Valid garnet-biotite thermometer: A comparative study

*H. Thomas and Haritabh Rana

Department of Applied Geology, School of Engineering and Technology Doctor Harisingh Gour Vishwavidyalaya, Sagar (MP), India

*Corresponding author: harelthomas@gmail.com

ABSTRACT

The abundance of garnet-biotite pair in a wide range of rocks mainly from upper green schist to granulite facies has made it one of the most widely used pairs for estimation of temperature at which once rocks equilibrated. In last four decades, more than 20 thermometer models of garnet-biotite pair have been proposed. To find the suitability of models, twenty-one thermometers formulated by a number of scholars since 1976 is considered. 27 sample data of granulites from the global literature were collected and processed through the "Gt-Bio.EXE" software. We conclude that four models are the most valid and reliable of these kinds of thermometers: Perchuk and Lavrente'va (1983); Thompson (1976); Ferry and Spear (1978) and Holdaway and Lee (1977).

Keywords: Geothermometer, Exchange reactions, Fe-Mg partitioning, Granulite, Comparative study

Paper Received: 7 Jan 2019

Paper Accepted: 20 Mar 2019

INTRODUCTION

Distribution of ferrous iron and magnesium between coexisting silicate minerals is the basis of important geothermometers for metamorphic rocks. Of wide interest is the distribution between garnet and biotite as the thermometer ranging for a wide range of rocks from greenschist to granulites. In last four decades, more than twenty thermometers have been proposed for garnet-biotite pair including both empirical and experimental calibrations. Several thermobarometric studies have been undertaken in the past few years, which led to the development of a range of thermometers such as garnet-biotite thermometer (Wu and Cheng, 2006); garnet-clinopyroxene thermometer (Jahnson et al., 1983; Fu et al., 1998); garnet orthopyroxene thermometer (Thomas et al., 2018).

For last four decades, several experiments led to the development of GB thermometry. (Frost, 1962) had used the Fe-Mg distribution between garnet and biotite to qualitatively determine the grade of metamorphic rocks. (Kretz, 1964) stated that the Fe-Mg distribution between garnet and biotite may be a function of pressure and temperature without stating any formulation.

However, the calibrations are diverse and may be confusing to petrologists in choosing a suitable version. With the development of geothermometric studies, it appears necessary to undertake a review of this thermometer every decade or so. In order to recommend the best calibration for geologists, the authors have compared twenty one garnet - biotite thermometer models proposed since 1976 applicable on granulites facies of rocks. The partitioning of the Fe⁺² and Mg, expressed by the distribution coefficient between coexisting garnet and biotite, has clearly shown that this distribution is a function of both physical conditions as well as compositional variations of the phases involved (Thompson, 1976; Holdaway and Lee, 1977; Goldman and Albee, 1977; Ferry and Spear, 1978; Pigage and Greenwood, 1982; Hodges and Spear, 1982; Perchuk and Lavrente'va, 1983; Perchuk et al., 1985; Indares and Martignole a and b, 1985; Hoinkes, a and b, 1986; Aranovich et al., 1988; Dasgupta et al., 1991; Bhattacharya et al., a and b, 1992; Perchuk, 1977, 1981; Holdaway et al., 1997; Gessman et al., 1997 and Kaneko and Miyano, a and b, 2004):

$$\frac{1/3 \text{ Fe}_{3}\text{Al}_{2}\text{Si}_{3}\text{O}_{12} + 1/3 \text{ KMg}_{3}\text{AlSi}_{3}\text{O10(OH)}_{2}}{(1/3 \text{ Almandine}) + (1/3 \text{ Phologopite})}$$

$$\xrightarrow{1/3 \text{ Mg}_{3}\text{Al}_{2}\text{Si}_{3}\text{O}_{12} + 1/3 \text{ KFe}_{3}\text{AlSi}_{3}\text{O}_{10}(\text{OH})_{2}}{(1/3 \text{ Pyrope}) + (1/3 \text{ Annite})}$$

The distribution of Fe and Mg between the phase's garnet and biotite is a function of pressure and temperature. As a general rule, the partitioning of elements between phases decreases as temperature increases: that is, K_D approaches 1 and lnK_D approaches 0.

For this the equilibrium constant, K_D , T at some P and T is given by:

$$K_{\rm D}, T = \frac{(a_{\rm Pyr}Gt)^{1/3} * (a_{\rm Ann} Bio)^{1/3}}{(a_{\rm Alm}Gt)^{1/3} * (a_{\rm Phlo} Bio)^{1/3}}$$

where 'a' refers to the activity of component and the superscripts refer respectively to garnet and biotite phases. If both garnet and biotite behave as ideal 3 site solid solutions then, taking standard states to be the pure phases at the P and T of interest, the $K_{(P, T)}$ corresponds to the empirical distribution coefficient,

$$K_{D} = (X_{Mg}Gt*X_{Fe}Bio) / (X_{Fe}Gt*X_{Mg}Bio)$$

Where,

$$\begin{split} X_{Fe}{}^{GT} &= Fe/(Fe+Mg+Mn+Ca); X_{Mg}{}^{GT} = \\ Mg/(Fe+Mg+Mn+Ca); X_{Fe}{}^{BT} &= Fe/(Fe+Mg); X_{Mg}{}^{B'} \\ &= Mg/(Fe+Mg) \end{split}$$

Several models of geothermometer have been formulated for garnet-biotite pair by a number of workers since 1976 to till dates which are summaried below:

