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the geographical location of future landslides (Chung and 
Fabbri 1999, Guzzetti et  al. 2005). Understanding the role of 
individual factors controlling landslide location, geographical 
pattern, and spatial density is important to predict where 
landslides can occur in the future, i.e. to ascertain landslide 
susceptibility (Varnes 1984, Soeters and van Westen 1996, 
Guzzetti et al. 1999, van Den Eeckhaut et al. 2006). Qualitative 
and quantitative methods have been used in the process of 
creating landslide-susceptibility maps (Soeters and van Westen 
1996, Aleotti and Chowdhury 1999, Guzzetti et al. 1999). The 
qualitative method was widely used during the late 1970s and 
the quantitative methods, however, became popular in the last 
few decades largely because of the numerical expressions of 
the relationship between controlling factors and landslides, 
assisted by the advances in GIS technology (Chung et al. 2002, 
van Westen and Lulie Getahun 2003, Bell and Glade 2004, 
van Westen et al. 2008). The general trend related to landslide 
assessments is the utilisation of GIS-based technology and the 
mathematical/statistical tools for modelling and simulation, 
have led to the growing application of quantitative techniques 
in many areas of the earth sciences (Carrara and Pike 2008). 
The GIS-based evaluations of landslide susceptibility have 
frequently applied the multivariate techniques of logistic 
regression models (Atkinson and Massari 1998, van Westen et 
al. 1997, Guzzetti et al. 1999, Dai and Lee 2002, Ohlmacher 
and Davis 2003, Baeza et al. 2010 etc.). 

INTRODUCTION

Three Dimensional (3D) geological modelling deals 
the numerical description of geometry and properties of the 
subsurface. In recent years, geomodelling systems have been 
developed with high resolution 3D visualisation with respect 
to geometry as well as to property modelling capabilities in 
order to enable the construction and analysis of 3D geologic 
models in a way that general purpose Geographical Information 
System (GIS) and Computer Aided Design (CAD) systems 
simply cannot do (Mallet 1992, 2002). The 3D geological 
modelling has started to upgrade classical maps by providing a 
defi nite 3D description, and they are constructed by modelling 
geological features as surfaces which intersect according to 
rules that allow the visual representation of the geological 
features of interest (Mayoraz et al. 1992, Mallet 1997, de 
Kemp 1998, 1999; Jones et al. 2002, Mallet 2002, Lemon and 
Jones 2003, Galera et al. 2003). The 3D geological models 
are increasingly used in geo-hazard assessment (e.g. landslide 
susceptibility) to provide more detailed information about the 
spatial extent, temporal occurrence, triggers, and impacts of 
causative factors. Therefore, an effort towards integration of 
3D geological and landslide susceptibility models has been 
made in the Lesser Himalaya of central Nepal.

The landslide susceptibility was analysed by assuming 
landslides will occur in the future because of the same conditions 
that produced them in the past (Varnes 1984, Carrara et al. 
1991) and the susceptibility assessments can be used to predict 
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The most appropriate landslide susceptibility prediction 
modelling between qualitative and quantitative descriptors is 
strictly related to the availability, quality and accuracy of data 
as well as resolution of the model and does not depend on the 
complexity level of the performed analysis (Cascini 2008). 
Existing methods have their advantages and disadvantages; due 
to the large spatial variability of the mechanical, hydrological 
and geometrical parameters involved in the equations (Burton 
et al. 1998, Terlien et al. 1995), application of well-known 
physically based methods (deterministic approach) developed 
by Hammond et al. (1992), Montgomery and Dietrich (1994) 
and Pack et al. (1998) is expensive in wide areas and so this 
kind of analysis is usually limited to small and relatively 
homogenous area which require detailed geotechnical and 
hydrogeological data. Thus, the current study has developed 
the statistical analysis of landslide prediction modelling which 
is particularly suited to determine landslide susceptibility 
over large and complex areas (e.g., Cardinali et al. 2002). 
The method has provided quantitative estimates of “where” 
landslides are expected, based on distinctive information on 
the distribution of past landslides and a set of thematic geo-

environmental factors. The former becomes the dependent 
variable and the latter the independent variables for the model.

SETTING OF THE AREA

The modelling site for 3D geology and landslide 
susceptibility is located in the Lesser Himalaya of central 
Nepal and lies between the latitudes 2737’ and 2745’ N, and 
the longitudes 8458’ and 8507’ E (Fig. 1). The site extends 
over an area of 210.4 km2 and is characterised by complex 
mountainous terrain with eleva tion ranging from 560 amsl to 
2481 amsl. Agra Khola is the main draining river in study area.

