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ABSTRACT

A subduction complex of carboniferous age is preserved in the South Tianshan belt of Kyrgyzstan. It is made of
a LP-LT accretionnary prism comprising an obducted ophiolite thrusted by a HP complex made of a sedimentary
channel including eclogites boudins and a continental unit. Its structure and metamorphic history are investigated
to reconstruct the geodynamic evolution of the northern Tarim in the Upper Palaeozoic. This study gives insights

into the crustal-scale structure

of this mountain belt, currently intensely reactivated by the India-Asia collision.

Eclogites boudins have a N-MORB type composition similar to the unmetamorphosed obducted ophiolite
sequence. Evidence for eclogite facies in both acidic and mafic lithologies and geological structure are in agreement

with a deep subduction channel mainly comprised of metasediments.
preliminary PT study. Prograde stage (I) begins in blue-schist/eclogite facies transition at
(I1) in eclogite facies range from 550 + 30°C — 18.5 + 1 kbar to 540-
) is also in the eclogite facies conditions at 515 + 30°C — 16.7 = 1 kbar.

kbar. Conditions of peak metamorphism
595°C - 21 kbar. Retrograde stage (111

Eclogites boudins are investigated for a
520+ 30°C - 17 = 1

The geological structure and metamorphic conditions of this suture zone implies the subduction of a
narrow oceanic basin in a south-dipping subduction zone, while another north-dipping subduction was
active below Middle Tianshan. Final stacking of Middle and South Tianshan occurred at 320-310 Ma. These
antithetic subduction zones are still reflected in the main structures of Tianshan. Reactivation of the south-
dipping structures since 30 Ma is ascribed to explain the current localisation of uplift and deformation.
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INTRODUCTION AND
GEOLOGICAL CONTEXT

South Tianshan is one of the most actively uplifting
mountain belt with summits above 7000 m (De Grave et al.
2007). It is located on the northern boundary of Tibet-Tarim
orogenic plateau (Fig. 1). The mountain building processes
of such an intracontinental belt are still poorly understood.
The active deformation is controlled by structural inheritance
from the Central Asian Orogenic Belt (CAOB) (Glorie et
al. 2011) formed by a succession of accretion events during

179

Revision accepted: 14 June, 2013

the Palacozoic (Windley et al. 2007; Kroner et al. 2013).
To constrain the active localisation of deformation to the
north of the propagating India-Asia collisional orogen, we
investigate the geological crustal scale structure of the South
Tianshan, which marks the end of the CAOB evolution in
the late Carboniferous. We studied in detail the Atbashi
range that preserved an intact subduction complex of
Carboniferous age (ca. 320 Ma), which is used to infer the
geometry of the suture between the Tarim and the CAOB.

The study area lies in the Atbashi range in the Kyrgyz
South Tianshan, which is located in the southwestern
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segment of the CAOB to the east of the 2000 km long active
Talas-Ferghana fault (TFF) (Fig. 1).

Tianshan belt extends for more than 2500 km from
Uzbekistan to western China. The South Tianshan belt results
from the last accretionary event of the CAOB following the
collision of the Tarim with the CAOB (Tagiri et al. 1995).
The timing of this event is constrained by coherent late
carboniferous Sm-Nd and 40Ar/39Ar ages in both Chinese
and Kyrgyz Tianshan (Gao and Klemd 2003; Gao et al. 2008;
Hegner et al. 2010). In Atbashi range a Sm-Nd isochron
age of 319+4 Ma and a 40Ar/39Ar age of 316+3 Ma were
obtained on mafic eclogites collected in a quaternary alluvial
fan (Hegner et al. 2010). The structural setting of the eclogites
and related rocks is still unconstrained. On these eclogites
blocks the PT conditions were estimated at 18-24 kbar and

520-600°C by these authors. These ages are interpreted

as high-pressure peak (Sm-Nd) and decompression
(40Ar/39Ar) ages, respectively. It suggests the end of the
subduction and thus the onset of collision between Tarim
and CAOB at 315-320 Ma. The polarity of the subduction
is debated. From seismological data in the Kyrgyz Tianshan
Makarov et al. (2010) propose a north-dipping subduction
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while in the Chinese Tianshan, a south-dipping subduction
is proposed on the base of structural geology (e.g. Charvet
et al. 2007). Subsequently, convergence accommodating the
closure of Paleo-Tethys jumped to the south of the Tarim
block (Metcalfe 2013 and references therein).