Thompson (1976) attempted to calculate isobaric Fe-Mg section from available experimental and thermo-chemical data in the KFMASH system, calculated at $PH_2O = 5$ kb for reactions involving garnet - biotite - staurolite - chlorite - cordierite quartz - muscovite assemblages. Holdaway and Lee (1977) have given an empirical calibration of the garnet-biotite geothermometer applicable to high grade metamorphism of pelitic rocks. Ferry and Spear (1978) carried out experimental calibration with garnet-biotite ratio as 49/1 and $\Delta H = 12,454$ cal; $\Delta S = 4.662$ Cal/K mole to gave a polythermal polybaric equation. Perchuk (1977, 1981) calibrated an equation using distribution coefficient as a factor without using pressure effect in the equation. Goldman and Albee (1977) used the isotopic and chemical data for thirteen metamorphic rocks containing garnet and biotite to investigate the dependence of the Mg-Fe partition upon temperature to give an emperical calibration. Hodges and Spear (1982) incorporated (Ferry and Spear, 1978) data set in their calibrations along with alternative calibration using a consistent set of solution models to formulate an equation. Pigage and Greenwood (1982) gave an empirical equation for coexisting garnet - biotite with sillimanite plus kyanite using XCaGT and XMnGT as variables in the equation. Perchuk and Lavrente'va (1983) undertook an experimental calibration using natural minerals and biotite with a high Al content. Their equation avoids the problem of non-ideality by working directly with the natural minerals. Perchuk et al. (1985) formulated an equation for calculation of temperature of metamorphism for Aldan granulites using X_{Ca}Gt as variable in the equation. Indares and Martignole (1985) proposed two new calibration of (Newton and Haselton, 1981) and (Ganguly and Saxena, 1984) based upon the correction for Al and Ti and the interaction of Ca in Fe - Mg garnets. Hoinkes (1986) gave two equations evaluating the Ca content in the metapelites of staurolite in zone, supporting non-ideal mixing of the grossular with almandine - pyrope solid solution. Aranovich et al. (1988) reformulated the equation using the experimental data set of Perchuk and Lavrente'va (1983). Dasgupta et al. (1991) gave a new formulation developed through statistical regression of the reversed experimental data of Ferry and Spear (1978) using available thermo-chemical data for quaternary Fe-Mg-Ca-Mn garnet solid solution and for the excess free energy terms, associated with the mixing of Al and Ti, in octahedral sites in biotite solid solution. Bhattacharya et al. (1992) gave two new formulations using (Ganguly and Saxena, 1984) and (Hackler and Wood, 1989) of garnet - biotite thermometer using the non-ideal mixing in the phlogopiteannite binary system. Gessman et al. (1997) used new experimental data for the Fe-Mg exchange between garnet and biotite using the Fe-Mg-Al mixing properties of biotite to give new calibration. Holdaway et al. (1997) recalibrated the equation using recently obtained Margules parameters for ternary Fe-Mg-Ca garnet, Mn interactions in garnet, Al interactions in biotite as well as the Fe oxidation state of both minerals. Kaneko and Miyano (2004) derived two equations, one as the presence of ferric Fe in biotite in relation to the coexisting Fe-oxide phases and second assuming the absence of ferric Fe in biotite, both evaluated in terms of iterative multiple least-square regressions of the experimental results.

RESULTS AND DISCUSSION

For the validation of the software (Thomas, 1995; Thomas and Paudel, 2017) and comparative study of different models, 27 sample data of granulites (Table 1: Bohlen and Essene, 1980; Harris et al., 1982; Hodge and Spear, 1982; Keinast and Ouzegane, 1987; Perchuk, 1989; Sharma et al, 1989; Riciputi et al., 1990; Barth and May, 1992; Sen and Bhattacharya, 1992; Buchernurminen and Ohta, 1993; Liangzhao and Shiqin, 1993; Dasgupta et al., 1994; Fareduddin et al., 1994; Kumar and Chacko, 1994; Thomas, 1995; Knudsen, 1996; Muhongo and Tuisku, 1996; Shaw and Arima, 1996; Bindu, 1997; Ellis and Hiroi, 1997; Raith et al., 1997; Bose et al., 2001; Pattison et al., 2003; Sommer et al., 2008; Tadokaro et al., 2008; Gross et al., 2009; Yang et al., 2015) have been processed through "Gt-Bio.EXE" software. A comparison of the calculated lnK_D and 1/T for different geothermometric models has been done. The K_D, lnK_D, X_{Fe} Gt, X_{Mg} Gt, X_{Ca} Gt, X_{Mn} Gt, X_{Mg} Bt, X_{Fe} Bt, X_{Al} Bt and, X_{Ti} Bt of different rocks samples by different authors are shown in Table 1 and the plots of lnK_D vs 1/T plot are shown in Figs. (1a-u) along with temperature distribution of specific models are shown in Table 2.

The data selected in this way was used to check the temperature dependence of the distribution coefficient.

