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INTRODUCTION

Soil Depth to Bedrock (SDtB), also known as regolith
thickness, is important parameter to understand critical factors
that affect the development of mountainous regions such as
slope stability, surface erosion, ground water storage, vegetation
growth, etc, however this soil thickness is highly variable over
space (Kuriakose et al., 2009; Tesfa et al., 2009; Michel, 2016).
Despite the importance of soil depth, most studies have used
constant soil depth, ignoring the spatial variability (Kuriakose
et al., 2009). The reason for adopting the constant soil depth is
to measure every point in the field. The constant soil depth
model is convenient in terms of reliable data generations.
However, rigorous slope stability, vegetation growth and ground
water availability assessment require more accurate soil depth
data.

Soil scientists and engineers consistently explore the
possibility of obtaining reliable SDtB utilizing data on soil
formation processes and terrain attributes (e. g. Moore et al.,
1991; Tsai et al., 2001; Kuriakose et al., 2009; Tesfa et al., 2009;
Michel, 2016). Physical methods consider soil formation
processes to estimate the SDtB utilizing the rate of bedrock
degradation, denudation and accumulation, and physical
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properties of regolith materials or underlying rock (Kuriakose
et al. 2009). Dietrich et al. (1995) proposed spatio-temporal
prediction of colluvial soil depth based on the mass balance
between soil production from underlying bedrock and soil
transport erosion. The mass balance method was successfully
validated in a sub-catchment in United States. Several other
studies  have also proposed similar methods to predict soil
depth.

In order to have continuous SDtB maps, the soil depth
measured at several points can be interpolated to estimate the
depth in between. The common interpolation techniques are
geostatistical (e. g. kriging) or non-geostatistical (e. g. Thiessen
polygon, inverse-distance, etc). Non-geostatistical techniques
do not consider any randomness of the data field and thus they
do not provide prediction variances, whereas geostatistical
approaches use the spatial autocorrelation of a phenomenon
based on the theory of random fields to interpolate over the
area (Goovaerts, 1997; Kuriakose et al., 2009). Moore et al.
(1993) followed by Gessler et al. (1995) adopted statistical
techniques to model the pattern of soil properties over landscapes.
Relationships between soil properties and landscape factors
(e.g., slope, wetness index, and plan curvature) were extracted
from point measurements and then used to predict soil properties
over the remaining area. Geostatistical approaches in other hand
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have also been used to interpolate soil properties  (Kuriakose
et al., 2009; ZIADAT, 2010)  but their application is often
limited by the large amount of data required to define the spatial
autocorrelation (Tesfa et al., 2009).

McBratney and Odeh (1997) suggested fuzzy logic, a
logic that attempts to solve problems by assigning values to an
imprecise spectrum of data, to arrive at the most accurate
possible conclusion as an approach to refine the scale of soil
information. Zhu and Band (1994) and Zhu et al. (1996, 1997)
developed a model (e. g. SoLIM) that combines fuzzy logic
with GIS and expert system development techniques that capture
the opinions of experts in the fuzzy logic functions used to map
soil attributes from spatial soil forming factors. Zhu and Mackay
(2001) took this approach a step forward and evaluated the
effects of spatial detail of soil information, generated by SoLIM
model at the watershed scale to demonstrate that the detailed
spatial soil information influenced simulated hydrographs
indicating the importance of detailed spatial soil information
for hydro-ecological modeling (Tesfa et al., 2009).

In comparison to the above statistical techniques, Dietrich
et al. (1995) suggested a process-based approach for predicting
the spatial variation of colluvial soil depth, assuming that (a)
soil production is a function of soil depth, (b) soil transport is
proportional to slope and (c) soil production is in local dynamic
equilibrium with the divergence of soil transport.  Topographic
curvature becomes a surrogate for soil production (Tesfa et al.,
2009). The concept of soil production, transportation and terrain
slope was adopted by various researchers (Heimsath et al., 2000;
Heimsath and Ehlers, 2005; Saco et al., 2006) who demonstrated
that soil depth could vary spatially under the dynamic equilibrium
(Tesfa et al., 2009). However, the cause of soil production and
its impact on soil moisture, vegetation growth, and slope stability
have only had limited evaluation (Tesfa et al., 2009). In addition,
the role of chemical and physical breakdown of the underlying
rock, its influence on soil production and soil depth, and the
effect on various topographic attributes such as aspect, slope,
elevation, curvature etc. were not explicitly considered in the
above discussed statistical and physical models.

