: the critical angle if,
Gauckler–Manning roughness coefficient n, and angle of repose
id.

When the slope was steeper than the critical angle, if,
the surface debris mass started sliding under its own weight.
When the debris mass was in motion, flowing mass follows the
shallow water equation, and the Gauckler–Manning roughness
coefficient, n, affected its velocity. Once the mass reached its
depositional area, the mass decelerated and oozed out until the
periphery of the mass reached its angle of repose, id.

A sliding debris mass was described as an assemblage

of soil columns arranged together over a sliding surface. The
affected area in the DIPM simulation, , was the area where
DIPM particles (columns) exhibit any movement. Every
combination of the specified three parameter values could yield
different value of the affected area. The affected area in each
simulation was compared with the real value of the affected
area, , observed from satellites, etc., and the optimum set of the
three parameters, if , n, and id were determined running a batch
of simulations to maximize the likelihood of simulation , which
is given by:

The optimum set of parameters can be used for risk
assessments of remaining unstable soil masses in the similar
mountainous regions

FIELD SURVEYS

Google Earth allows us to see how satellite images have
changed over time, thus enabling us to detect locations and
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Fig. 2: UAV-photo-based ortho-image of southeastern valley wall of the Trishuli
River laid upon Google Earth image (A2 in Fig. 1).

optimum sets of parameters are determined to be:

if = 400

n = 0.10 m1/3S
id = 300

(for area A1 with maximum likelihood of L = 34.4%
reached)
and

if = 400

n = 0.15 m1/3S
id = 250

(for area A2 with maximum likelihood of L = 26.0%
reached)

The result indicates that only the critical angle, if , is less
sensitive to the extent of the target area, while the others are
highly dependent on it. This is because area , covering only the
northwest valley wall, does not allow us to calculate the forces
exerted by debris masses from the opposite southeast river wall,
thus making both Gauckler–Manning roughness coefficient, n,
and the angle of repose, id, larger than what they should be.

actual areas of earthquake-induced landslides  as exposed bare
earth with the vegetative canopy all wiped off. However, in a
highly ragged mountainous terrain, deep valley walls facing
north can often be shaded. Particularly, the greater part of the
left valley wall of the Trishuli River is very difficult to see. To
get clearer images, UAV (Unmanned aerial vehicle) flight was
carried out on August 10, 2016 and April 9, 2017, to get both
the post-earthquake digital surface model and the ortho-photo
image of the terrain (Fig. 2).

NUMERICAL SIMULATIONS AND DISCUSSIONS

Optimum set of the parameters for a particular slope can
differ depending on how far out we analyze. Within the DSM-
covered study area (A0), a small left-leaning square computational
area of  A1 is first taken to cover some of sharply defined gullies
newly exposed on the northwestern valley wall. Encircling this
area, one-size larger area  A2 (Nakata et al., 2017) is drawn to
include the southeastern valley wall (Fig. 1). For each area,
three parameters, if , n, and id, are varied over the ranges, 35 to
45 degrees, 0.1 to 0.3 m1/3s and 10 to 30 degrees, respectively,
to maximize the likelihood defined by Equation (1), and the
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Fig. 3: Possible trace of past landslide

Fig. 4: RC value distribution over the whole target
area, A0

Fig. 5: Affected area Au(50) with RC>50

Though it is desirable to cover wider area for debris flow
simulations, the maximum likelihood of L = 26.0% reached for
area  A2 warrants further discussion. The remaining 74% may
include past landslide traces as well as seemingly intact but
presumably unstable debris masses. Therefore, an up-close look
at the remaining 74% slopes is inevitable.

Immediately above the exposed scars that appeared on
the northwestern valley wall in the calculation area A2, there is
a vegetation-covered bowl-shaped depression as can be seen in
Fig. 3. This depression has the look of a trace of a past landslide
with a sheer rocky cliff as its top scar. A close-up image of this
cliff (from our UAV flight in April 2017) shows fresh deposits
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area A0, one obtains suspected source areas Ss with high risk,
which areas include (1) visible source areas Sv exposed in the
2015 Gorkha Earthquake, (2) past landslide source areas Sp,
and (3) currently intact but possibly remaining unstable soil/rock
mass areas SR (Fig. 6).

Since a greater part of southeast and east valley walls
are in shade, the discussion in view of prediction likelihood is
made only over the valley walls in the sun. The positive predictive
value for extracted source areas Ss in the sun is 58.6%, meaning
it has covered 58.6% of the visible newest and past source areas
(Sv U Sp). The prediction likelihood  for the past and present
source areas is given by:

where, Ls = 31.5%  for the valley walls in the Sun in
area A0.

It is noted that almost all seemingly intact but presumably
unstable source areas  are found near the existing old and new
scars (Fig. 7). To estimate the total volume of debris remaining
in this area, we need to know the average thickness of colluvium
accumulated along gullies. The UAV-photo-based DSM showing
the post-quake terrain along the Trishuli River (Area A2) was
first georeferenced, and then the pre-quake DSM is subtracted
from it to see how deep the valley walls were scraped (Fig. 8).