Lithological and the structural setting control the 
geomorphology of the area, which features asymmetric slopes 
dissected by a dense, actively eroding stream network. The area 
exhibits highly rugged topography in the south whereas it is 
smooth in the north. The surfi cial materials refl ect the bedrock 
and the materials on hill-slopes are mainly of residual soil and 
colluvium including slope debris. The residual soils occupy 
most of the area and have variable depths and areal extents. 
The colluviums are scattered in distribution. Deposition of 

alluvial soils are found along the base slopes close to river 
valleys and are generally confi ned to fans developed down-
slope of the colluvial deposits and alluvium depths ranges from 
2 m to 10 m thick.

The study area comprises six different lithological units 
that consisting of sedimentary, metamorphic and igneous 
rocks (Fig. 2). The outcropping rocks are predominantly 
of Precambrian to Palaeozoic low- to medium-grade 

metamorphic rocks such as meta-sandstones, slates, phyllites, 
marbles, quartzites and schists (Stöcklin and Bhattarai 1977). 
Limestone crops out in the eastern region whereas granite 
intrusion occurs in the western and southern parts (Fig. 2). The 
area is geo-dynamically active, represented by the closure of 
the Mahabharat Synclinorium. The attitude of strata (bedding 
or foliation) is variable; in general, strata in the southern belt 
are dipping 32 –85 due northeast to north and dipping 45–81 
due southwest in the northern belt.

Fig. 1: Location map of the modelling site.
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3D GEOLOGICAL MODELLING

The geological map has always been a central piece in 
geology but a map remains an incomplete representation, in 
particular when it comes to predict the nature of rocks below 
the earth's surface. 3D geological modelling is often performed 
to represent, and eventually better understand the geometric, 
topological, and physical properties of geological objects 
(Mallet 1992). 3D geomodel provides new information either 
visually or by performing quantitative analyses in the modelled 
geological objects. Mathematically and geometrically derived 
3D geological model is important for volume and shape of 
the geological features, even for non-specialists, the model 
is self-explanatory. In addition, structural information and an 
appropriate extension of the major geological units of the area 
of interest (AOI) can be extracted from the geomodels.

Model confi guration

Tools for 3D modelling mainly designed for data-rich 
environment, however many geological investigations are 
limited to only sparse data or poorly distribute data. This 
research has applied the innovative way to compute model 
using optimum available data which include lithological 
boundaries, representative cross section and orientation 
vectors (Fig. 3a). Considering nature of data, the model setup 
was made by means of implicit approach to interpolate the data 
and in which GOCAD workfl ow integrated model properties 
for determining the spatial locations/geometry.

ArcGIS functions were used to create spatial database. 
GIS shapefi les were imported in GOCAD as point or curve 
objects and converted into analytical format. Topographic 

Fig. 2: Generalised geological map of the Lesser Himalaya, central Nepal (modifi ed after Stöcklin and Bhattarai 1977).
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surface was created from point set data of digital elevation 
model (DEM) and other imported geo-objects (outcrop 
boundary curves, orientation vector points) were projected 
vertically on it. 2D voxet of geological cross section was 
georeferenced and digitised in curves. The coordinates of an 
orientation vector v = [vx, vy, vz] were implemented from the dip 
direction θ (azimuth) and dip  angles through the following 
trigonometric formula (Eq. 1) (Sprague and de Kemp 2005):

where, R(|) is the local roughness at node , (|c) is 
a constraint defi ned for node ,  is a stiffness coeffi cient, and 
c, . are weight coeffi cients. This generic method allows the 
usage of heterogeneous data as constraints for the interpolation. 
It is always reproducible, on what primary data an interpolated 
object is based on. In GOCAD, iteration of DSI interpolation 
generates a smooth surface, the boundary of which coincides 
with lines representing the original boundary surface (Zehner 
2011) and four stratigraphic bottom surfaces were obtained. 
In some cases, surface adjustment was also made locally by 
region interpolation or removing cross-over.

After generating all the surfaces of geological units, 
surfaces have to be selected to delimit top and base while 
outer borders of both surfaces are given by the area of interest. 
In order to model the main stratigraphic units, the DEM was 
used as top surface while the base is a surface with a constant 
depth about 2500 m. A systematic sequence of steps has built 
the rock strata units from base to top and the operations are 
automatic or interactive with a possibility to select options to 
improve the modelling. 