The modeling approaches discussed above for predicting
soil depth over landscapes, indicated partial success (Tesfa et
al., 2009). While the physically based model demonstrated by
Dietrich et al. (1995) has shown reasonable prediction capability
in unchanneled valleys (Tesfa et al., 2009),  obtaining reliable
data and information for modeling SDtB through the physical
process method remains difficult, complex, time and cost driven.
For this reason, simple and efficient methods to estimate SDtB
is essential for many lower income countries like Nepal, where
soil erosion and mass wasting process are frequent and have
great impact on livelihoods and the environment (Sudmeier-
Rieux et al., 2012) .

In this paper, we compared a simple geostatistical (i. e.
simple kriging) and non-geostatistical (i. e. multiple linear
regression) techniques to predict spatial pattern of SDtB in the

topographically complex terrain in the Phewa watershed, utilizing
topographic and land cover attributes as explanatory and soil
depth as response variable. We introduce topographic attributes
of the Phewa watershed derived from a 20 m resolution digital
elevation model (DEM), and anticipated to have explanatory
capability for soil depth. The land cover attributes were derived
partially from Landsat and Rapid-Eye remote sensing images
of June 2015 and May 2014, respectively.

The Phewa watershed in the Panchase region is complex
in terms of topography and environment, where landslides are
frequently occurring hazards, damaging the livelihood and
environment. In addition, the region is under pressure of
anthropogenic activities such as unplanned rural road construction
leading more landslides during the monsoon season (Jaboyedoff
et al., 2016; Leibundgut et al., 2016). For better understanding
the fragile landscape of the Phewa watershed and to implement
effective landslide mitigation measures, reliable soil depth data
is important. The unplanned rural roads in the watershed
facilitated to obtain 865 SDtB points, the points used to predicted
soil depth. Two different techniques (i. e. simple kriging and
multiple linear regression) discussed above were implemented
to predict the SDtB at the watershed scale.

STUDY AREA

This study was carried out in the Phewa Lake watershed
in the Central-Western Hills of Nepal (Fig. 1). The area is
commonly known as the Panchase region. It is popular due to
its biodiversity and tourism but is also prone to natural hazards
such as landslides, soil erosion and flash floods. The watershed
consists of high internal relief, steep slopes, terraces made for
cultivation, diverse forest resources and wildlife. The watershed
is known to be complex in terms of topography, biodiversity
and environment. Several small to medium type rain-fed streams
originate in the hills and feed the Phewa Lake. The estimated
area of the Phewa Lake watershed is approximately 111 sq. km
where elevation varies from 792 meters above sea level (masl)
at the lake outlet to 2,483 masl at the highest point known as
Panchase peak. The sub-tropical climate region experiences
intense monsoonal rainfall (June-Sept) and dry winters (Dec-
March). The region is also known as for the highest rainfall
area in the country. The recorded highest annual and daily
rainfall in the region was about 5,500 mm and 315 mm,
respectively with the annual mean of 4,500 mm (Devkota and
Adhikari, 2014). Stream flow typically remains low in the winter
and is highest during the summer monsoon season.

The subtropical climate dominated vegetation in the
watershed was observed in the lower elevations followed by
temperate forest and grass land in the higher elevation. Soil in
the area was basically fromed by weathering of the underlying
parent material (e. g. phylites and quartzite) . The soil ranges
from silty-loam to loamy-sand. However significant amounts
(15–20%) of gravel are also found in the upper valley reach of
the streams. The soils in the area are generally well drained and
have high surface erosion potential leading to gullies thereby
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landslides. South facing slopes generally contain coarser texture
than soils in the north facing slopes. South facing slopes have
more rock outcrops than the north facing slopes.