Perchuk and Lavarente'va, 1983 (Fig. 1a) graph of lnK_D vs 1/T has been plotted as $lnK_D = 1875/T$ (°C) – 1.470 with R² = 0.997;

Thompson, 1976 (Fig. 1b) as lnK_D = 1567/ T (°C) - 0.425 with R^2 = 0.996;

Ferry and Spear, 1978 (Fig. 1c) as lnK_D = 1020/ T (°C) - 0.040 with R^2 = 0.992;

Holdaway and Lee, 1977 (Fig. 1d) as $lnK_D = 1402/T$ (°C) – 0.723 with R² = 0.963;

Hoinkes, 1986(b) (Fig. 1e) as lnK_D = 1032/ T (°C) - 0.003 with R^2 = 0.951;

Perchuk, 1977; 1981 (Fig. 1f) as $lnK_D = 1271/T$ (°C) – 0.591 with R² = 0.926;

Hoinkes, 1986 A, (Fig. 1g) as $\ln K_D = 1038/T$ (°C) + 0.063 with R² = 0.921;

Kaneko and Miyano, 2004(b) (Fig. 1h) as $lnK_D = 1570/T$ (°C) -1.07 with R² = 0.909;

Indares and Martingole, (a. Newton and Haselton, 1981), 1985 (Fig. 1i) as $lnK_D = 882.6/T$ (°C) -0.070 with R² = 0.903;

Perchuk et al., 1985 (Fig. 1j) as $lnK_D = 1740/T$ (°C) – 1.234 with $R^2 = 0.871$;

Hodges and Spear, 1982 (Fig. 1k) as $lnK_D = 1044/T$ (°C) – 0.048 with R² = 0.870;

Holdaway et al., 1997 (Fig. 11) as lnK_D = –759.1/ T (°C) + 2.607 with R^2 = 0.855;

Pigage and Greenwood, 1982 (Fig. 1m) as $lnK_D = 1210/$ T (°C) - 0.158 with R² = 0.851; Aranovich et al., 1988 (Fig. 1n) as lnKD = 1264/ T (°C) - 0.332 with R² = 0.780;

Bhattacharya et al., 1992 (a) (Fig. 1o) as $lnK_D = 985/T$ (°C) – 0.089 with $R^2 = .767$;

Indares and Martingole, (b. Ganguly and Saxena, 1984), 1985 (Fig. 1p) as $lnK_D = 837.3/T$ (°C) + 0.028 with R² = 0.674;

Dasgupta et al., 1991 (Fig. 1q) as $lnK_D = 523.8/T$ (°C)

+ 0.729 with R² = 0.659;

Kaneko and Miyano, 2004 (a) (Fig. 1r) as $lnK_D = 1364/$ T (°C) -0.655 with R² = 0.652; Goldman and Albee, 1977 (Fig. 1s) as lnKD = 747.5/ T (°C) + 0.240 with R² = 0.647;

Gessman et al., 1997 (Fig. 1t) as $lnK_D = 844.9/ T$ (°C) + 0.236 with R² = 0.599; and Bhattacharya et al., 1992 (b) (Fig. 1u) as $lnK_D = 402.3/ T$ (°C) + 0.819 with R² = 0.526.

On the basis of different plots, it is observed that Perchuk and Lavrente'va (1983); Thompson (1976); Ferry and Spear (1978) and Holdaway and Lee (1977) are showing very good relation between lnKD vs 1/T and maximum points are coming in best fit lines and has high regression values.

CONCLUSION

Among the twenty-one geothermometer models of garnetbiotite equilibrium considered for this comparative study, Perchuk and Lavrente'va (1983); Thompson (1976); Ferry and Spear (1978) and Holdaway and Lee (1977) are showing the highest regression values and maximum points (values of temperature) are coming in best fit lines (Figs. 1a-d). So, these models can be considered empirically as the most appropriate ones to be used for the calculation of temperature.

Table 1: Data of K_D, lnK_D, X_{Fe} Gt, X_{Mg} Gt, X_{Ca} Gt, X_{Mn} Gt, X_{Mg} Bt, X_{Fe} Bt, X_{Al} Bt and, X_{Ti} Bt of different rocks samples
by different authors

