Garnet-biotite pair: a suitable geothermometer

*Harel Thomas¹ and Lalu Paudel²

¹Department of Applied Geology, School of Engineering and Technology Dr. Harisingh Gour Vishwavidyalaya, Sagar (M. P.) 470003, India ²Central Department of Geology, Tribhuvan University, Kirtipur, Kathmandu, Nepal *(Corresponding email: harelthomas@gmail.com)

ABSTRACT

The garnet-biotite pairs are commonly found in the pelitic assemblage right from upper green schist to granulites facies and hence are suitable for estimating equilibrium temperature for most metamorphic rocks. Several geothermometer has been proposed since long based on garnet - biotite Fe-Mg exchange reaction '1/3 Almandine + 1/3 Phlogopite = 1/3 Annite + 1/3 Pyrope'. The authors has developed a software in visual basic to calculate the temperature based on this pair using the formulation given by different works.

Keywords: Exchange reaction, Geothermometer, Garnet-Biotite.

Received: 15 August 2016

Revision accepted: 29 May 2017

INTRODUCTION

Geologists have for a long time attempted to estimate the temperature of formation of igneous and metamorphic rocks or estimating quantitatively the metamorphic condition at which the observed minerals assemblage attained equilibrium. The composition of equilibrium temperature of an assemblage in a rock is referred to as geothermometer. Traditionally geothermometry involves calculation of distribution coefficient (K_p) from mineral compositions and these K_{ps} are used alternately in one or more calibrations which have been proposed thermodynamically for the equilibrium assemblages. Thermometric models are based on the thermodynamic dataset $(\Delta H^{\circ}, \Delta S^{\circ}, \Delta V^{\circ}, \Delta G^{\circ})$ for the end-member reactions. These data have been obtained empirically, calorimetrically and by reaction reversals. A thermodynamic data set, compatible with both calorimetry and reaction reversals is called an internally consistent dataset. This internally consistent thermodynamic dataset, are the base for P-T calculations. Several geothermometer have been formulated during the last 45 years. In order to make the calculations faster the authors have developed Software "Gt-Bio.EXE", for temperature calculation, using different published geothermometer formulations given by different workers for garnet-biotite geothermometer. The Software is developed in visual basic and setup file is Gt-bio.Exe.

GARENT-BIOTITE EXCHANGE THERMOMETRY

If the system is closed, the partitioning of Fe and Mg between garnet and biotite can be given by the following exchange reaction: $\begin{array}{l} 1/3Fe_{3}Al_{2}Si_{3}O_{12}+1/3KMg_{3}AlSi_{3}O_{10}(OH)_{2}=1/3KFe_{3}AlSi_{3}O_{10}\\ (OH)_{2}+1/3Mg_{3}Al_{2}Si_{3}O_{12}\\ Almandine + Phlogopite = Annite + Pyrope \end{array}$

For this the equilibrium constant, K_D , T at some P and T is given by:

 $K_{\rm D}$, T = $(a_{\rm Pyr}^{\rm Gt})^{1/3} * (a_{\rm Ann}^{\rm Bio})^{1/3} / (a_{\rm Alm}^{\rm Gt})^{1/3} * (a_{\rm Phlo}^{\rm Bio})^{1/3}$

Where 'a' refers to the activity of component and the superscripts refer respectively to garnet and biotite phases. If both garnet and biotite behave as ideal 3 site solid solutions then, taking standard states to be the pure phases at the P and T of interest, the $K_{(P,T)}$ corresponds to the empirical distribution coefficient,

$$\begin{split} & K_{D} = (X_{Mg}^{Gt} * X_{Fe}^{Bio}) / (X_{Fe}^{Gt} * X_{Mg}^{Bio}) \\ & \text{Where,} \\ & X_{Fe}^{GT} = Fe / (Fe+Mg+Mn+Ca) \\ & X_{Mg}^{GT} = Mg / (Fe+Mg+Mn+Ca) \\ & X_{Mn}^{GT} = Mn / (Fe+Mg+Mn+Ca) \\ & X_{Ca}^{GT} = Ca / (Fe+Mg+Mn+Ca) \\ & X_{Al}^{Bio} = Al / (Al^{vi} + Fe+Mg+Mn+Ti+Cr), \\ & \text{Nal} = (Al-1)/2 \text{ based on 11 oxygen, P in bars and } T^{\circ}C = T \\ & (K) - 273.15 \end{split}$$