Human intervention such as rural road construction,
terraces for cultivation, new settlements, etc. in the watershed
was observed to be very high. More recently people have
migrated towards the valley side seeking better livelihoods,
leaving the terraces unmaintained. According to Leibundgut et
al., (2016), there were 315 km of rural roads within 111 km2 of
the Phewa Lake watershed. This gives a total road density of
about 2.7 km/km2, which is exceptionally high for Nepal. Rural
road construction continues as community people and
government authorities keep excavating new roads in the fragile

hills of the Panchase region.

METHODOLOGY

For better estimation of soil depth at the un-sampled
locations in the Phewa watershed in the Panchase region, the
heavily excavated rural roads were used to measure SDtB
wherever bedrock was exposed either in the road surface or in
the hill side slopes of the roads. Besides the road cut slopes,
other points such as rock exposed on the natural surface and
cultivated land were also captured. To develop reasonably
precise soil depth data/map of the watershed, two simple
techniques: (i) Simple Kriging (SK) and (ii) Multiple Linear

Fig. 1: The Panchase region and
Phewa watershed in Central-
Western hills of Nepal indicating
the rural road overlaid on
composite of Landsat and
RapidEye
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Regression (MLR) utilizing the field measured SDtB point data
bases were proposed.

Field Data Collection

The SDtB point measurements were carried out along
the rural roads in the Phewa watershed. A GPS (3-4 meter
accuracy), topographic map (1:25,000), 5 meter resolution RS
images (Rapid-Eye) available from the University of Lausanne
and aerial photographs of 1978 and 1996 available from
Department of Survey of the Government (DoS) of Nepal were
used to better understand the watershed.

 Leigbundgut et al. (2016) was considered to understand
the watershed in terms of land use changes, landslides, settlement
and rural road construction. The GPS was set to route tracking
mode as we walked along the roads, whenever the bedrock was
observed. We measured its depth and marked using the GPS
point. During the measurement, the surroundings were observed
and a visual assessment of the topographic curvature (-1 for
concave, 1 for convex and 0 for intermediate) of the recorded
point was maintained. Furthermore, the dominant land cover
type (dense forest, degraded forest, grass land, crop land, road,
rock out crops, etc) was recorded. The advantage of this method
was that there was no need of excavation or use of any knocking
techniques as used in Kuriakose et al. (2009) and Tesfa et al.

(a)

Fig. 2: (a) view of soil profile and measurement of SDtB and (b) the Phewa
watershed and locations of SDtB points measured along the rural roads

(b)
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Fig. 3: Slope map (in degree) of Phewa watershed

(2009) or any use of geophysical methods. Since the rural roads
in the watershed were built without proper assessment, this
would result in unnecessary excavation, and lead to greater
bedrock exposure at the road formation level or on the hillside
slope of the road. The survey was carried out in the months of
June 2017 during early monsoon, which also enabled us to map
the status of the landslides before the beginning of the monsoonal
rain season. In total, 795 SDtB points were examined along the
rural roads, 42 points were measured in the cultivated terraces
and 18 points were the proxies where the bedrock was exposed
on the surface (Fig. 2).

Geo-spatial Data

The digital topographic map of the region was obtained
from the Department of Survey (DoS) of the Government of
Nepal. The topographic map contains 20 m interval contours
and several other layers such as settlement, streams, lake, Land
use, etc. Utilizing the 20 meter contour map, we generated a
DEM of the area (20 meter resolution). To ensure hydraulic
connectivity within the watershed, the DEM was processed to
remove elevation anomalies (e.g. sinks and peaks) that can
interfere with hydrologically correct flow. In addition, null
(NODATA) cells were filled using focal function (e.g. ‘focal
majority’). Various topographic attributes such as slope, flow
direction, flow accumulation, aspect, compound terrain index
(CTI), etc were derived from the DEM. In present study however,
we derived slope, plan and profile curvatures and compound
terrain index as explanatory variables because these are the
variables that explain the SDtB as demonstrated in Tesfa (2009)
and Devkota et al. (2008).

Slope

Slope can be derived from DEM by utilizing available
GIS tools (i.e., 3 D analysis) (Fig. 3). Slope in general represents
the change in elevation of any two points divided by the lateral
distance. The general understanding of the slope and soil
thickness on the terrain was that the erosive power increased

on steeper slopes; we considered a linear inverse relationship
between slopes and soil thickness. According to Tesfa et al.
(2009) the relative position of a point on a hillslope can be
defined on the basis of the distance to the stream compared to
the total length of the hillslope from the distance to the ridge
plus the distance to the stream. However, to simplify the slope
of each measured SDtB point was derived utilizing the raster
slope map in GIS in order to build the MLR model.