Post-collisional evolution is featured by strike-slip
activity. TFF was activated contemporaneously to collision
at 317 Ma (Rolland et al. 2013; Konopelko et al. 2013).
Trans-tentional reactivation of the South Tianshan and the
TFF occurred in the Permian to late Triassic times (Jolivet
et al. 2010). Offset of the TFF at this stage account for
about 180 km dextral offset of the South Tianshan suture
Reactivation of the TFF since 30 Ma result in 20 km dextral
offset (Burtman et al. 1996).

GEOLOGY AND STRUCTURE OF
ATBASHI RANGE

Our geological investigations show the following
structure (Figs. 2 and 3):

(1) A LP-LT tectonic melange including slices of
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Fig. 1: A-Sketch map of Central Eurasia: principal fault systems and location of study area (Fig. 1B). Abbreviated
names of dextral strike-slip faults: NK- North Kopet Dagh, NN- North Nuratau, TF- Talas-Ferghana, DN- Djalair-
Naiman, CK- Central Kazakhstan, JG -Junggar (Chingiz, Main Tianshan Shear zone), IR- Irtysh (Erqishi, Irqiz),
HN- Hars-Usnuur ; B- Tectonic map of South Kazakhstan and western Tianshan (late Mesozoic and Cenozoic cover
removed), compiled from Abdulin and Zaitsev (1980), Kobzyrev et al. (1990), Zhan g et al. (2008). Location of Atbashi
range (Fig. 2). Abbreviated names of the late Palaeozoic and early Mesozoic faults: TFF- Talas-Ferghana, NNF-
North Nuratau, DNF- Djalair-Naiman, NL- Nikolaev Line. Modified after Rolland et al. (2013).
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Fig. 2: Geological map of Atbashi range modified after Osmonbetov (1980). Enlarged map of study area and location
of cross-section (Fig. 3), samples cited in text and panoramic view of Fig. 5.
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Fig. 3: Geological cross-section of Atbashi range. Contact emphazised by bold lines are major contacts between HP
rocks and surrounding LP units.
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serpentinites and metabasalt within a sedimentary matrix.
It is thrusted by an unmetamorphosed ophiolite made
of pillow-basalt, flazer gabbro with peridotite nodules,
serpentinites, siliceous cherts, plagiogranite recovered by
limestones (Fig. 4A).

(2) A HP-LT complex thrusting toward the north over
this melange (Fig. 5). It is made of two units: (i) A pluri-
hectometric eclogitized sedimentary melange (locally
containing jadeite and garnet) including mafic eclogites

boudins thrusted (Figs. 4B-D) by (ii) a continental HP
unit made of strongly folded paragneisses showing strong

recrystallisation in the blueschist to greenschist facies (Figs.
4E-F).

(3) LP-LT sedimentary unit of the Tarim plateform
(Silurian to Carboniferous) separated from the HP
continental unit by serpentinites bearing top-to-the-south
detachment (Fig. 5).

Fig. 4: Field photographs of representatives lithologies. A-Flazer gabbro from the ophiolite ; B-Mafic eclogite from
boudin in eclogitized sedimentary mélange ; C-Omphacite preserved in eclogitized sediment ; D- Garnet preserved
in eclogitized sediment ; E-Folded gneiss of continental unit ; F-Albite recrystallization in gneiss of continental unit.
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GEOCHEMISTRY

Major and trace elements geochemistry was undertaken
on both unmetamorphosed ophiolite and mafic eclogites.
Analyses were done at CRPG Nancy (table 1). Methods
and uncertainties can be found on www.crpg.cnrs-nancy.
fr/sarm. Both rock types provide similar results: they have
compositions of basalt of N-MORB type comprising a strong
depression in LILEs and LREE with respect to HFSEs (Fig.
6). With respect to typical N-MORB (Sun and Mc Donough
1989), there is a strong enrichment of up to 30 times in Cs,
Rb, Ba and U and in a lesser extent in Sr and Pb in both
rock types. This clearly demonstrates an oceanic origin for

mafic eclogites. Elemental mobility of LILEs was acquired
by seafloor hydrothermalism. This is shown by relative
immobility of Th and increasing mobility of lighter LILEs.
This strong hydrothermal imprint combined with presence
of flazer gabbros and serpentinites in the ophiolite are in
agreement with a slow spreading ridge.