Data of different authors	KD	LNKD	X _{Fe} (GT)	X _{Mg} (GT)	X _{Mn} (GT)	X _{Ca} (GT)	X _{Fe} (BT)	X _{Mg} (BT)	X _{Ti} (BT)	X _{Al} (BT)
1. Fareduddin et al., 1994	6.5854	1.8849	0.683162	0.151777	0.021754	0.143308	0.405997	0.594003	0.085745	0.029296
2. Sharma et al., 1989	4.4993	1.5039	0.581613	0.193871	0.012581	0.211935	0.400040	0.599960	0.100088	0.020720
3. Sen and Bhattacharya, 1992	4.0973	1.4103	0.613666	0.350065	0.010687	0.025583	0.299643	0.700357	0.056345	0.070562
4. Perchuk,1989	6.2770	1.8369	0.760623	0.18748	0.023678	0.028219	0.392593	0.607407	0.017389	0.371606
5. Bose et al., 2001	11.4956	2.442	0.566195	0.014509	0.349655	0.069641	0.772458	0.227542	0.063475	0.123322
6. Harris et al., 1982	3.9128	1.3642	0.585634	0.325906	0.058863	0.029598	0.314717	0.682830	0.107725	0.023033
7. Muhongo and Tuisku, 1996	3.6956	1.3071	0.517309	0.295791	0.018040	0.168861	0.321225	0.678775	0.089482	0.022152
8. Barth and May, 1992	3.3232	1.2009	0.575908	0.214851	0.028713	0.180528	0.446472	0.553528	0.125373	0.006848
9. Riciputi et al.,1990	2.7304	1.0045	0.570910	0.364404	0.031746	0.032759	0.364666	0.635334	0.056667	0.149000
10. Liangzhao and Shiqin,1993	3.2373	1.1747	0.601329	0.335548	0.006645	0.056478	0.356322	0.643678	0.073333	0.056667
11. Kumar and Chacko,1994	3.0268	1.1075	0.717260	0.240430	0.023842	0.018469	0.496975	0.503625	0.100652	0.049602
12. Keinast and Ouzegane, 1987	4.1082	1.413	0.542448	0.444255	0.007842	0.005455	0.229120	0.770880	0.103177	0.013924
13. Dasgupta et al., 1994	4.9774	1.6049	0.535802	0.371289	0.018163	0.074747	0.224763	0.775237	0.070607	0.011233
14.Tadokaro et al., 2008	4.9868	1.6068	0.636270	0.335276	0.005828	0.022626	0.275654	0.724346	0.087427	0.058166
15. Buchernurminen and Ohta, 1993	4.9351	1.5964	0.795918	0.159864	0.017007	0.027211	0.502203	0.497797	0.086806	0.012500
16. Gross et al., 2009	3.3293	1.2028	0.700997	0.255814	0.132890	0.029900	0.451477	0.548523	0.100000	0.535710
17. Shaw and Arima, 1996	6.9161	1.9339	0.681116	0.184140	0.026882	0.107863	0.348459	0.654541	0.069143	0.021051
18. Yang et al., 2015	6.8372	1.9224	0.653333	0.286667	0.033330	0.026667	0.250000	0.750000	0.043860	0.114035
19. Raith et al., 1997	3.7479	1.3212	0.520392	0.420881	0.016313	0.042414	0.248062	0.751938	0.072414	0.037931
20. Knudsen, 1996	4.5030	1.5047	0.676768	0.292929	0.010101	0.020202	0.339093	0.660907	0.098039	0.076649
21. Ellis and Hiroi, 1997	2.7227	1.0016	0.668901	0.253016	0.043566	0.034517	0.492641	0.507359	0.105982	0.022476
22. Bindu, 1997	3.9599	1.3762	0.708169	0.264493	0.010211	0.017128	0.403394	0.596606	0.123702	0.035890
23. Bohlen and Essene, 1980	3.6507	1.2949	0.698552	0.132705	0.109801	0.058942	0.590480	0.409520	0.061833	0.152667
24. Thomas, 1995	6.9285	1.9356	0.726952	0.233728	0.013454	0.025867	0.309824	0.690176	0.080045	0.065651
25. Sommer et al., 2008	4.2565	1.4485	0.622074	0.274247	0.030100	0.073579	0.347640	0.652360	0.038732	0.137324
26. Pattison et al., 2003	3.1028	1.1323	0.516667	0.380000	0.066670	0.036667	0.304688	0.695313	0.083624	0.020906
27. Hodge and Spear, 1982	7.4259	2.0050	0.730000	0.100000	0.140000	0.030000	0.495726	0.504273	0.025729	0.168096

Table 2: Data of the Calculated	Temperature (°C) of dif	ferent rocks samples by d	ifferent authors

Data of different authors	Thompson (1976)	Holdway and Lee (1977)	Goldman and Albee (1977)	Ferry and Spear (1978)	Pigage and Greenwood (1982)	Hodges and Spear (1982)	Perchuk and Laverante'va (1983)	Perchuk et al. (1985)	Indares and Martingole (1985a)	Indares and Martingole (1985b)	Hoinkes (1986a)
1. Fareduddin et al., 1994	682	551	497	535	631	590	560	608	482	499	640
2. Sharma et al., 1989	819	641	647	670	824	752	633	717	611	647	850
3. Sen and Bhattacharya, 1992	858	666	629	710	735	721	653	641	627	613	744
4. Perchuk, 1989	697	561	622	550	579	561	569	560	507	442	576
5. Bose et al., 2001	534	447	379	396	572	420	473	484	346	488	435
6. Harris et al., 1982 7. Muhongo and Tuisku, 1996	879 906	679 695	618 756	732 759	789 898	744 826	663 676	653 740	572 686	597 725	772 956
8. Barth and May, 1992	959	728	710	814	977	886	701	772	683	734	1043
9. Riciputi et al.,1990	1071	794	888	934	986	947	750	741	822	803	999
10. Liangzhao and Shiqin, 1993	973	736	704	829	879	852	707	712	721	714	920
11. Kumar and Chacko,1994	1010	758	612	868	900	876	723	707	690	681	901
12. Keinast and Ouzegane, 1987	857	665	599	709	718	711	652	630	550	537	716
13. Dasgupta et al., 1994	779	615	600	630	690	660	613	627	561	574	708
14. Tadokaro et al., 2008	778	614	556	629	648	639	612	600	509	491	654
15. Buchernurminen and Ohta, 1993	782	617	469	633	661	644	614	604	509	482	664
16. Gross et al., 2009	958	727	1384	813	925	826	700	690	650	635	861
17. Shaw and Arima, 1996	667	540	489	521	597	562	552	582	476	494	602
18. Yang et al., 2015	670	543	526	524	556	534	554	544	470	463	547
19. Raith et al., 1997	899	691	685	752	794	770	673	670	650	651	812
20. Knudsen, 1996	818	640	565	670	689	678	633	619	525	502	694
21. Ellis and Hiroi, 1997	1073	795	658	936	998	730	751	743	748	769	1004
22. Bindu, 1997	874	675	549	726	745	733	660	644	535	517	749
23. Bohlen and Essene, 1980	912	699	639	765	879	789	679	685	674	717	849
24. Thomas, 1995	666	540	472	520	542	530	552	542	425	412	542
25. Sommer et al., 2008	842	655	688	694	763	723	645	659	652	649	782
26. Pattison et al., 2003	996	750	744	853	929	868	717	711	719	762	916
27. Hodge and Spear, 1982	645	526	482	501	583	512	540	532	467	510	524

Table 2: Continued.