The different models which were used for this software are summarized in Table 1:

PROGRAM DESCRIPTION

This software consists of two programs as it is clear from the software window. It is an interactive package. On running, it prompts the user for choice of:

- Gt-Bio Ex. Rec.
- Exit

Thomas and Paudel

S. No.	Name of Scientist	$\Delta \mathbf{H}$	ΔS	ΔV
1.	Thompson (1976)	2740	1.156	0.0234
2.	Holdaway and Lee (1977)	3095	1.978	0.0124
3.	Ferry and Spear (1978)	2089	0.782	0.0096
4.	Perchuk (1977, 1981)	3416.4	2.30128	
5.	Pigage and Greenwood (1982)	2089	0.782	0.00956
6.	Hodges and Spear (1982)	2089	0.782	0.00956
7.	Perchuk and Lavrenteva (1983)	3875	2.868	0.0124
8.	Perchuk et al. (1985)	3720	2.868	0.0191
9.	Indares and Martignole (1985) (a) Newton and Haselton (1981) Garnet Mixing (b) Ganguly and Saxena (1984) Garnet mixing	2089 2089	0.782 0.782	0.00956 0.00956
10.	Hoinkes (1986)	2089	0.782	0.00956
11.	Aranovich et al. (1988)	3873	2.609	0.0124
12.	Dasgupta et al. (1991)	2156	0.93105	0.01238
13.	Bhattacharya et al. (1992) (a) Ganguly and Saxena (1984) Garnet mixing (b) Hackler and Wood (1989) Garnet mixing	1628 1628	0.81522 0.81522	0.00232 0.00232

Table 1: Name of scientists, ΔH , ΔS , and ΔV of the different models of garnet-biotite exchange reaction.

If the user wants to calculate temperature through garnetbiotite reaction, select the Option of Garnet-Biotite Exchange Reaction. It will show the proceed into the program Gt-Bio Ex. Rec. for Add record, Edit record, Delete record and Display result. For detail operation of software please see the program window given below:

Starting screen

Fig. 1: Starting screen of software.

Software Window

This is the main window of the software. It has following two menu/subprogram i.e.

- Gt-Bio Ex. Rec.
- Exit

1. Garnet biotite exchange reaction: This menu contains four sub-menu, (Fig. 2) these are:

1. Add record

- 2. Edit record
- 3. Delete record
- 4. Display result

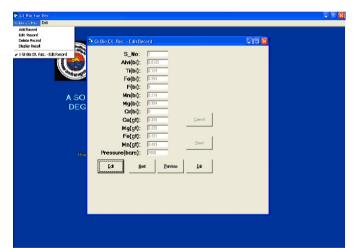


Fig. 2: From (Add record) menu one can add the data/ record

To add the data, click on the Gt-Bio Ex. Rec. menu and choose Add Record from the given submenu. The window will appear to add the data; the following steps have to follow:

- 1. To add the new data click on the add button
- 2. Fill all the values in the correct format

The first choice is "Add record". In this choice the data requirement is in the form of structural formula units or atomic formula units (a.f.u.) Fe, Mg, Mn, Ca for garnet (Gt); Al^{vi} , Ti, Fe⁺³, Fe⁺², Mg, Mn, Cr and F for biotite (Bio) and pressure in bars at which the temperature is to be calculated (Fig. 3 and Fig. 4).

