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ABSTRACT

In order to provide a robust tool to be used in runoff-erosion modelling, the present paper introduces new evolution steps
in the SCE-UA genetic algorithm, which is based on the simplex theory. The new evolution steps were conceived in order
to improve the efficiency of such an algorithm. Thus, they will theoretically expand the simplex in a direction of more
favourable conditions, or contract it if a move is taken in a direction of less favourably conditions. Hence, these new
evolution steps enable the simplex both to accelerate along a successful track of improvement and to home in on the
optimum conditions. Therefore, it will usually reach the optimum region quicker than the previous version and pinpoint the
optimum levels more closely. The new proposed algorithm is tested with special mathematical functions, as well as in the
optimisation of the erosion parameters presented in a physically-based runoff-erosion model. On the basis of these
simulation results, the mean erosion parameter values are given, which agree with previous values reported to the same area.
Thus, the new algorithm can be considered as a promising tool to optimise physically-based models as well as other kinds

of model.

INTRODUCTION

The difficulties involved in calibration of physically-
based erosion models have been partly attributed to the lack
of robust optimisation tools, hence new robust techniques
have always been investigated. The evolutionary algorithms
have been proving to be robust in optimisation process. As
Fogel (1994) described, natural evolution is a population
based optimisation process, then simulating this process on
computer results in optimisation techniques that can often
outperform classical methods of optimisation when applied
to difficult real-world problems. The evolutionary algorithms
are presented in a variety of ways: genetic algorithm,
evolutionary programming, evolution strategies, classifier
systems, and genetic programming. The latter three
algorithms are the current main lines of investigation. Genetic
algorithms stress chromosomal operators whereas
evolutionary programming stresses behavioural changes at
the level of the species, and evolution strategies emphasise
behavioural changes at the level of the individual.

Thus, evolutionary algorithms are stochastic search
methods that mimic the metaphor of natural biological
evolution. They operate on a population of potential solutions
applying the principle of survival of the fittest to produce
better and better approximations to a solution. At each
generation, a new set of approximations is created by the
process of selecting individuals according to their level of
fitness in the problem domain and breeding them together
using operators borrowed from natural genetics. This process
leads to the evolution of populations of individuals that are
better suited to their environment than the individuals that
they were created from, just as in natural adaptation.
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A genetic algorithm named the Shuffled Complex
Evolution (SCE-UA) developed by Duan et al. (1992) proved
to be useful to optimise conceptual rainfall-runoff models.
The SCE-UA also applies a simplex downhill search scheme
(Nelder and Mead 1965); thus, in order to improve its
efficiency in terms of how to reach the global minimum,
new evolution steps are introduced. These new evolution
steps are intended to enable the simplex both to accelerate
along a successful track of improvement and to home in on
the optimum conditions. Therefore, it will usually reach the
optimum region quicker and pinpoint the optimum levels
more closely.

Finally, in order to test if the modified method is also
capable in finding the global minimum of test mathematical
functions, the paper will describe the application of such
method to these functions.

THE MODIFIED SCE-UA METHOD

The typical optimisation problems that characterise the
problems encountered in physically-based erosion model
calibration are (1) global convergence in the presence of
multiple regions of attraction; (2) ability to avoid being
trapped by small pits and bumps on the objective function
surface; (3) robustness in the presence of differing parameter
sensitivities and parameter interdependence; (4) non-reliance
on the availability of an explicit expression for the objective
function or the derivatives; and (5) capacity of handling high-
parameter dimensionality.

