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General expression for the critical seepage gradient in an infinite slope
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ABSTRACT

With reference to the ideal case of an infinite slope of granular (€' =0) homogeneous and isotropic soil subject to uniform
seepage with a vertical component directed upwards, the possibility, in principle, of a slope instability due to static
liquefaction (quick condition) is examined. Such instability takes place when the seepage gradient is the critical one (ic). In

this paper, a general expression for i. is obtained.

INTRODUCTION

The potential of physical effects of groundwater flow on
slope instability is well known. In this context, although the
assumption of parallel-to-the-slope seepage is realistic in
most natural situations whose analysis can be amenable to
that of an infinite slope, it is interesting to consider the general
case where water flow direction is arbitrary and flow occupies
the entire slope. The note examines the ideal case of an
infinite slope of saturated granular soil (¢' =0) under a uniform
seepage with a vertically-directed upward component. This
situation might occur in slope-foot areas, where the seepage
forces have an upward component. Leaving out the canonical
shear failure analysis, slope instability due to static
liquefaction (quick condition) is considered.

A general expression for the critical hydraulic gradient is
derived. Nevertheless, it provides a theoretical limit, given
that simple considerations show that shear failure precedes
liquefaction and can eventually trigger it.

THE CRITICAL GRADIENT

Fig. 1 shows an infinite slope of saturated granular soil,
assumed homogeneous and isotropic, in which seepage is
assumed uniform. The slope and flow line inclinations with
respect to the horizontal are 3 and S respectively. Seepage
gradient is:

I=

A~
RP
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where, AH =RQsin p and RP = RQ cos(f + 9). We have:

sinf3

I=cos(|3+{~)) M

With the sign convention in Fig. 1, the previous
expression becomes:
sinf3

l=m (ll)
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Since the flow is uniform and soil homogeneous and
isotropic, the seepage forces are distributed and dissipated
uniformly throughout the slope and their direction is parallel
to the flow lines. Considering a typical soil element ABCD
(with a volume V=1-1z), the overall seepage force F acting
on it is:

()

where, j andy, are, respectively, the seepage force per unit
volume and the unit weight of water.

Py iz,

From the equilibrium of the slope element ABCD in the
direction normal to BC, one obtains the expression for the
resultant N’ of the effective normal stresses at the bottom of
the element, i.e.:

N'=y,zcosf -y, izsin(f - 9), 3)

where, y, is the submerged unit weight of soil.

Flow, considered in the analysis, is upward emergent.
One can therefore consider the case where the seepage force
component normal to the base of the slope element is such
as to cancel the component ¥ of the effective weight of the
element itself. In this case, since N'=0'=0 (viz.u=0), the soil
mass which has been assumed cohesionless would, in
principle, statically liquefy to a quick condition. From
Equation (3), N' is zero when seepage gradient assumes a
critical value ie i.e. when

ypeifess Y, cosf
~ v, sin(B-9) @

Equation (4) has been derived ignoring the influence of shear
stresses on the vertical sides of the element. In the special
case =0 and 9=-m/2, i.e. horizontal ground level and
vertically ascendant seepage, Equation (4) takes on the
familiar form (Taylor 1948):
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i ; (3)
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Fig. 1: Infinite slope with uniform upward emergent seepage

The safety factor against static liquefaction failure is
given by

8

Fio= T‘ = ;Y—" cotBeot(B-9) (6)

The limit condition F I.IQ=] can be written as
S (.

tan(B— 9) = —cotp } )
or,

tan § = 1 secBcosecB —cot B (7

4

where y=y_ is the total unit weight of soil.

Equation (7) or (7') expresses the critical combinations of
flow line and slope inclinations, given the values of unit
weights of soil and water. Fig. 2 gives the critical pair (8, B)
for several values of y, /y, ratio.

It is possible to provide an expression for the critical
gradient in which the inclination 9 of the flow lines does not
appear explicitly. In fact, by using the following
trigonometrical relationships

2 e =2) 2unf=2

1 e =—2___ o =_—23
sin(f-9) T ) and tan(f-9) R B=9
2 2
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Fig. 2: Critical pair (3, B) as a function of y,/y_ ratio



the argument of sine function in Equation (4) can be written
in terms of the second member of Equation (7). This leads to
the following expression for i :

i =[sin2B+(Y—")2 cos’ B]'""? ®)

Again, Equation (8) reduces to Equation (5) in the limiting
case 3=0 and, furthermore, if y,/y =1, the critical gradient is
not dependent on f.

Fig. 3 shows plots of i versus B for three different
values of the y,/y,, ratio.

A COMPARISON OF STATIC
LIQUEFACTION WITH SHEAR FAILURE

The concept of critical gradient for a granular soil is
associated to the zeroing of the soil effective weight that
leads to the quick condition or to static liquefaction. In
literature, this phenomenon is described with reference to a
cohesionless soil bounded by a horizontal plane (3=0) under
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Fig. 3: Critical gradient versus slope angle for selected
values of y,/y, ratio

Critical seepage gradient in an infinite slope

a vertical ascendant seepage with gradient i = vy /y,.
However, it is worth noting that in a slope of cohesionless
soil under upward seepage, slope stability is conditioned
by shear (or Coulomb) failure rather than static liquefaction
failure. This can be seen by comparing the hydraulic
gradients or the inclinations of flow lines or the pore
pressures on the failure surface related to both situations,
or, also, in terms of limiting angle of shear strength. For
example, dealing with pore pressures, if ¢' =0, safety factor F
against a shear failure is:

PR 9

where, 1, is the available shear strength, c=yzcosp is the
total normal stress, t=yzsinfcosf is the shear stress or
mobilized shear strength, u is the pore pressure, ¢' is the
angle of shear strength (all the quantities refer to the
potential sliding surface). At failure (F=1), the pore pressure
value on the sliding surface is:

= sinf cos 3 = c[l tan B} (10)

U=Up =0C-— =
tan ¢' tan ¢'

An excess of pore pressure Au is required to move to a
liquefaction condition (u=c):

sinfcos
tan ¢' (i)

so that shear failure precedes liquefaction failure. Moreover,
for a loose soil, contraction during shear failure can cause a
transient liquefaction. As a consequence, an initially sliding
mass of saturated granular soil can be rapidly transformed
into a deforming flow (debris flow) (Casagrande 1979; Sassa
1984; Poulos et al. 1985; Fleming et al. 1989).

Au=yz

Note that, from Equation (10), liquefaction and shear
failure are simultaneous when B=0; note also that the
mobilised angle of shear strength in the liquefaction
condition is 7/2, that is to say tan¢',,=.

CONCLUSIONS

An analysis of stability for an infinite slope of
cohesionless soil under seepage of arbitrary direction has
been carried out using zero effective stress condition on
planes parallel to the slope as a criterion of instability.
Seepage gradient required for determining this condition
(i.e. soil liquefaction) is the critical gradient i and its general
expression has been obtained. The expression derived
reduces to the well-known Taylor’s expression in the special
case of upward vertical flow and horizontal ground level.
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