Plan and Profile Curvature

Plan curvature can be defined as the curvature of the
terrain in a horizontal direction and used to differentiate between
ridges and valleys. It can be also described as the curvature of
the hypothetical contour line that passes through a specific cell.
ArcGIS notification was adopted for the plan curvature as
positive for cells with concave contours and negative for cells
with convex contours (Fig. 4). Furthermore, the profile curvature
is the curvature of the surface towards the direction of steep
slopes (i. e. towards the vertical plan in the flow direction). The
profile curvature affects the surface water flow velocity and
influences erosion and soil deposition. Similar to the slope
profiles, the point values of plan and profile curvature for all
the measured SDtB points in GIS were extracted.

Fig. 4: (a) Plan and (b) profile curvature

(a)

(b)
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Compound Terrain Index

The Compound Terrain Index (CTI) also known as
Topographic Wetness Index (TWI) is a steady state wetness
index, that quantify the topographic control on hydrological
processes, is a function of both the slope and the upstream
contributing area per unit width orthogonal to the flow direction
(Qin et al., 2011; Sørensen et al., 2006). This index was used
because it has been proven to be highly correlated with several
soil attributes such as horizon depth, silt percentage, organic
matter content and phosphorus (Moore et al., 1993). The
implementation of CTI can be shown as (Eq. 1):

(1)

where As is the specific catchment area expressed as m2

per unit width orthogonal to the flow direction, and b is the
slope angle expressed in radians (Gessler et al., 1995). ArcGIS
spatial analyst tool for which D8 algorithm to calculate flow
direction and contributing areas was used. In order to generate
CTI, raster date sets of contributing area, flow direction were
used to generate the CTI of the watershed. The CTI values (Fig.
5) generated from 20 m DEM satisfactorily represented the
topo-sequence of terrain (e.g. higher values representing drainage
depressions; lower values representing the hill crests, ridges
and plateaus) (Ma et al., 2010; Qin et al., 2011; Sørensen et al.,
2006).

Land use/land cover (LULC)

Since human intervention is extremely high in the
watershed as mentioned in the earlier section, the use of land
use/land cover attributes was important to better understand the
SDtB. For this reason, the Landsat TM image (LPSO, 2008) of
June 2015 and RapidEye of May 2014 was classified
implementing supervised classification technique in GIS. The
classified LULC map of the watershed is presented in Fig. 6.

A thematic map of LULC was then compared by a higher
resolution Rapid-Eye image of May 2014. Aerial photographs
and LULC maps were used to select training sites where the
field observed land cover types (road, rocky outcrop and bare
area; grasses; mixed grasses and shrubs; shrubs riparian, forests,
cultivated land and water body) were identified and assigned
a LULC code (e. g. 1 for road, 2 for cultivated, 3 for forest,
etc). The raster calculator in ArcGIS was then implemented to
extract the LULC attributes in the form of number that represents
the LULC for all the measured SDtB points.

Statistical Analysis

Normalization

Box-Cox transformations (Sakia, 1992) were used to
transform the measured SDtB and each explanatory variable so
that their distribution was near normal (Eq. 2):

(2)

Fig. 6:  (a) LULC and (b) point measurement over laid on
Landsat image indicating testing (in blue points) and training
(in red points) data and rural roads (in yellow lines)

(a)

(b)

Fig. 5: View of Topographic Compound Index of Phewa
watershed
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Fig. 8: (la) MLR predicted SDtB map and (b) scatter plot
of measured verses predicted SDtB

(b)

(a)

Fig. 7: (a) SK predicted SDtB map and (b) scatter plot of
measured verses predicted SDtB. There is no clear trend.

(b)

(a)

where, t(x) denotes the transformation of variable x
where transformation parameter l.  The latter was selected to
maximize the Shapiro-Wilks normality test W statistic as in
Tesfa et al. (2009) implemented in R (R Development Core
Team, 2007; Shapiro and Wilk, 1965) . Normalized variables
were used in this paper for all the statistical modeling.