PETROLOGY OF ECLOGITES

Mineral compositions have been determined using
an electron probe microanalyser Cameca SX100 at the
Geosciences laboratory of Montpellier (table 2). The

Fig. 5: Field photographs of representatives kinematic criteria. A- Panoramic view of detachment between HP
continental unit and LP-LT sedimentary unit; B- Top-north thrusting in LP-LT tectonic mélange; C-Top-south
detachment in upper sedimentary unit. eclogitized sediment ; E-Folded gneiss of continental unit ; F-Albite

recrystallization in gneiss of continental unit.
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Fig. 6: Spidergram of an umhetamorphosed basalt and mafic eclogites compared with typical N-MORB (Sun and Mc

Donough 1989).

analytical conditions used for spot analyses were 20 KeV,
10 nA.

Eclogites are made of garnets (40%), clinopyroxenes
(50%) and phengites, glaucophanes, zoisites, rutiles and
quartz. Garnets are millimetric to centimetric in size (Fig. 7).
They contain numerous inclusions and show a clear growth
chemical zoning. From core to rim there is an increase
in pyrope and decrease in almandine (Pyrl0Alm75)-
(Pyr30Alm50). Grossular is relatively constant between

Grs18 and Grs25 (Fig. 8).

Clinopyroxenes are omphacites and occur both as
inclusions in garnet and in the matrix. Jadeite contents of
omphacites included in garnets increase from the garnet core
to a quartz rich corona in garnet mantle (Jd29 to Jd36). Then
jadeite contents decrease to the rim (Jd36 to Jd27).

Glaucophanes are in the matrix and as inclusions in the
garnet core only. Phengites are in variable proportions in the
different samples. They occur mainly in the matrix.

Fig. 7: Micro-photographs of representative mafic eclogites. A-Plain polarized light picture (KG-12-41); B- Back-

scatter image of a inclusion-rich garnet (KG-11-36).
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Fig. 8: Garnet compositional features. A-Scheme of garnet zoning pattern illustrating four growth stages on the basis
of inclusions (sample KG-11-36); B- Ternary plot of garnet chemical compositions in sample KG-11-36 and KG-11-
36B; C-Core-rim chemical profile of garnet (sample KG-11-36).

Distribution of mineral inclusions in garnet indicates a
prograde zoning from the core to the mantle followed by
onset of retrogression from the mantle to the rim.

PRELIMINARY THERMOBAROMETRY

This preliminary study is based solely on mafic eclogites
which preserve HP parageneses devoid of any retrogression,
while eclogitized sediments and continental HP rocks
are strongly retrogressed. The PT path of a mafic eclogite
(sample KG-11-36) is built from zoning patterns of mineral
inclusions in gamet combined with thermobarometry
calculations. Pseudosection was calculated with Theriak-
Domino (De Capitani and Petrakakis 2010) using the
thermodynamic database of Berman (1988) and Grt-Cpx-
Phg multi-equilibria calculations have been applied for
the estimation of P-T conditions (Waters and Martin 1993;
Waters 1996).

This eclogite recorded a prograde stage at the blueschist
to eclogite facies transition marked by blue amphibole in the
garnet core (I). The pressure peak is marked by the maximum
jadeite content in omphacite and by quartz inclusions corona
in the garnet mantle (II). Decrease in jadeite content of
omphacite toward the rim marks the onset of decompression
in eclogite facies conditions (I1I). An external rim is optically
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evidenced by an absence of inclusions (IV) (Fig. 8A).
Pressure estimates are minimal because only one phengite
in the garnet core is used in all calculations. Prograde stage
(1) begins in blue-schist/eclogite facies transition at 520 +
30°C - 17 + 1 kbar. Conditions of peak metamorphism (1)
in eclogite facies are 550+ 30°C — 18.5 + 1 kbar. Retrograde
stage (II1) condition is also in the eclogite facies conditions
at 515+ 30°C — 16.7 + 1 kbar (Fig. 9).