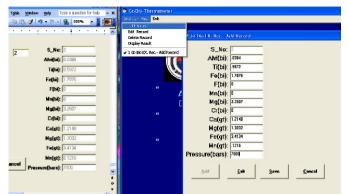


Fig. 3: Add or edit the data.

- 3. To save the record click in the Save Button.
- 4. To avoid the addition, click on the Cancel Button.
- 5. To exit from the window click on the Exit Button.

Edit the record

To edit the record select the Gt-Bio Ex. Rec. menu or simply the options list are appears select the Edit Record (Fig. 4 and Fig. 5) options from the given submenu. The window will appear to add the record, these following steps

- 1. Click on the edit button
- 2. Edit the record

3. Click on the save button, if you do not want to change the record click on the cancel or exit button.

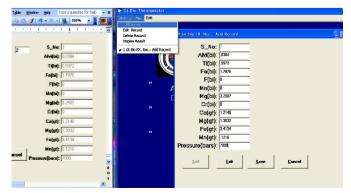


Fig. 5: Menu for edit record.

Delete the record

To delete the record select the Gt-Bio Ex Rec. menu the options list are appears select the Delete Record (Fig.6) options from the given submenu. The window will appear to add the record, these following steps

1. Move the record by click on the next and previous button to select the record to be deleted.

 Click on the delete button the dialog box will appear Click on yes if you want to delete the record otherwise on No
Click on exit button.

GI Bin Exe.Rec.		 JEI
educides Eit		
Add Record Edit: Record		
Edit Record	S* Gt. Bio five. Rev. Belete Record	
Display Result		
1 Gr-Blathe-Rec-Delate Record	S_No: 🕅	
	Alvi(bi): 0.0125	
	П(bi): 0.124	
140	Fe(bi): 0.254	
	F(bi):	
۵	Contrade 1	
	inglow.	
L	DE Cr(bi):	
	Ca(gt): 0.325	
	Mg(gt): 0.225	
	Fe(gt): 0.231	
	Hn(gt): 0.453	
	Pressure(bars): 7000	
	Pressure[bars]: Press	
	Delata Next Previous Est	

Fig. 6: Menu for the delete the record.

View the result

To view the Result selects the Gt-Bio Ex Rec. menu and select the Display Result options (Fig.7 and 8) from the given submenu. The window will appear to Search the record, these following steps:

1. Enter the serial no. of the record of which result you want view.

2. Click on the OK button.

🖥 Gi-Bia DL. Rec Display Hexuli			
ENTER THE SERIAL NO. 1	S_No:		
	AIV(6): 0.0384		
	Fe(b): 1.7876		
	F]6Q: 0		
	Mn(bi): 0	ATURE IN	
	Mg(bi): 3.2507	Γ-ΒΙΟΤΙΤΕ	
	Cr(s): 0		
	Ca(gt): 1.2148 Malati: 1.3032		
	Fe(gt): 3.4134		
	Wn(gt): 0.1216		
<u>Ok</u> <u>Display</u> <u>Cancel</u> Pre	ssure(bare): 7000		
		of Applession]	
		d Application) jor (M.P.)	
		par (parez)	

Fig. 7: Menu to view the selects Result.

The choice "display result" however, requires the data file name and provide the result in fixed format.