3D volume model was constructed as a stratigraphic 
voxet (Fig. 3b) and fi nally 3D geological model of the study 

area was visualised in a view that has displayed the internal 
synclinorioum structure and intrusive bodies. Dynamic 
visualisation is possible from slicing tool by moving in all 
directions.

LANDSLIDE SUSCEPTIBILITY MODELLING

The landslide susceptibility is the likelihood of a landslide 
occurring in an area with given local terrain attributes Brabb 

(1984).Triggering factors (earthquake or extreme weather) and 
landslide inventory is the key information source for landslide 
susceptibility modelling (Hervás et al. 2013). The information 
should give insight into the location, date, type, size, activity 
and causal factors of landslides as well as resultant damage. 
Therefore, weather event, landslides and damage consequences 
were assessed to model landslide susceptibility in the Lesser 
Himalaya of central Nepal.
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3D vectors are convenient to display and manipulate (i.e. vector 
addition) and change of basis or other transformation can be 
applied easily. By controlling the representation in space of 
the orientation vectors, it may take advantage of a variety of 
interpolation schemes.

Interpolation and model 3D
Model confi guration was performed by setting 

appropriate constraints by means of various GOCAD plugins, 
and then Discrete Smooth Interpolation (DSI) algorithm was 
run to compute rock strata geometry. The DSI optimizes all 
three spatial coordinates of mesh vertices and this method 
allows interpolating the functions of  the discrete model, like 
geometry or properties, while honouring a set of constraints 
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Fig. 3: 3D geological modelling (a) model confi guration and extracted surfaces (b) computed 3D model.

Ci (Mallet 1997). The algorithm converges towards a solution 
(Eq. 2);
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Weather event and landslide inventory
Extreme weather event of 19–21 July 1993 with the major 

cloudburst near the Tistung-Palung region occurred in the 
central Nepal (Fig. 4) and volume of maximum precipitation 
recorded within 24 hours in the nearest rain gauge of Tistung 
was 540 mm (DHM 1993). The high intensity rainfall had 
caused the large number of landslides, debris fl ows, and almost 
coincidental arrival of fl oods from various tributaries to the 
main course. The July 1993 landslide/fl ood disaster in central 
Nepal was the second major natural disasters that Nepal faced 
only fi ve years after the 1988 eastern Nepal earthquake. By this 
disaster, fi ve hundred thousand people were affected, about 
1500 people died, 60,000 hectares (600 km2) of land were 
damaged, and numerous irrigation, transportation systems and 
other infrastructure were destroyed. Estimates place the losses 
from this single event at about 70 million US Dollar (Chhetri 
and Bhattarai 2001).

The main triggering factor of landslides and debris fl ows 
in the study area was torrential rain of about 70 mm (maximum) 

per hour within 3 consecutive days (Fig. 4, see hyetograph). A 
total period of 24 hours rainfall exceeding 400 mm had caused 
the occurrence of 229 landslides (polygons and points) within 
the modelling site and found to be spatially localised in the 
cloudburst region of 1993 (Fig. 4). The major slope failures 
of July 1993 event were seen at the uppermost catchment of 
the Agra Khola watershed which was one of the most affected 
watersheds in the central Nepal. The large deep-seated slides 
were found in the north-facing dip-slopes such as Chisapani 
and Chaubas villages (Fig. 5a), whereas shallow slides were 
observed on the counter dip-slopes and the area occupied by 
granite. Despite critical landslide hazardous situation, village 
roads are under construction that crossing the large slides and 
every year, new slides are initiated due to such human activity 
(Fig. 5b, c). Tilted trees can be seen up to now in the steep 
mountain slope of Chisapani-Chaubas area indicating the 
future instability (Fig. 5d). Within the study area only, the 
landslides due to cloudburst incidence of 1993 had caused 
42 casualties and washed away a four span bridge located at 
Mahadevbesi of the Prithvi Highway (Fig. 5e). A temporary 

Fig. 4: Isohyetal map (24 hours) of the central Nepal during 19–21 July 1993 with showing landslide inventory from 1993 to 
2013 and hyetograph of the rainfall event at Tistung Station (source: DHM, fi eld visit and Department of Soil Conservation 
and Watershed Management).
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Fig. 5: Landslides occurrences and their consequences in the study area (1993–2013). (a) A huge landslide at Chisapani, July 1993 (b) 
Village roads are constructed within Chisapani Landslide despite of critical landslide risk, May 2012 (c) Activation of new slides in 
Chaubas Landslide, May 2012, (d) Tilted trees in the hill-slope indicating the future instability, May 2012 (e) Washed out bridge site 
at Mahadevbesi, 20 July 1993 (f) A bailey bridge was constructed immediately after the landslides and fl ood disaster of 1993, and (g) 
Reconstructed concrete bridge at present.
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bailey bridge was installed immediately after washed away 
(Fig. 5f) and then a new bridge has been reconstructed in the 
same location with elevated height and long length than the 
destroyed ones (Fig. 5g).