Data of different authors	Hoinkes (1986b)	Aranovich et al. (1988)	Dasgupta et al. (1991)	Bhattacharya et al. (1992a)	Bhattacharya et al. (1992b)	Perchuk, (1977, 1981)	Holdaway et al. (1997)	Gessman et al. 1997	Kaneko and Miyano (2004a)	Kaneko and Miyano (2004b)
1. Fareduddin et al., 1994	597	659	635	588	603	537	1006	532	563	547
 Sharma et al., 1989 Sen and Bhattacharya, 1992 	788 718	770 712	812 815	679 642	697 638	620 643	715 684	636 683	655 670	637 641
4. Perchuk,1989	550	496	437	575	591	546	978	820	583	548
5. Bose et al., 2001	414	465	274	343	217	384	1153	530	452	438
6. Harris et al., 1982	743	753	813	656	661	635	659	661	674	653
7. Muhongo and Tuisku, 1996 8. Barth and May, 1992	865 929	815 840	937 909	713 741	736 759	665 690	642 534	685 759	716 722	693 704
 Riciputi et al.,1990 Liangzhao and Shiqin,1993 	952 860	816 805	937 920	749 711	753 713	744 707	472 545	985 790	744 732	706 702
11. Kumar and Chacko,1994	865	795	828	726	728	720	468	874	721	697
 Keinast and Ouzegane,1987 Dasgupta et al., 1994 	710 669	747 728	841 818	623 610	610 615	643 594	713 851	601 537	663 639	643 618
14. Tadokaro et al., 2008	634	675	721	601	598	599	818	596	616	595
 Buchernurminen and Ohta, 1993 Gross et al., 2009 	631 819	651 777	571 808	620 704	632 706	599 697	741 525	637 1313	604 641	589 605
17. Shaw and Arima, 1996	564	646	645	573	591	526	1090	497	553	537
18. Yang et al., 2015	529	580	616	548	555	526	1110	544	564	538
19. Raith et al., 1997	777	780	907	660	661	662	665	666	703	676
20. Knudsen, 1996 21. Ellis and Hiroi, 1997	671 947	680 834	706 919	628 757	628 761	621 743	728 426	669 897	630 768	607 744
 22. Bindu, 1997 23. Bohlen and Essene, 1980 24. Thomas, 1995 	723 786 521	727 666 598	735 651 590	659 669 555	661 658 569	653 644 531	630 515 1107	702 915 522	652 667 551	633 637 532
25. Sommer et al., 2008	729	716	760	654	663	630	697	749	658	626
26. Pattison et al., 2003 27. Hodge and Spear, 1982	875 500	830 514	976 463	714 518	728 513	691 491	557 1068	751 630	760 542	733 516

However, Perchuk and Lavrente'va (1983) is the best among them as the regression correlation coefficient value; R^2 is close to 1 which indicates that the maximum points are coming in best fit line. Therefore, the temperature value obtained by the Perchuk and Lavrente'va (1983) model is more accurate as compared to others.

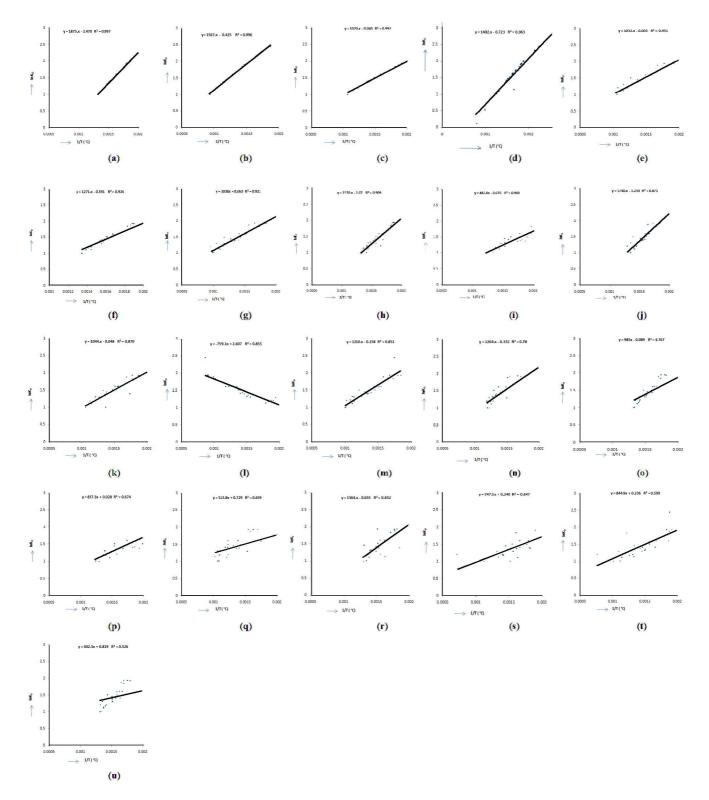


Fig. 1: (a) Perchuk and Lavarente'va, 1983, (b) Thompson, 1976, (c) Ferry and Spear, 1978, (d) Holdaway and Lee, 1977, (e) Hoinkes, 1986(b), (f) Perchuk, 1977; 1981, (g) Hoinkes, 1986 a, (h) Kaneko and Miyano, 2004(b), (i) Indares and Martingole, (a. Newton and Haselton, 1981), 1985, (j) Perchuk et al., 1985, (k) Hodges and Spear, 1982, (l) Holdaway et al., 1997, (m) Pigage and Greenwood, 1982, (n) Aranovich et al., 1988, (o) Bhattacharya et al., 1992, (p) Indares and Martingole, (b. Ganguly and Saxena, 1984), 1985, (q) Dasgupta et al., 1991, (r) Kaneko and Miyano, 2004 (a), (s) Goldman and Albee, 1977, (t) Gessman et al., 1997, and (u) Bhattacharya et al., 1992 (b)

ACKNOWLEDGEMENT

The authors thank the Head, Department of Applied Geology, Doctor Harisingh Gour Vishwavidyalaya, Sagar (M.P.) and the Department of Science and Technology, New Delhi, India for providing facilities as including PURSE- Phase -II for conducting present research work. The authors express sincere thanks to the reviewer, Prof., University of Torino, Italy, for his critical and constructive reviews which significantly improved the focus and clarity of the manuscript.