			- Display Result]
C. G.Sin	EX. Rec. E	׳	

Author Name	S-No 1		YE	AR K	D	LN	Kd	Tem	prature
THOMPSON			197	6 4.75	aoza	1.56	0683		657
BOLDAWAY LEE	Ľ.		197	7 4.75	3023	1.55	0683		626
GOLDMAN ALEE	E		197	7 4.75	aoza	1.56	0883		633
FERRY AND SPEA	R		197	9 4.76	3023	1.56	0883		647
PIGAGE AND GR	EEWWOOD		196	4.76	90:29	1.56	0883		794
BODGES AND SP	EAR		198	4.76	9029	1.56	0883		725
PERCHUE AND L	AVRENT'EVA		198	4.76	90:29	1.56	0883		621
PERCHUE et al.,			198	4.75	3023	1.56	0683		700
INDARES AND M	ARTIGNOLE.(A	B]	198						
AB, NEWTON ,BA	SELTON GUNCX	ING	198	1	3023	1.56			580
(B) GANGULY .SA	ARENA GL MIRI	NG	198	4.76	3023	1.55	0893		619
HOINKES (A .B)			198	15					
(A) EOINEES				4.76	30:23	1.56	0993		814
(B) HOINRES				4.75	3023	1.56	0683		757
ARANOVICE et al	l.,		198	8 4.75	3023	1.55	0683		765
DAS GUPTA et al.	-		199	4.76	3023	1.56	0883		807
BHATTACHARYA	at al. (A.b)		199	2					
(A) HACKLER_W	DOD GL MIXIN	G	196	9 4.76	9029	1.55	0993		664
(B) GANGULY .SA	XENA GUNINI	IG	196	4.76	9029	1.55	0993		694
PERCHUK			197	7,81 4.78	9029	1.58	0683		611
KFe[gt] XHg	[at] XMolat)	XCa[gl]		XFe[Bi]	XM	g 81]	кт	81	XAUBI

Fig. 8: Menu display result in fixed format.

SOFTWARE VALIDATION

Table 2 (contd.):

For the validation of the "Software," several data have been manually processes (Thomas 1994, 1995, 1995, 2005 and 2008; Joshi et al. 1993) and also reprocessed through this Software and found the identical result. One set of data is given in Table 2 and results are shown in Table 3 in a fixed format with temperature based on different workers along with K_D , lnK_D , X_{Fe} , X_{Mg} , X_{Mn} , and X_{Ca} for garnet and X_{Fe} , X_{Mg} , X_{Ti} and X_{Al} for biotite. Some variation is noticed in the results obtained from different calibrations. This discrepancy might be due to the fact that some of the formulations are based on the empirical studies and some on experimental work. Comparison of different calibration requires more exhaustive discussion, therefore, the authors feels that experimentally calibrated models should be the preferred geothermometer.

Table 2: Electron probe analyses (Wt %) and structural formulae (24 oxygen basis) of garnet and (22 oxygen basis) of biotite in pelitic granulite from Shivpura, District Bhilwara, Rajasthan; Thomas 2005)

Oxide	Garnet	Biotite
SiO ₂	37.158	37.569
TiO ₂	0.039	3.523
Al ₂ O ₃	21.056	17.147
Cr ₂ O ₃	0.037	0.052
Fe ₂ O ₃	0.240	0.00

Oxide	Garnet	Biotite
FeO	33.778	12.766
MgO	5.278	14.744
MnO	0.508	0.00
CaO	1.365	0.00
K ₂ O	0.0	9.815
Na ₂ O	0.0	0.156
Total	99.459	99.587
	Cations 24 (O)	Cations 22 (O)
Si	5.9484	5.5147
Ti	0.0047	0.3889
Al ^{iv}	2.0514	2.4853
Al ^{vi}	1.9212	0.4811
Cr	0.0047	0.0060
Fe ⁺³	0.0289	0.00
Fe ⁺²	4.5220	1.5671
Mg	1.2595	3.2259
Mn	0.0689	0.00
Са	0.2341	0.00
К	0.00	1.8377
Na	0.00	0.0445