The area used to examine the topographic change is
shown with a solid-line polygon in Fig.8 (a). The volume of
decrease and increase in the affected area were shown in Fig.
8 (b). The total volume loss is estimated to be about 8.7 × 106

m³ for the entire stretch of the source areas of total 0.76 × 106

m2. Assuming most of the volume decrease was due to the
landslides along gullies, the average thickness of detached soil
mass can be calculated to be about 11 m. The total volume
increases in the depositional areas of total 0.27 × 106 m2 was
estimated to be about 2.1 × 106 m3, which is almost one fourth
of the detached soil volume. This indicates that approximately
three quarters of the soil mass deposited along the Trishuli River
has been carried away downstream.

If the obtained average depth of 11m for the steep gullies
can be extrapolated for the whole valley walls in the sun within
the entire study area of A0, the total volume of potentially hidden
unstable soil masses is estimated to be about 14 × 106 m3. This
volume does not include the valley walls in shade. Making no
distinction between those detached and remaining along gullies,
total 1.3~107 m3 debris masses are considered to be still hidden
in the shade. Therefore, we cannot keep our eyes off these slopes
particularly where major roads cut into already un-stable slopes.

CONCLUSIONS

For the steep mountain slopes along the Trishuli River
in the Himalaya, which was hit by the 2015 Gorkha Earthquake,

of rock fragments at its base. Some large boulders and rocks
are found scattering near the base of this cliff and hitting houses
there. When this depression is added to the affected area, the
likelihood can increase as high as 35%.

Furthermore, some thought is required about the presence
of colluviums that are found accumulated thick particularly
along gullies. These colluviums must have been wetter than
those covering the other convex parts of the slope though the
earthquake happened in the late dry season, thus having increased
the risk of landslides.

To highlight this feature of slope terrain, “rain
concentration (RC) values” (Nakata et al., 2017) are calculated
for the entire stretch of the target area. The “RC” values are
obtained by the following procedure:

1) The same DIPM is used to trace movements of rain
particles, which are uniformly generated over the entire
stretch of the target terrain. Parameters n, and id for each
rain particle are set at 0.05 m1/3s and 0 degree, respectively.

2) Allowing all rain particles to be completely drained,
we count the number of rain particles that pass through
each cell of the terrain grid. This number for each cell
is then divided by the initial number of rain particles in
one cell and is defined as the “rain concentration (RC).”

To calculate RC values, the computational area should
be larger than the DIPM computational area to allow rain
particles within the whole catchment areas to flow through the
DIPM computational area. Fig. 4 shows RC value distribution
over the whole target area, A0.  The area with “RC” values
larger than a threshold value of rt,  Arc (RC > rt) is laid over the
affected area in the DIPM simulation, As, and the following
union of sets is thus considered herein:

Given this Au(rt), the likelihood is redefined as:

It turns out that L(rt) for the area A1 reaches its maximum
value of 47.3% when rt = 50 (Fig. 5). For the area A2 excluding
the old landslide trace, L(rt) reaches its maximum value of 37%
when rt = 63. Including the old landslide trace, it goes up as
high as 46%.

EXTRACTION OF UNSTABLE SOURCES

Au(50) in Fig. 5 includes the source areas with if = 400,
main track and depositional cones. Extracting only source areas
with  if = 400 and expanding the target area to the whole study
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Fig. 6: Estimated source areas Ss  in the sun includeing (1)
visible source areas Sv  exposed in the 2015 Gorkha
Earthquake, (2) past landslide source areas Sp, and (3)
currently intact but presumably remaining unstable soil/rock
mass areas SR: Those estimated in the shade are shown as
Ss (In shade)

Fig. 7: Presumably remaining unstable soil/rock mass areas
and infrastructures

an attempt was made to numerically assess the remaining risk
of slope failures in terms of three mechanical parameters,
namely, the critical angle if   at which the debris mass start
sliding, Gauckler–Manning roughness coefficient n, and angle
of repose id  for the flowing debris mass. In a search for the
optimum set of parameters, it turned out that the critical angle
if   is less sensitive to the extent of the computational area though
the other two parameters can vary drastically reflecting the
interaction among debris masses flowing down into the deep
valley of the Trishuli River. For the target ragged terrain, if  =
400 seems to be the optimal value. More importantly, the
presence of colluviums that are found to be thickly accumulated
particularly along gullies is to be considered. These colluviums
must have been wetter than those covering the other convex
parts of the slope though the earthquake happened in the late
dry season, thus having increased the risk of landslides. To
highlight this feature of the terrain that easily collect running
water, “rain concentration (RC) values” (Nakata et al., 2017)
are calculated for the entire stretch of the target area. Positive

predictive value for the estimated source areas, given by if  =
400   and RC values greater than 50, was 58.6%. This means
that 58.6% of the visible sources of debris mass (Sv U Sp) in the
sun were found within the estimated areas. It is noted that almost
all seemingly intact but presumably unstable source areas SR
are found near existing old and new scars. Assuming the average
thickness is 11m for the colluvium in SR, the total volume of
potentially hidden unstable soil masses is estimated to be about
14 × 107 m3. This volume does not include the opposite valley
walls in shade. Making no distinction between those detached
and remaining along gullies, total 1.3 ×107 m3 debris masses
are considered to be still hidden in the shade. We are thus to be
alert to the possible dangers particularly where we have important
facilities.
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Fig. 8: (a) Affected areas extracted from both satellite images and UAV-based orthophoto (b) Volume
change along each gully
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