REFERENCES

- Aranovich, L., Ya, I., Lavrent'eva, V., and Kosyakova, N.A., 1988, Biotite-garnet and biotite orthopyroxene geothermometers: calibrations accounting for the Al variations in biotite. Geokhimiya, v. 5, pp. 668–676.
- Barth, A.P. and May, D.J., 1992, Mineralogy and pressuretemperature-time path of cretaceous granulite gneisses, south-Eastern San Gabriel Mountains, Southern California. Journal of Metamorphic Geology, v. 10(4), pp. 529–544.

https://doi.org/10.1111/j.1525-1314.1992.tb00103.x

Bhattacharya, A., Mohanty, L., Maji, A., Sen, S.K., and Raith, M., 1992, Non-ideal mixing in the phlogopite-annite binary: constraints from experimental data on Mg-Fe partitioning and a reformulation of the biotite-garnet geothermometer. Contribution to Minerology and Petrology, v. 111(1), pp. 87–93.

https://doi.org/10.1007/BF00296580

Bindu, R.S., 1997, Granulite facies spinel-cordierite assemblages from the Kerala khondalite belt, southern India. Gondwana Research, v. 1, pp. 121–128.

https://doi.org/10.1016/S1342-937X(05)70010-1

Bohlen, S.R. and Essene, E.J., 1980, Evaluation of coexisting garnet-biotite, garnet- clinopyroxene, and other mg-fe exchange thermometers in adirondack granulites. Geological Society of American Bulletin, v. 91(2), pp. 685–719.

https://doi.org/10.1130/GSAB-P2-91-685

Bose, S., Fukuoka, M., Sengupta, P., and Dasgupta, S., 2000, Evolution of high- Mg-Al granulites from Sunkarametta, Eastern Ghats, India: Evidence for a lower crustal heatingcooling trajectory. Journal of Metamorphic Geology, v. 18(3), pp. 223–240.

https://doi.org/10.1046/j.1525-1314.2000.00253.x

Buchernurminen, K. and Ohta, Y., 1993, Granulites and garnetcordierite gneisses from Dronning Maud Land, Antarctica. Journal of Metamorphic Geology, v. 11(5), pp. 691–703.

https://doi.org/10.1111/j.1525-1314.1993.tb00181.x

Dasgupta, S., Sengupta, P., Guha, D., and Fukuoka, M., 1991, A refined garnet-biotite Fe-Mg exchange geothermometer and its application in amphibolites and granulites. Contribution to Minerology and Petrology, v. 109(1), pp. 130–137.

https://doi.org/10.1007/BF00687206

Dasgupta, S., Sanyal, S., Sengupta, P., and Fukuoka, M., 1994, Petrology of granulites from Anakapalle - evidence for proterozoic decompression in the eastern ghats, India. Journal of Petrology, v. 35(2), pp. 433–459.

https://doi.org/10.1093/petrology/35.2.433

Ellis, D.J. and Hiroi, Y., 1997, Secondary siderite - oxide sulphide and carbonate- andalusite assemblages in cordierite granulites from Sri Lanka: post-granulite facies fluid evolution during uplift. Contribution to Minerology and Petrology, v. 127(4), pp. 315–335.

https://doi.org/10.1007/s004100050283

- Fareeduddin, S.M., Basavalingu, B., and Janardhan, A.S., 1994, P-T conditions of pelitic granulites and associated charnockites of Chinwali area, west of Delhi fold belt, Rajasthan. Journal of Geological Society, India, v. 43(2), pp. 169–178.
- Ferry, J.M.T. and Spear, F.S., 1978, Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contribution to Minerology and Petrology, v. 66(2), pp. 113–117.

https://doi.org/10.1007/BF00372150

Frost, M.J., 1962, Metamorphic grade and iron-magnesium distribution between co-existing garnet-biotite and garnethornblende. Geological Magazine, v. 99(5), pp. 427–438.

https://doi.org/10.1017/S0016756800059690

- Fu, B., Zheng, Y.F., Li, Y.L., and Li, S.G., 1998, Applications of garnet-clinopyroxene geothermometers to eclogite assemblages. Acta Mineralogica Sinica, v. 18, pp. 145–157.
- Ganguly, J. and Saxena, S.K., 1984, Mixing properties of alumina silicate garnets: Constraints from natural and experimental data, and applications to geothermobarometry. American Mineralogist, v. 69(1-2), pp. 88–97.
- Gessmann, C.K., Spiering, B., and Raith, M., 1997, Experimental study of the Fe-Mg exchange between garnet and biotite: Constraints on the mixing behaviour and analysis of the cation-exchange mechanisms. American Mineralogist, v. 82(11-12), pp. 1225–1240.

https://doi.org/10.2138/am-1997-11-1218

Goldman, D.S. and Albee, A.L., 1977, Correlation of Mg/Fe partitioning between garnet and biotite with/Sup 18/O//Sup 16/O partitioning between quartz and magnetite. American Journal of Science, (6), 277p.