Acquisition of modelling variables

Landslides and their contributing variable maps 
were acquired as digitized layers of fi eld-surveyed maps 
or derivative layers by spatial analysis which comprise the 
terrain, geo-material, and other relevant parameters that 
have been linked to slope failures. The database included the 
landslides inventory and landslide causing variable maps. 
The data set of landslide inventory is an indispensable data 
source representative of samples of landslide presence 
that may represent single or multiple events (Chacón et al. 
2006). Geological and geomorphological variables that were 
obtained from different sources: existing digital data and fi eld 
surveying (Fig. 6). Thus, the spatial data have been gathered 
and manipulated automatically or semi-automatically.

Terrain features and derivatives: spot height and contour 
values of topographic map were used to generate Triangulated 
Irregular Network (TIN) and from which the DEM was 
generated by using spatial function in GIS. Morphometrical 
and hydrological parameters were extracted from the DEM 
using neighbourhood operations (Fig. 6). Slope angle and slope 
aspect are important derivative layers for the landslide activity. 
Furthermore, drainage lines and polygons were corrected with 
existing digital data as well as in the fi eld and then ranked 
into different morphometric orders (1–5) according to Strahler 
classifi cation, and proximity analysis was performed to 
evaluate the effect of drainage (Fig. 6).

Field-surveyed thematic layers: Vector layers of fi eld-
surveyed physical variables were lithology, slope complexity, 
engineering geology and land use maps (Fig. 6). The 
generalised lithological map was prepared from geological 
mapping in the fi eld. The lithological map was converted into 
a structural complexity map by utilising rock strata attitude (dip 
direction/dip amount) and slope (angle/aspect). Engineering 
geological transformation has involved the unifi cation 
of distinctive geo-lithological information based on their 
engineering characteristics mainly from material strengths and 
spatial variation of geotechnical parameters. Information in 
the engineering geological map was represented in a discrete 
way, which consists of alluvium, colluvium, and residual soils. 
Soil depths were estimated in the fi eld and two subclasses are 
considered: thin (1–3 m) and thick (more than 3 m) types. The 
rock slope or soil cover with a thickness of less than 1 m was 
included in the rocky terrain and categorised into low, medium, 
and high rock mass strength categories. The rock mass strength 
classifi cation was based on measurement of intact rock strength 
and rock mass properties. The land use layer was classifi ed 
into forest, shrub land, grassland, cultivated land and barren 
land. Facility map (e.g. road network) was obtained from an 
existing digital map and fi eldwork verifi cation.

Landslides in the model site were mapped (1:25,000 
scale) after the July 1993 event to 2013 with repeated visits 

in order to see any further changes. Large (172 to 280000 m2) 
landslides are mapped as polygon and small landslide patches 
were plotted simply as point features. The quality and reliability 
of the landslide distribution map should be considered high 
(Soeters and van Westen 1996), as the entire slope movements 
were directly identifi ed in the fi eld in order to defi ne landslide 
types, soil characteristics, thickness of the failed material, 
soil depth and geology. It is presumed that preparation of the 
landslide database minimises the subjectivity and observational 
or measurement errors during the fi eld studies.

All GIS data layers were geo-referenced in the Modifi ed 
Universal Transverse Mercator (MUTM) coordinate system. 
Spatial data was entered via digitization of fi eld surveyed 
data or directly from existing digital source. Editing digitized 
data, projecting and transforming, attribute assignment and 
verifi cation were done after entering the map data. Once point, 
line and polygon features of landslides and related factors were 
created, topology was built and other relevant attributes were 
keyed in or imported from other digital databases (Fig. 6). 
Spatial extent of desired area under the analysis was obtained 
with the use of Geoprocesing Wizard.