The SCE-UA method embodies the desirable properties
described above and is based on a synthesis of four
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concepts: (1) combination of deterministic and probabilistic
approaches; (2) systematic evolution of a ‘complex’ of points
spanning the parameter space, in the direction of global
improvement; (3) competitive evolution; (4) complex
shuffling. The synthesis of these elements makes the SCE-
UA method effective and robust, and also flexible and
efficient. The steps of the SCE-UA method are (a) generate
randomly a sample of s points x , ... , x_in the feasible space
Q c IR", compute the function value f at each point x,, rank
the points according to the order of increasing criterion, and
partition of the sample into p complexes A', ... , 4”, each
containing m points where the first point in the first complex
represents the point with the smallest function value, the
second smallest value is in the second complex and so on
(Fig. 1a); (b) evolve each complex (community) independently
according to the Competitive Complex Evolution (CCE)
algorithm (Fig. 1b); (c) shuffle the complexes (Fig. lc);
(d) check if any of the pre-specified convergence criteria are
satisfied, if so stop (Fig. 1d), otherwise, check the reduction
in the number of complexes and continue to evolve.

The CCE algorithm, based on the Nelder and Mead (1965)
simplex downhill search scheme, used by the original SCE-
UA presents three evolution steps: reflection, contraction
and mutation. The simplex methods are based on an initial
design of » + 1 trials, where » is the number of variables.
Then, a geometric figure in a n-dimensional space is called a
simplex, thus a simplex defined by three different trial
conditions for two control variables has a shape of a triangle.
The shapes of the simplex in a one and three variable search

space are a line and a tetrahedron, respectively. A geometric
interpretation is difficult with more variables, but the basic
mathematical approach can handle the search for optimum
conditions. In order to improve the evolution process and to
make the algorithm reach the optimum region quicker and
pinpoint the optimum levels more closely, new evolution steps
were introduced in this present paper. The Modified
Competitive Complex Evolution (MCCE) algorithm required
for the evolution of each complex is presented below and is
illustrated in Fig. 2:

1. To initialise the process, select g, «, and S, where
2<g<m,a2land f21.
2. Assign weights as follows. Assign a trapezoidal
probability distribution to 4% i.e.,
_2m+1-i) .

i m,l—l,....,m (])

The point xf has the highest probability

p,=2/m+1.The point x) has the lowest probability
p,=2/m(m+1).

3, Select parents by randomly choosing g distinct points

u, ..., u, from A* according to the probability
distribution specified above. The g points define a
“subcomplex”, which functions like a pair of parents,
except that it may comprise more than two members.
Store them inarray B={u,v,j=1, ..., q}, where v is
the function value associated with point u,.
Store in L the locations of 4* which are used to

construct B.
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Fig. 1: lllustration of the shuffled complex evolution (SCE-UA) method
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In from SCE-UA

Given dimension #. complex 4 and number
of points m in A. Select ¢, a, B where
2sgsmaz2l,B21. Seti=1.

Assign a triangular probability

distribution pi to 4.

Select g points from A4 according to
pi. Store them in B and their relative
positions in A in L. Set;j = 1.

o| Sort Band L in order of increasing
function value. Compute the centroid G.

[compute’e =3G = 2u |« Yes H<fd N°>{ compute ¢* = (3G — u,)2 ]

mutation

Yes
y y A
[ setug=eandf;=7; | | setug=randf, =/ | [setug=c*and f, = fi+] [setug=candf=f-] [setuy=zandf, =/ |

Replace B into 4 according to L
and sort 4 in order of increasing
function value,

Yes
Return to SCE-UA

Fig. 2: Flowchart of the MCCE for the SCE-UA algorithm
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4. Generate offspring according to the following

procedure:

(a) Sort B and L so that the g points are arranged in order
of increasing function value and compute the centroid
G using the expression:

S

1

o @
(b) Compute the new point » =2G — u, (reflection step).
(c) Ifriswithinthe feasible space Q, compute the function

value f and go to step d; otherwise go to step g.
Iff, <f compute e = 3G — 2u (expansion step);
otherwise go to step g.
If e is within the feasible space Q, compute the function
value f and go to step f.
Iff, <f replace u, by e and go to step |; otherwise
replace u, by r and’ go to step |;
Compute ¢* = (3G — u )/2 (positive contraction step).
If f, is within the feasible space Q, compute the
function value /.., otherwise go to step j.
i, < f replace u by ¢" and go to step |; otherwise go
to step _|
Compute ¢ = (G + u )/2 (negative contraction step),
and compute /. .
Iff < Ly replace uy by ¢ otherwise compute the smallest
hypercube H c IR" that contains 4¥, randomly generate
a point z within H, compute f,, set » =z and set f = f.
(mutation step).
Repeat steps a-k o times, where a2 1 is the number of
consecutive offspring generated by the same
subcomplex.
Replace parents by offspring as follows: Replace B
into A* using the original locations stored in L. Sort A
in order of increasing function value.
Iterate by repeating steps 2—5 S times, where £ > 1 is
the number of evolution steps taken by each complex
before complexes are shuffled; i.e., how far each
complex should evolve.
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Fig. 3: Example of the evolution steps that can be taken by each
complex in a two-variable control space (y,and y,).
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Thus, if the dimension of the subcomplex is set to n + 1,
the subcomplex will become a simplex and the local
improvement direction could be reasonably estimated by the
described evolution steps. Fig. 3 summarises the new
evolution steps included in this paper to evolve the worst
point w through the centroid G in a subcomplex defined by
three different trial conditions (black dots) for two control
variables (y, and y,). Note that if all evolution steps
(expansion e, reflection 7, positive contraction ¢* and negative
contraction ¢) through the centroid do not improve the
criterion value, then a mutation step takes place by randomly
selecting a point in the feasible parameter space to replace
the worst point w of the subcomplex. This mutated point is
selected according to a normal distribution with the best point
of the subcomplex as mean value and using also the standard
deviation of the population.

RUNOFF-EROSION MODEL

The selected runoff-erosion model to be applied in this
work is the WESP model, developed by Lopes and Lane
(1988), because it was developed for small basins. The model
uses the Green-Ampt equation to model the infiltration:

N‘

/() K[ r(:)) 3)
where £(?) is the infiltration rate (m/s), K  is the effective soil
hydraulic conductivity (m/s), N, is the soil moisture-tension
parameter (m), F(f) is the cumulatlve depth of infiltrated water
(m) and  is the time variable (s). The surface flow is treated
by two broad categories described below, which are the
overland flow and channel flow.

Overland flow

The overland flow is considered one-dimensional.
Manning’s turbulent flow equation is given by:

- _ L R23g2
L & (C)

P
where # is the local mean flow velocity (m/s), R, (x,?) is the
hydraulic radius (m), S, is the friction slope and n, is the
Manning friction factor of flow resistance for the plane Thus,
the local velocity equation for planes can be obtained
considering the hydraulic radius equal to the depth of flow
(R, = h) and using the kinematic approximation that the friction
slope is equal to the plane slope (S, = )
o= ar hm‘—l (5)
where A is the depth of flow (m), &’ is a parameter related to
surface roughness, equal to (//n )S, 2 and m' is a geometry
parameter whose value is set to 5.

Putting Equation (5) into the equation of continuity for
the flow, the following equation for 4 is obtained:

ah 1ot ym'=1 ah
From Equations (5) and'(6), the overland flow (u, k) can
be calculated with a given excess rainfall 7,.

=

e
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Sediment transport is considered as the erosion rate in
the plane reduced by the deposition rate within the reach.
The erosion occurs due to raindrop impact as well as surface
shear. Thus, the continuity equation for sediment transport
is given by:
3(ch) A d(cuh) ™

ot ox

where c is the plane sediment concentration in transport
(kg/m’), e, is the rate of sediment by rainfall impact (kg/m?/s),
e, is the rate of sediment by shear stress (kg/m?/s), and d is
the rate of sediment deposition (kg/m?s). Each one of the
components in the net sediment flux expression is given as
follows: the rate of sediment by rainfall impact e, is obtained
from the relationship:

=e, +ep—d

®)

in which K, is the soil detachability parameter (kg.s/m*). The
rate of sednment by shear stress e, is expressed by the
relationship:

b 15
r =Kyt

e, =K,Ir,

(€)

where K, is a soil detachability factor for shear stress (kgm/N's),
and 7 is the effective shear stress (N/m?), which is given by
T=yhS,, where y is the specific weight of water (N/m’).
Finally, the rate of sediment deposition & in Equation (7) is
expressed as:

d=¢Vc (10)

where € is a coefficient that depends on the soil and fluid
properties, set to 0.5 in the present study, and ¥/, is the particle
fall velocity (m/s) computed by Rubey’s equation:

v, =Fa‘/—("'7)gd,
¥

2
S

(11)

and

3612 i 36v?
AT Vel
§ y 5 7

where y _is the specific weight of sediment (N/m®), v is the
kinematic viscosity of water (m?/s), d_ is the mean diameter of
the sediment (m), and g is the acceleration of gravity (m/s?).

F =

o

(12)

From Equation (7), sediment transport rate (cuh) can be
calculated under the overland flow (k, u) given by
Equation (6).

Channel flow

The concentrated flow in the channels is also described

by continuity and momentum equations. The momentum

equation can be reduced to the discharge equation with the
kinematic approximation:

Q=a'dR,™"! (13)
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where Q is the discharge (m®/s), 4 is the area of flow (m?) and
a ' is the same as described in Equation (5), however, the
Manning friction factor of flow resistance must be the value
set to the channel, n . The continuity equation for the channel
flow is given by:

(14)

where g, is the lateral inflow per unit length of channel. From
Equations (13) and (14), the surface flow for the channel flow
(4, Q) can be calculated.

Since the effect of rainfall impact is neglected in the
channel, the continuity equation for the sediment is
expressed without the rainfall impact component by:

0AC n ocQ
ot

where C(x,f) is the sediment concentration in transport in the
channel (kg/m?), g_is the lateral sediment inflow into the
channel (kg/m/s), d is the rate of sediment deposition into
the channel (kg/m/s), and e, is the erosion rate of the channel
bed material (kg/m/s). The components of the net sediment
flux expression for the channel segment are given as follows:
the erosion rate of the channel bed material e, is obtained
from the relation:

=g te, _dc (15)

(16)

e, =alr-7,)"

in which a is the sediment erodibility parameter, and  is the
critical shear stress for sediment entrainment (N/m?), which
is given by 7, = 8 (y, — 7 )d, , whered is a coefficient, set to
0.047 in the present study, y, is the specific weight of sediment
(N/m’), and d_is the mean diameter of sediments (m). This
critical shear stress component has been neglected in
Equation (9) for the planes due to the difficulty of its
evaluation on a field scale or for small watershed applications.
Also, values suggested for critical shear stress from studies
conducted in single rills are not applicable to the broad sheet-
flow approach in overland flow erosion modelling.
Furthermore, there are always fine particles of sediment
detached by the action of wind or other elements between
rainfall events, which will be available to be transported by
sheet flow as soon as rainfall exceeds infiltrability on the soil
surface, without any resistance to removal.

The rate of sediment deposition within the channel d_
(kg/m/s) in Equation (15) is expressed by:
d, =&T,V.C a7

in which ¢_is the deposition parameter for channels,
considered as unity in the present case, and 7}, is the flow
top width (m). From Equation (15), sediment transport rate

(CQ) can be calculated under the overland flow (4, Q) given
by Equation (14).
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AREA DESCRIPTION

The physically-based runoff-erosion model is applied to
a bare micro-basin, which is one of the four micro-basins of
the Sumé Experimental Watershed, in northeastern Brazil at
Parafba State. The micro-basin mean slope, area, and perimeter
are 7.1%, 0.48 ha, and 302 m, respectively. This experimental
watershed was operated since 1972 (Cadier and Freitas 1982)
by SUDENE (Superintendency of Northeast Development,
Brazil), ORSTOM (French Office of Scientific Research and
Technology for Overseas Development), and UFPB (Federal
University of Paraiba, Brazil).