Model

Two types of prediction models were compared to predict
the SDtB: 1) simple kriging (SK) and 2) multiple linear
regressions (MLR) implemented in R (Pebesma, 2004) using
above mentioned explanatory variables. SK is one of the simplest
geo-statistical approaches to be applied to predict the value of
unknown/unvisited locations. This technique utilizes the best
fit variogram model of the training data set and the estimate
relies on point observations (Hengl, 2007) and the model is as
below (Eq. 3):

  
(3)

where, z(so) is the predicted value of the target variable
(i. e. SDtB) at an unvisited location, so gives its map coordinates,

 li is the weights chosen such that the prediction error variance
is minimized.

The SK estimates the SDtB values at unsampled locations
by a weighted average of nearby samples. The correlations
among neighboring values are modeled as a function of the
geographic distance between the points across the study area,
defined by a variogram (Miller et al., 2007).

MLR attempts to model the relationship between two or
more explanatory variables (e. g. slope, CTI, etc) to that of
response variable (i. e. SDtB) by fitting a linear equation to the
observed data set. Every value of the independent variable x is
associated with a value of the dependent variable y. The
population regression line for p explanatory variables x1, x2,…..xp
is defined to be:

µy = b0 + b1(x1) + b2(x2) +…….bp(xp) (4)

where µy is the mean of the observations, which is SDtB.
This line describes how the mean of response µy changes with
the explanatory variables. The observed values of y vary around
their means µy and are assumed to have the same standard
deviation s. The fitted values b0, b1,…..bp estimate the parameters
b0, b1, b2…….bp of the population regression line.
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DISCUSSION

Evaluation of SK predicted SDtB map showed the
negative E.C. (-0.46) and very low R2 (0.12). In general E.C is
varies from -8 to 1. An efficiency coefficient of 1 (E.C=1)
corresponds to a perfect match of the modeled SDtB to the
measured data, whereas an efficiency coefficient of 0 (E.C=0)
indicates that the model predictions are as accurate as the mean
of the observed data. The negative E.C (E.C.<0) occurs when
the observed mean is a better predictor than the model or in
other words, when the residual variance is larger than the data
variance (Goovaerts, 1999). For this reason, it was concluded
that the SK predicted SDtB map was not useful that leads to
use mean soil depth constant throughout the watershed. The
evaluation also indicated that the simple geo-statistical approach
was not a very convincing interpolation technique to estimate
the SDtB in the complex geomorphological environment such
as in the Phewa watershed.

SDtB is an important parameter for understanding the
physical process of the landscape, which was observed to be
difficult to predict in topographically complex environment,
especially in a sensitive anthropogenic landscape such as Phewa
watershed where high human intervention to terrace building,
construction of rural roads and building new settlements. The
highly variable SDtB in Phewa watershed has to be better
understood to model the slope stability, sub-surface water
balance, soil erosion and ecosystem services. Since the SK
technique was not able to predict the SDtB as required, the
explanatory variables (slope, plan and profile curvature, CTI
and Land use) chosen to predict the soil depth implementing
MLR according to Devkota et al. (2008) and Tesfa et al. (2009)
were explored.

The MLR predicted SDtB map was found to be
statistically significant and able to capture the complex
geomorphological features of the watershed, where E.C was
close to 1 (E.C. =0.93) and the coefficient of determination (R2)
was 0.68. The chosen explanatory variables such as slope, plan
and profile curvature, CTI and LULC were able to demonstrate
reasonable relationship to the SDtB for the watershed. The
relationship of the explanatory variables to SDtB is shown in
the following equation (Eq. 7).

SDtB = 0.302 + 0.176 . CTI –
0.013 . Slope + 0.103. Pro-curvature
+ 0.021 . Pl-curvature – 0.007 . LULC  (7)

The MLR model, however, was not very significant for
the river valley and the lake surroundings, where the landform
was flat and the SDtB was higher than that in the slope on the
upper reaches. In the valley bottom the CTI was high, where
deeper soil depth was observed. The CTI and profile curvature
was positive to SDtB and other attributes such as slope, LULC
and plan curvature were negative, meaning that higher the CTI
and profile curvature, higher the SDtB.