Thematic vector layers were rasterized for analytical 
purposes and a grid resolution of 10 m was utilised for fully 
exploiting the detailed information. The grid format was 
considered optimum for this kind of process, as the sizes of 
the smallest landslide occurrence were represented in the 
analysis. Continuous attributes were discretised (Fig. 6) into 
relevant categories (for example, slope angle is reclassifi ed 
in to 5 classes) according to geomorphic variations and 
site conditions. In establishing reclassifi cation criteria for 
continuous variables, a compromise has been made between 
the need to have a limited number of classes which suffi ciently 
represent the wide range of original values in each class. 
Finally, factors that infl uence landslides were extracted from 
the database.

Modelling technique and result

A multivariate technique of logistic regression was used 
to develop the landslide susceptibility model. The logistic 
regression is a mathematical modelling approach that can 
be used to describe the relationship of several independent 
variables to dichotomous dependent variable such as landslide 
(Kleinbaum 1994). In the process, an important aspect is the 
conversion of various nominal parameters (e.g., lithology, land 
use) to numeric values which was done through the creation of 
dummy variables matrix.
The GIS database was then exported to statistical software 
(SPSS) for computation of logistic regression equations. 
Quantitatively, the relationship between the landslide 
occurrence and its dependency on several variables can be 
expressed as (Eq. 3):

( )zeevent −+= 1/1)Pr( (3)

 where, Pr(event) is the probability of an event occurring. In 
the present situation, the Pr(event) is the estimated probability 
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of landslide occurrence. As Z varies from - to +, the 
probability varies from 0 to 1 on an S-shaped curve. Z is the 
linear combination (Eq. 4):

      

where, B0 is the intercept and B1, B2, ... Bn are the 
coeffi cients estimated from the sample data, which measure 
the contribution of independent variables (X1, X2, ..., Xn).

In logistic regression analysis, the likelihood-ratio test 
was used for determining whether variables should be added 
to the model (forward inclusion or backward exclusion). 
Elevation and distance to drainage variable are removed from 
the model due to low signifi cance values and other variables 
were taken into consideration for landslide susceptibility 
modelling. The fi nal coeffi cients of logistic regression values 
for causative variables (Table 1) from SPSS were imported 
back into the GIS to calculate landslide susceptibility values. 
The results of the model have been optimised by adjusting 
the input variables interactively. The degree of landslide 
susceptibility is expressed in relative term from very low to 
very high susceptibility levels (5 categories) using natural 
junk break method with some adjustment of boundaries by 
overlying landslide map.

Verifi cation/validation of model
In prediction modelling, the absolutely essential 

component is to verify/validate the results (Beguería 2006) so 
that it can be used to predict landslide-prone ground in further 
areas with similar physical factors related to landsliding. After 
the results of landslide susceptibility, the performance of the 
model and accuracy of result were evaluated by comparing 
the susceptibility map with the landslide distribution map. 
The comparison can be qualitative – for instance by a visual 
overlay – or quantitative, using different indices such as area 
of a class affected by landslides per total area of class (Süzen 

and Doyuran 2004, Yesilnacar and Topal 2005, Zhou et al. 
2002), a confusion matrix (Carrara 1983, Carrara et al. 2003) 
or by using the Receiver Operating Characteristic (ROC) curve 
(Chung and Fabbri 2003, Fabbri et al. 2003). 

In this study, the computed landslide susceptibility map 
was cross verifi ed in the fi eld and it is observed that the areas of 
high susceptible zones showed signifi cant indications of slope 
instability marked by landslides, erosion, and subsidence. The 
fi eld assessments have been extremely useful in calibrating 
the model, particularly in the identifi cation and delineation of 
susceptibility category boundaries. Furthermore, quantitative 
validation was performed by intersecting between the 
prediction image and observed landslide locations to compute 
the number of occurred landslides with respect to susceptible 
values. These values were used to prepare the “success rate” 
because the success rate evaluates the degree of match between 
the predicted susceptibility levels in a given region, and the 
distribution of known landslides in the same region (Chung 
and Fabbri 2003, Guzzetti et al. 2005, Conoscenti et al. 2008). 
The success rate is also called internal validation (Jiménez-
Perálvarez et al. 2011) and to obtain the success rate curve, 
the calculated landslide susceptibility values were sorted in 
descending order and then, the ordered values were divided 
into 100 classes with 1% cumulative intervals and plotted. 
The success rate plot was evaluated by computing Area 
Under the Curve (AUC) which was 0.9378 indicating the 
rate is 94.78% (Fig. 7). The value of AUC ranges from 0.5 
to 1. If the AUC value close to 1, that means high accuracy 
of prediction model and if the AUC value close to 0.5 which 
indicates the inaccuracy of the model (Fawccett 2006). The 
verifi cation of results showed the satisfactory agreement 
between presumptive hazard/susceptibility map and existing 
data on landslide locations (i.e. the causative variables selected 
are relevant and model performs successfully). The areas in 
high susceptible zones that are devoid of landslides indicate 
the probability of future landslides.