Based on the work of Santos et al. (1998), 45 events were
selected between 1987 and 1991, because during this period
there was no vegetation cover. The runoff and erosion data
were measured after each rainfall event and the rainfall data
were obtained from a recording rain gauge installed close to
the selected micro-basin.

APPLICATION OF THE MODIFIED SCE-UA
TO THE WESP MODEL

Selection of SCE-UA algorithm parameters

The SCE-UA method contains many probabilistic and
deterministic components that are controlled by some
algorithmic parameters. For the method to perform optimally,
these parameters must be chosen carefully. The first one is
m, the number of points in a complex (m > 2), which should be
not too small to avoid that the search proceeds like an
ordinary simplex procedure, neither too large to avoid that an
excessive use of the computer processing time with no certain
in effectiveness is taken. Then the default value, m =2n +1,
was selected, in which » means the number of parameters to
be optimised on as explained previously. For the number of
points in a subcomplex g (2 < g < m), the value of n + 1 was
selected because it would make the subcomplex a Simplex;
this defines a first-order approximation (hyperplane) to the
objective function surface, and since the evolution steps are
based on the simplex method it will consequently give a
reasonable estimate of the local improvement direction. The
number of consecutive offspring generated by each
subcomplex & (a> 1), was set to one to avoid that the search
becomes more strongly biased in favour of local search of
the parameter space. The number of evolution steps taken
by each complex f# (B > 0) was set to 2n + 1 to avoid that the
complexes would be shuffled frequently if set to a small value
or to avoid that they would shrink into a small cluster if a
great value is used. The number of complexes p was set to 2
based on the nature of the problem, and the minimum number
of complexes required in the population p . (1 <p . <p)
was set to p because it gave the best overall performance in
terms of effectiveness and efficiency.

Optimisation of the WESP erosion parameters

In order to start the calibration process, the micro-basin
had to be represented as a scheme of planes and channels.
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The authors have discussed which schematisation is the best
to represent the area (Santos et al. 1994), and the
schematisation in 10 elements was chosen here. The
parameters which could be determined from a priori
information are the Manning friction factor, which was
assumed as 0.02 for planes (np), and 0.03 for channels (n)
based on the soil type, its grain size composition, and surface
characteristics, the specific weight of water assumed as
9.8 kN/m’, and the specific weight of sediment assumed as
2.6 x 10* kN/m’. However, there are some parameters that are
specific for this area which should be determined by field
tests such as the effective soil hydraulic conductivity K|
whose value was assumed equal to 5.0 mm/h, and the mean
diameter of sediments d_ whose value was assumed to be
equal to d,; which is 0.5 mm; however, other parameter values
should be set according to the literature or determined by
calibration or optimisation process.

The first parameter to be calibrated in the WESP model
was the soil moisture-tension parameter N and it could be
calibrated by a simple optimisation method because it was
necessary just to fit the computed runoff depth with the
observed value. However, after this step the WESP model
contains more three erosion parameters (a, K, and K,) which
should be calibrated; thus, the Modified SCE-UA method
was used for such task.

The initial values ofthe erosion parameters were a=0.0144
kgm? K,=2.174kgm/N'*sand K, = 5.0 x 10° kg s/m*, and
the following objective function to be minimised was used:

M
E

o

J=

(18)

where E_is the observed sediment yield (kg) and £_ is the
calculated one (kg). The optimisation for the 45 events gave
the mean values of the erosion parameters as a = 0.008 kgm?,
K,=2.524 kgm/N'*s, and K, = 5.632 x 10° kgs/m*. The
values were used then to run new simulations, and Fig. 4

shows the simulation results for the sediment yield.