Model Evaluation

To evaluate the model results, the 865 data points were
randomly split into two parts, designated as the training (80%)
and testing (20%) sets as illustrated in the figure above (Fig.
6). Both SK and MLR models were implemented, using the
training data set of 692 data points. The prediction error was
computed for the testing data set according to Hastie (2001).
The testing data set prediction error provided an out of sample
estimate appropriate for trading off variance due to complexity
with bias due to too few explanatory variables (see, e.g., Hastie,
2001). The results from this analysis allowed to select the
explanatory variables and degree of model complexity as shown
by Hastie (2001). This was done by utilizing the topographic
variables derived in this study in predicting soil depth.

Once the explanatory variables and models with
appropriate complexity had been selected, they were applied
using the full training data set as input. Both SK and MLR
models were used to predict soil depth for the entire watershed
with the derived topographic and Land use variables. Then the
testing data set was compared with the model SDtB values at
testing locations using the Nash-Sutcliffe efficiency coefficient
(EC) (Nash and Sutcliffe, 1970) and evaluated the coefficient
of determination (R2) (Moore et al., 2003):

(5)

where, X0 is the observed (measured) value,  is the mean
of the observation and Xp is the predicted value. 

(6)

where,  X0 and X0 are the observed and mean value of
observation, Yp and Yp are model predicted and mean value of
the prediction, n, Sx and Sy are numbers of observation and
standard deviation of X0 and Yp, respectively.

RESULTS

Fig. 7 presents the SK predicted SDtB map, where
Efficiency Coefficient (E.C.) is negative (-0.46), coefficient of
determination (R2) is too low (0.12) and SDtB map is coarse .

The MLR model was established utilizing the above
discussed explanatory variables and the result was evaluated
implementing E.C. and R2. Fig. 8 demonstrates the results of
the MLR predicted SDtB map and the scatter plot of measured
verses predicted SDtB. The test statistics indicated that the
MLR predicted SDtB map was useful  as i t  is
statisticallysignificant where E.C and R2 were 0.93 and 0.68,
respectively.

_
_
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Upper reaches of the Phewa watershed was observed to

be sensitive in terms of slope stability, where the fragile geology
steep topography exist. In addition, the rural roads and human
activities such as cultivation terraces and irrigation channels
were more common in the upper and middle reaches of the
watershed, making slopes more susceptible to failure. In other
hand the valley bottom around the Phewa Lake is flat and wide
where too much of incent sediment deposition as observed
during the field survey. The MLR was not able to capture the
deeper soil depth around the valley bottom. However, the model
reasonably predicted the SDtB for the slopes and fragile to
failure. The less steep areas and flat valley bottom are less
prominent to failure and thus the MLR predicted SDtB map is
useful to model the slope stability of the Phewa watershed.

CONCLUSION

The construction of unplanned rural roads in the Phewa
watershed gave us easy access to large number of soil depth
point measurements, which would otherwise very difficult to
obtain. The measured SDtB points were used to build two
models 1) Simple Kriging (SK) and 2) Multiple Linear
Regression (MLR) respectively. A geo-statistical and non-
geostatistical method used to predict the SDtB for the un-
sampled locations in the Phewa watershed. These approaches
were adopted to see how well the simple geo-statistical approach
demonstrates the SDtB over the MLR in the complex topography
where anthropogenic activity is elevated as in Phewa Lake
watershed in Panchase region of Nepal.

The SK was not suitable for predicting the SDtB in the
topographically complex landscape of Phewa watershed as the
test statistics (e. g. R2 =12% and EC=-0.46) indicated that the
model was insignificant. Thus MLR was examined, and was
found to be statistically significant (e. g. R2 =68% and EC=0.93).
The explanatory variables such as slope, plan and profile
curvature, CTI and LULC were able to predict SDtB reasonably
of the middle and upper reaches of Phewa watershed. The SDtB
map statistically significant and thus can be used in analyzing
the slope stability and wherever precise soil depth data is
necessary such as modeling of sub-surface hydrology, vegetation
growth, soil erosion that helps to understand the physical process
within the watershed.
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