Fig. 6: Acquisition and development of landslide spatial database.

nn XBXBXBBZ +++= 22110 (4)
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Table 1: Calculated regression coeffi cients for landslide causative (independent) variables

Causative variables Coeffi cients Causative variables Coeffi cients
Slope angle Engineering geological units

15 -0.22 Thin soil (1–3 m) -0.20
15–25 0.07 Thick soil (3 m) -0.27
25–35 0.78 Colluvium -0.88
35–45 0.42 Alluvium 0.24
45 -0.15 High Rock Mass Strength -0.87

Slope aspect Medium Rock Mass Strength 0.22
Flat -0.39 Low Rock Mass Strength 1.42
North 0.12 Slope complexity
North East 0.25 Granitic slope -1.66
East 0.59 Oblique slope -0.35
South East -0.12 Dip-slope  slope 1.36
South 0.20 Dip-slope  slope -0.02
South West -0.35 Counter dip-slope -0.16
West -0.03 Fractured zone -1.03

 North West 0.33 Land use
Lithology Forest 1.54

Quartzite, schist 0.76 Shrub land -0.12
Marble, schist -0.26 Grassland 0.88
Meta-sandstone, phyllite -0.71 Cultivated land 0.66
Calc. shale, slate -1.52 Barren land 2.85
Limestone -1.68 Constant -3.64
Granite -1.60

MODEL INTEGRATION

Modelling of geological information plays an effective 
role in the geo-hazard assessment and mitigation (Kajiyama et 
al. 2004), thus, a workfl ow has been implemented to integrate 
the 3D geomodel and predicted landslide susceptibility in the 
Lesser Himalaya of central Nepal (Fig. 8). The evaluation of 
integrated model has revealed that the most susceptible areas 
confi ned to schist and quartzite unit which is topographically 
at uppermost catchments of Agra Khola where cloudburst 
had been occurred during 19–21 July 1993. In 3D dynamic 
visualisation, direct relationship of site-conditions geological 
attributes to the high landslide susceptible areas can be viewed 
with evidencing the rock strata geometry (i.e. dip-slope domain) 
has played the signifi cant role in causing the landslides, which 
is the key aspect of virtual reality.

Overlay of the infrastructure and settlement areas with 
the susceptibility map enable the assessment of buildings and 
highways distribution according to landslide susceptibility 
classes. Results of the prediction model showed that 15.4 per 
cent of the population lives in highly susceptible landslide 
zones (Fig. 8).Fig. 7: Validation of landslide susceptibility by success rate.
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CONCLUSIONS

The modelling approach has been succeeded to integrate 
3D geology and landslide susceptibility. 3D modelling has 
provided the new insight in the geological details that computed 
from optimum database following the implicit approach 
to interpret the geologic-boundary surfaces when borehole 
data are not available. The modelled subsurface geometry 
and properties became key element to visualise landslide 
susceptibility in the Lesser Himalaya of central Nepal which 
had obtained through the multivariate technique of logistic 
regression method. The landslide susceptibility model is found 
to be appropriate for minimising subjectivity because the 
results are reproducible. Moreover, fi eld evidences as well as 
maximum occurrence of landslides in highly susceptible zones 
proved the precise landslide susceptibility assessment in the 
prediction modelling. The susceptibility model was evaluated 
by computing success rate in which AUC is 0.9378 indicating 
the rate is 93.78% and thus, the model is valid with prediction 
accuracy of 0.5 to 1 (total area) and it can be concluded that 
selected explanatory variables have positive infl uence on 
landslide susceptibility.

Spatial overlay of the settlement areas with the 
susceptibility map showed that 15.4 per cent of the population 
lives on landslide-prone areas which are at the uppermost 
catchment of the Agra Khola. Due to the regional signifi cance 
of predicted landslide susceptibility, the model can be applied 
to other areas of similar geo-environmental characteristics 
with exception in site-specifi c scale. The highly susceptible 
zones derived in this assessment process can either be avoided 
or, where this is not possible, appropriate mitigation measures 

should be implemented that can reduce the impact to an 
acceptable level.
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