TESTING THE MODIFIED SCE-UA WITH
MATHEMATICAL FUNCTIONS

This section describes a number of test functions applied
for use with the Modified SCE-UA Algorithm. These
functions are drawn from the literature on genetic algorithms,
evolutionary strategies, and global optimisation. The genetic
algorithm parameters used for these tests are as follows based
on the previous discussion. Since there are two control
variables, » is equal to 2 and the number of points in a complex
m is equal to 5 because m =2n +1. The number of points in a
subcomplex ¢ is equal to n + 1, thus g = 3. The number of
consecutive offspring generated by each subcomplex « is
set to 1. The number of evolution steps taken by each complex
A is equal to 5 because f =2n + 1. The number of complexes
p is set to 2 thus the population becomes equal to 10, and
finally the minimum number of complexes required in the
population p__ is set to p.

min



Modification of SCE-UA genetic algorithm for runoff-erosion modelling

9000

6000 -

Sediment yield (kg)
w
o
s

1

- Observed
[ Calculated

3557 9 11 1315717 19 21 23 25 2729 31 33 35 37 3941 43 45

Event order number

Fig. 4: Observed and simulated sediment yield

Three test functions were selected to perform the tests:
The Rosenbrock, Goldstein-Price (Goldstein and Price 1971),
and Six-Hump Camel-Back functions.

Rosenbrock’s valley is a classic optimisation problem,
also known as Banana function. The global optimum is inside
a long, narrow, parabolic shaped flat valley. To find the valley
is trivial, however convergence to the global optimum is
difficult and hence this problem has been repeatedly used in
assess the performance of optimisation algorithms.

Jrosen =100(y; = y2)+(1-1,) (19)

in which the control variables are as —2.048 <y <2.048 and
-2.048<y,<2.048.

The global minimum is located at (y,, y,) = (1, 1) where the
function value is £, __ (v,,,) =0. The Goldstein-Price function
Je.a 18 also a global optimisation test function used to test
global optimisation techniques, which is defined as:

Joad0¥2) = Term, x Term, (20)

Term, = l-»(yl +y,+ 1)2(]9-14yl +3yk-14y, +6y,y, +3y§) @n

Term, =30+ (2,-3y, ) (18-32y, + 12y} +48y,-36y,, + 277 (22)

in which the control variables are as 2 <y, <2and-2<y, <
2. The global minimum is located at (,,»,)=(0,-1) where the
function value is f_ (v, »,) = 3. The 2-Dimensional Six-hump
camel back function (Dixon and Szego 1978) is another global
optimisation test function. Within the bounded region are six
local minima, two of them are global minima.

fs‘.xh()’lv)’2)=(4"2-ly|2+.V|%)y12+)’|Y2+("4+4J’22 )y22 (23)

in which the control variables are as -3 < y < 3 and
-2 <y,<2. The global minimum is located at (y,, y,) = (-0.0898,
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0.7126) or (v, y,) = (0.0898, -0.7126) where the function value
i8 f5,u (), y,) = -1.0316.

In spite of the difficulty involved in finding these function
global minima, the Modified SCE-UA showed a promising
performance in terms of effectiveness (the ability to locate
global optimum) and efficiency (the speed to locate global
optimum) to locate each global minimum.

CONCLUSIONS

In order to improve the effectiveness and efficiency of
the SCE-UA genetic algorithm, new evolution steps were
introduced in the competitive complex evolution (CCE)
algorithm, which is based on the simplex downhill search
scheme. This Modified SCE-UA proved to be useful to
calibrate the distributed physically-based erosion models and
despite the difficulty involved in finding the global minima of
Rosenbrock, Goldstein-Price, and Six-Hump Camel-Back
functions, it showed a promising performance in terms of
effectiveness (the ability to locate global optimum) and
efficiency (the speed to locate global optimum) to locate each
global minimum.
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