https://doi.org/10.2475/ajs.277.6.750

Gross, A. O. M. S., Droop, G. T. R., Porcher, C. C., and Fernandes, L. A. D., 2009, Petrology and thermobarometry of mafic granulites and migmatites from the Chafalote metamorphic suite: New Insights into the neoproterozoic P-T evolution of the uruguayan - sul - rio - Grandense Shield. Precambrian Research, v.170(3), pp. 157–174.

https://doi.org/10.1016/j.precamres.2009.01.011

- Hackler, R. and Wood, B., 1989, Experimental-determination of Fe and Mg exchange between garnet and olivine and estimation of Fe-Mg mixing properties in garnet. American Mineralogist, v. 74(9-10), pp. 994–999.
- Harris, N.B.W., Holt, R.W., and Drury, S.A., 1982, Geobarometry, geothermometry, and Late Archean geotherms from the granulite facies Terrain of south India. Journal of Geology, v. 90(5), pp. 509–527. https://doi.org/10.1086/628709
- Hodges, K.V. and F.S. Spear., 1982, Geothermometry, geobarometry and the Al₂SiO₅ triple point at Mt Moolsanke, New Hamphire. American Mineralogist, v. 67, pp. 1118–1134.
- Hoinkes, G., 1986, Effect of grossular content in garnet on the partitioning of Fe and Mg between garnet and biotite. Contribution to Minerology and Petrology, v. 92(3), pp. 393–399.

https://doi.org/10.1007/BF00572168

Holdaway, M.J. and Lee, S.M., 1977, Fe-Mg cordierite stability in high-grade pelitic rocks based on experimental, theoretical, and natural observation. Contribution to Minerology and Petrology, v. 63, pp. 175–198.

https://doi.org/10.1007/BF00398778

Holdaway, M.J., Mukhopadhyay, B., Dyar, M.D., Guidotti, C.V., and Dutrow, B.L., 1997, Garnet - Biotite geothermometry revised: New margules parameters and a natural specimen data set from maine. American Mineralogist, v. 82(5-6), pp. 582–595.

https://doi.org/10.2138/am-1997-5-618

- Indares, A. and Martignole J., 1985, Biotite garnet geothermometry in granulite facies: The influence of Ti and Al in biotite. American Mineralogist, v. 70, pp. 272-278.
- Jahnson, C.A., Bohlen, S.R., and Essene, E.J., 1983, An evaluation of garnet-clinopyroxene geothermometry in granulites. Contribution to Minerology and Petrology, v. 84, pp. 191–198.

https://doi.org/10.1007/BF00371285

Kaneko, Y. and Miyano, T., 2004, Recalibration of mutually consistent garnet-biotite and garnet-cordierite geothermometers. Lithos, v. 73(3), pp. 255–269.

https://doi.org/10.1016/j.lithos.2003.12.009

Kienast, J.R. and Ouzegane, K., 1987, Polymetamorphic Al, Mg-rich granulites with orthopyroxene - sillimanite and sapphirine parageneses in Archaean rocks from the Hoggar, Algeria. Geological Journal, v. 22(S2), pp. 57–79. https://doi.org/10.1002/gj.3350220607 Knudsen, T.L., 1996, Petrology and geothermobarometry of granulite facies metapelites from the Hisøy-Torungen area, South Norway: New data on the Sveconorvegian P-T-t path of the Bamble sector. Journal of Metamorphic Geology, v. 14(3), pp. 267–287.

https://doi.org/10.1111/j.1525-1314.1996.00267.x

Kretz, R., 1964, Analysis of equilibrium in garnet-biotitesillimanite gneisses from Quebec. Journal of Petrology, v. 5(1), pp. 1–20.

https://doi.org/10.1093/petrology/5.1.1

Kumar, C.R. and Chacko, T., 1994, Geothermobarometry of mafic granulites and metapelite from the palghat gap, south India: Petrological evidence for isothermal uplift and rapid cooling. Journal of Metamorphic Geology, v. 12(4), pp. 479–492.

https://doi.org/10.1111/j.1525-1314.1994.tb00037.x

Liangzhao, L. and Shiqin, J., 1993, P-T-t Paths and tectonic history of an Early Precambrian granulite facies terrane, Jining District, South-East Inner Mongolia, China. Journal of Metamorphic Geology, v. 11(4), pp. 483–498.

https://doi.org/10.1111/j.1525-1314.1993.tb00166.x

Muhongo, S. and Tuisku, P., 1996, Pan-African high pressure isobaric cooling: evidence from the mineralogy and thermobarometry of the granulite-facies rocks from the Uluguru mountains, eastern Tanzania. Journal of African Earth Sciences, v. 23(3), pp. 443–463.

https://doi.org/10.1016/S0899-5362(97)00012-2

Newton, R.C. and Haselton, H.T., 1981, Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer. In:ÊThermodynamics of minerals and melts:Ê New York, (Springer), pp. 131–147,

https://doi.org/10.1007/978-1-4612-5871-1_7

Pattison, D.R., Chacko, T., Farquhar, J., and Mcfarlane, C.R., 2003, Temperatures of granulite - facies metamorphism: constraints from experimental phase equilibria and thermobarometry corrected for retrograde exchange. Journal of Petrology, v. 44(5), pp. 867–900.

https://doi.org/10.1093/petrology/44.5.867

Perchuk, L.L., 1977, Thermodynamic control of metamorphic processes: energetics of geological processes., Berlin Heidelberg (Springer), pp. 285–352.

https://doi.org/10.1007/978-3-642-86574-9_14

- Perchuk, L.L., 1981, Correction of biotite-garnet thermometer for the case of Mn reversible Mg+ Fe isomorphism in garnet. Doklady akademii nauk sssr, v. 256(2), pp. 441-442.
- Perchuk, L.L. and Lavrente'va, I.V., 1983, Experimental investigation of exchange equilibria in the system cordierite - garnet - biotite. Kinetics and equilibrium in mineral reactions. Advances in Physical Geochemistry, v. 3, pp.