S. No.	Authors			K		lnK _D		Temp	erature (°C)		
1.	Thompson (1976)				4.763	023	1.5608	383	657		
2.	Holdaway and Lee	(1977)			4.763	023	1.5608	383	626		
3.	Goldman and Albee	e (1977)			4.763	023	1.5608	383	633		
4.	Ferry and Spear (1978) 4				4.763	023	1.5608	883 647			
5.	Pigage and Greenwood (1982) 4.				4.763	023	1.560883 794				
6.	Hodges and Spear (1982)				4.763	023	1.5608	383	725		
7.	Perchuk and Laver	nteva (1983)			4.763	023	1.5608	383	621		
8.	Perchuk (1985)					023	1.560883 700				
9.	Indares and Martignole (A and B) (1985) A. Newton and Haselton 1981 Garnet mixing B. Ganguly and Saxena 1984 Garnet mixing				4.763		1.560883 580 1.560883 619				
10.	Hoinkes (A and B) (1986) A. Hoinkes B. Hoinkes				4.763				814 757		
11.	Aranovich et al. (1	988)			4.763	4.763023 1.560883		383	3 765		
12.	Das Gupta et al. (19	991)			4.763023 1.560883		383	807			
13.	Bhattacharya et al. (A and B) (1992)A. Hackler and Wood 1989 Garnet mixingB. Ganguly and Saxena 1984 Garnet mixing							1.560883 1.560883		664 684	
14.	Perchuk (1977, 1981)			4.763	023	1.5608	383	611			
X _{Fe(gt)}	X _{Mg(gt)}	X _{Mn(gt)}	X _{Ca(gt)}	X _{Fe(bio)}	X _{Mg(bio}		io) X ₁			X _{Al(bio)}	
0.5639		0.020089	0.200694	0.35480)2	0.6451		0.1052		0.006768	

ACKNOWLEDGEMENT

The author (HT) is thankful to Head of the Department of Applied Geology, Dr. H. S. G. Central University, Sagar for providing the necessary facility.

REFERENCES

- Aranovich, L. Ya, Lavrente'va, I. V., and Kaskykova, N. A., 1988, Biotite-garnet and biotite-orthopyxene geothermometers. Calibrations accord accommodating for Al-variation in biotite. Geochimiya, v. 5, pp. 668-676.
- Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K., and Raith, M., 1992, Non-deal mixing in the phlogopite - annite binary constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Cont. Mineral Petrol., v. 111, pp. 87-93.
- Dasgupta, S., Sengupta, P., Guha, D., and Fukuoka, M. 1991, A refined garnet-biotite Fe-Mg exchange geo-thermometer and its application in amphibolite and granulites. Cont. Mineral Petrol., v. 109, pp.130-137.
- Ferry, J. M., and Spear, F. S. 1978, Experimental calibration of the partitioning of Fe and Mg between biotite and garnet, Cont. Mineral Petrol., v. 66, pp. 113-117.
- Ganguly, J., and Saxena, S. K., 1984, Mixing properties of aluminosilicate garnets: constrains from natural and experimental data, and applications to geothermo-barometry, Am. Mineral., v. 69, pp. 88-97.
- Goldman, D. S., and Albee, A. L., 1977, Correlation of Mg/Fe partitioning between garnet and biotite with O¹⁸/O¹⁶ partitioning

between quartz and magnetite. Am. Jour. Sci., v. 277, pp.750-767.

- Hackler, R. T., and Wood, B. J., 1989, Experimental determination of Fe and Mg exchange between garnet-olivine and estimation of Fe-Mg mixing properties in garnet and magnetite. Am. Mineral., v. 74, pp. 994-999.
- Hodges, K. V., and Spear, F. S., 1982, Geothermometry, geobarometry and the Al₂SiO₅ triple point at Mt. Moosilauke, New Hampshire, Am. Mineral., v. 67, pp. 1118-1134.
- Hoinkes, G., 1986, Effect of grossular-content in garnet on the partitioning of Fe and Mg between garnet and biotite. An empirical investigation on staurolite-zone samples from Austroalpine Schneeberg complex. Cont. Mineral Petrol., v. 92, pp. 393-399
- Holdaway, M J., and Lee, S M., 1977, Fe Mg cordierite stability in high grade pelitic rocks based on experimental, theoretical, and natural observations. Cont. Mineral Petrol., v. 63, pp. 175-198.
- Indares, J., and Martignole, J. 1985, Biotite garnet geothermometry in the granulite facies: the influence of Ti and Al in biotite, Am. Mineral., v. 70, pp. 272-278.
- Joshi, M., Thomas, H., and Sharma R. S., 1993, Granulite facies metamorphism in the Achaean gneiss complex from North -Central Rajasthan. Proc. Nat. Acad. Sci. India, v. 63 (A), I, pp. 167–187.
- Newton, R. C., and Haselton, H. T., 1981, Thermodynamics of the plagioclase-garnet -Al₂SiO₅-quartz geobarometer. In: Newton, R. C. (Ed.), Thermodynamics of Minerals and Melts. New York, Springer Verlag., pp. 131-147.
- Perchuk, L. L., 1977, Thermodynamic control of metamorphic