DISCUSSION

Thc late carboniferous subduction complex

Our geological investigations of Atbashi range in south
Tianshan belt evidence a preserved subduction complex. It
is composed of an obducted unmetamorphosed oceanic crust
thrusted on top of a shallow accretionary prism. This LP-LT
unit is thrusted by a HP-LT unit made of oceanic lithologies
(mafic eclogites + eclogitized sediments) and of continental
rocks. The presence of MORB type mafic eclogites
boudinaged within eclogitized sediments is interpreted as
a deep sedimentary subduction channel. Peak metamorphic
conditions are in agreement with Hegner et al. (2010). In
contrast the shape of the retrograde part of the obtained PT
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Fig. 9: Estimated P-T paths for mafic eclogites. Pseudosection computed from the bulk composition Si(0.750) Al
(0.247) Fe(0.141) Mg(0.164) Ca(0.186) Na(0.103) Ti(0.043) O(?) H(0.014), in the system NCFMASHO using Theriak-
Domino software (De Capitani and Petrakakis 2010). *?° for O instructs the program to assign the exact stoiciometric
oxygen amount to the other input elements. Incertitudes are obtained by Monte-Carlo simulation.

path is not isothermal as suggested by these authors. We
obtained similarly prograde and retrograde paths along a cold
geothermal gradient typical of burial and exhumation along
a subduction zone (Peacock 1996). The cold retrograde path
is also suggested by absence of any retrogression in mafic
eclogites. Continental HP unit evidences the subduction
of a thinned margin followed by its exhumation within the
serpentinized mantle wedge. Timing and PT data obtained
in the whole south Tianshan indicate a similar history of
subduction and exhumation occurring at 320-315 Ma (Gao
and Klemd 2003; Gao et al. 2008; Hegner et al. 2010).

Implications for crustal scale structure of south Tianshan
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Based on our geological investigations and on the
MANAS seismic profile of Makarov et al. (2010), we
propose a new crustal scale cross-section of south Tianshan
(Fig. 10).

South dipping of structures and foliations in the whole
massif is in agreement with a south dipping subduction.
These south dipping structures are also visible on northern
part of the MANAS seismic profile. Following Makarov et
al. (2010) the structure of the northern margin of Tarim is
featured by north-dipping reflectors related to top-to-the-
south tertiary thrusts. Therefore the geometry of the south
Tianshan is a positive flower type structure on both side of
a vertical strike slip fault. We propose that all the structures
of south Tianshan are inherited from the Palaeozoic tectonic
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Fig. 10: Crustal scale cross-section of South-Tianshan from reinterpretation of MANAS seismic profile (Makarov et

al. 2010).

history and were reactivated in the Tertiary times following
the India-Asia collision.

Geodynamic evolution of CAOB and Tarim in the late
Palaeozoic

To the south of the Turkestan ocean, evidence for a small
oceanic domain separating a distinct micro-continental
bloc drifted from the Tarim is provided by a Devonian to
early Carboniferous sedimentological sequence described
by Alekseev et al. (2007). Further, the slow spreading type
ophiolite features evidenced in this paper are in agreement
with the presence of a small oceanic domain (Fig. 11).

To the north, the Turkestan ocean closed by north-
dipping subduction below the middle Tianshan which is
evidenced by long lasting arc volcanism on this active
margin (Windley et al. 2007).

The south Tianshan structure is in agreement with a
south-dipping subduction probably activated after the
entry of the micro-bloc into the north subduction zone. The
subduction of the small oceanic domain leads to continental
subduction of the micro-bloc below the margin of north
Tarim. This antithetic subduction zones result in the docking
of the Tarim block against the CAOB. All the convergence
is then transferred to the south of the Tarim which marks the
end of the accretion history in the CAOB.
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Middle Tian Shan/Kazakhstan
Upper Ordovician arc oy Tithestin Goaads
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Rifted continental block
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South Tian Shan/Tarim

Continent subduction and exhumation
following collision of South and North Tian Shan

Fig. 11: Geodynamic model for the evolution of south
Tianshan in the late Palaeozoic times.

CONCLUSIONS

Atbashi range preserves a carboniferous subduction
complex, comprising an accretionary prism overlain by
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an unmetamorphosed obducted ophiolite thrusted by a
sedimentary subduction channel and a continental HP unit.
Geometry and metamorphism of this complex suggest a
south dipping subduction in the late carboniferous (ca.
320 Ma) before docking of the Tarim and the CAOB. This
structure is thought to localize the active deformation at the
front of the propagating India-Asia collisional orogeny.
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