199–239.

https://doi.org/10.1007/978-1-4612-5587-1_7

Perchuk, L.L., Aranovich, L.Y., Podlesskii, K.K., Lavrente'va, I.V., Gerasimov, V.Y., Fed'kin, V.V., and Berdnikov, N.V., 1985, Precambrian granulites of the Aldan shield, eastern Siberia, USSR. Journal of Metamorphic Geology, v. 3(3), pp. 265–310.

https://doi.org/10.1111/j.1525-1314.1985.tb00321.x

Perchuk, L.L., 1989, PT-fluid regimes of metamorphism and related magmatism with specific reference to the granulitefacies Sharyzhalgay complex of Lake Baikal. Geological Society of London, Special Publication, v. 43(1), pp. 275–291.

https://doi.org/10.1144/GSL.SP.1989.043.01.19

Pigage, L.C. and Greenwood, H.J., 1982, Internally consistent estimates of pressure and temperature; the staurolite problem.American Journal of Science, v. 282(7), pp. 943–969.

https://doi.org/10.2475/ajs.282.7.943

Raith, M., Karmakar, S., and Brown, M., 1997, Ultra-hightemperature metamorphism amd Multistage decompressional evolution of sapphirine granulites from the Palni hill ranges, southern India. Journal of Metamorphic Geology, v. 15(3), pp. 379–399.

https://doi.org/10.1111/j.1525-1314.1997.00027.x

Riciputi, L.R., Valley, J.W., and Mcgregor, V.R., 1990, Conditions of archaean granulite metamorphism in the Godthab-Fiskenaesset region, Southern west greenland. Journal of Metamorphic Geology, v. 8(2), pp. 171–190.

https://doi.org/10.1111/j.1525-1314.1990.tb00464.x

Sen, S.K. and Bhattacharya, A., 1987, Granulites of satnuru and madras: a study in different behaviour of fluids. granulites and crustal evolution. Springer Netherlands. pp. 367–384.

https://doi.org/10.1007/978-94-009-2055-2 18

Sharma, R.S., Jane D.S., and Joshi, M., 1989, Mineralogy and metamorphic history of norite dykes within granulite facies gneisses from Sand Mata, Rajasthan, NW India. Mineralogical Magazine, v. 51, pp. 207–215.

https://doi.org/10.1180/minmag.1987.051.360.03

Shaw, R.K. and Arima, M., 1996, Mineral chemistry, reaction textures, thermobarometry and P-T path from orthopyroxene granulites of Rayagada, eastern Ghats, India. Journal of Southeast Asian Earth Sciences, v. 14(3-4), pp. 175–184.

https://doi.org/10.1016/S0743-9547(96)00056-6

Sommer, H., Hauzenberger, C., Kröner, A., and Muhongo, S.,

2008, Isothermal decompression history in the western granulite terrain, central Tanzania: evidence from reaction textures and trapped fluids in metapelites. Journal of African Earth Science, v. 51(3), pp. 123–144.

https://doi.org/10.1016/j.jafrearsci.2008.01.003

Tadokoro, H., Toshiaki, T., and Santosh, M., 2008, Metamorphic P-T Path of the eastern Trivandrum granulite block, southern India: implications for regional correlation of lower crustal fragments. Journal of Minerological Petrological Science, v. 103(4), pp. 279–284.

https://doi.org/10.2465/jmps.080110

- Thomas, H., 1995, MPET1: A computer program for coexisting garnet-biotite-aluminosilicate - plagioclase - quartz geothermobarometry. Journal of Himalayan Geology, v. 6(1), pp. 69–74.
- Thomas, H., 1995, Pressure Temperature considerations for granulite from Thana-Gyangarh, district-Bhilwara, Rajasthan: implication for crustal evolution. in: R.K. Shrivastava and R. Chandra (Eds.), Magmatism in Relation to diverse tectonic setting. Oxford. IBH Pub. com. Pvt. Ltd. pp. 439–456.
- Thomas, H. and Paudel, L., 2017, Garnet-biotite pair: a suitable geothermometer. Journal of Nepal Geological Society, v. 53, pp. 57–62.

https://doi.org/10.3126/jngs.v53i0.23806

Thomas, H., Rana, H., and Shahid, M. 2018, Garnetorthopyroxene (GOPX) geothermometer: a comparative study. Arabian Journal of Geosciences, v. 11(24), pp. 771–778.

https://doi.org/10.1007/s12517-018-4060-y

Thompson, A.B., 1976, Mineral reactions in pelitic rocks; Ii, calculation of some P-T- X (Fe-Mg) phase relations. American Journal of Science, v. 276(4), pp. 425–454.

https://doi.org/10.2475/ajs.276.4.425

Wu, C.M. and Cheng, B.H., 2006, Valid garnet - biotite (GB) geothermometry and garnet-aluminum silicate-plagioclasequartz (GASP) geobarometry in metapelitic rocks. Lithos, v. 89, pp. 1–23.

https://doi.org/10.1016/j.lithos.2005.09.002

Yang, X., Li, Z., Wang, H., Chen, H., Li, Y., and Xiao, W., 2015, Petrology and geochemistry of ultra high-temperature granulites from the South Altay orogenic belt, northwestern China: implications for metamorphic evolution and protolith composition. Island Arc., v. 24(2), pp. 169–187.

https://doi.org/10.1111/iar.12102