processes. In: Saxena, S. K. and Bhattacharji, S. (Eds.), Energetic of Geological Processes. Springer Verlag, New York, pp. 285-352.

- Perchuk, L. L., and Lavrent'eva, I. V., 1983, Experimental investigation of exchange equilibria in the system cordieritegarnet-biotite. In: Saxena, S. K., (Ed.) Kinetics and equilibrium in mineral reaction. New York, Springer Verlag, pp.199-239.
- Perchuk, L. L., Podlesskii, K. K., and Aranvvich, L. Ya., 1981, Calculation of thermodynamic properties of end-member minerals from natural paragenesis. In: Newton, R. C., Navrotsky, A. and Wood, B. J, (Eds.) Thermodynamics of Minerals and Melts. Springer Verlag, New York, pp. 111-129.
- Perchuk, L. L., Aranvvich, L. Ya., Podlesskii, K. K., Lavrent'eva, I. V., Gerasimov, V. Yu., Kitsul, V. I., Karsakov, L. P., and Berdnikov, N. V., 1985, Precambrian granulites of the Aldan Shield eastern Siberia, USSR. Jour. Meta. Geol., v. 3, pp. 265-310.
- Pigage, I. C., and Greenwood, H. J. 1982, Internally consistent estimation of pressure and temperature: the staurolite problem. Am. Jour. Sci., v. 282, pp. 943-969.
- Thomas, H., 1994, GBtherm: A revised qbasic program to calculate temperature in Degree Celsius for garnet-biotite assemblage based on Fe-Mg exchange reaction., Indian Jour. Geochem.,

v.9(1,2), pp. 21-29.

- Thomas, H., 1995, MPET1: A computer program for coexisting garnet-Biotite-Aluminosilicate-plagioclase-quartz-Geothermobarometry. Jour. Him. Geol., v. 6(1), pp. 69-74.
- Thomas, H., 1995, Pressure Temperature considerations for granulite form Thana Gyangarh, District-Bhilwara, Rajasthan: Implications for Crustal Evolution. In: R. K. Srivastava and R. Chandra (Eds.) Magmatism in relation to Diverse Tectonic setting. Oxford & IBH Publishing Co. Pvt. Ltd., pp. 439-456.
- Thomas, H., 2005, Polymetamorphism in the Archaean Gneiss Complex of Shivpura Gyangarh District Bhilwara, Rajasthan. In H. Thomas (Ed.) Granulite Facies Metamorphism and Crustal Evolution., pp. 123-147.
- Thomas, H., and Sujata, S., 2008, Petrology and Reaction Texture of the Meta-Norites from Shivpura, Bhilwara District, Rajasthan. In Srivastava, R. K., Ch. Sivaji and Chalapathi Rao, N. V., (Eds.), Indian Dykes Geochemistry, Geophysics and Geochronology. Narosa Publishing House Pvt. Ltd., pp. 571-587.
- Thompson, A. B., 1976, Mineral reactions in pelitic rocks. I. Prediction of P-T-X (Fe-Mg) phase relations. Am. Jour. Sci., v. 276, pp. 401-454.