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ABSTRACT

Large-scale landslides (LSL) are characterized by complex nature of failure mechanism, which depend on geological
setting and associated factors of the area. The aim of this research is to identify the distribution pattern of LSL and all
landslides in the central Nepal Himalaya and evaluation of their controlling factors. 7239 landslides were extracted from
the study area by the interpretation of satellite imageries and field surveyed information. 28 landslides were classified as
LSL and descriptive statistics were calculated. A comparative susceptibility assessment between all landslides and LSL
was performed by frequency ratio model (FRM). Landslide susceptibility assessed from FRM was classified into five
categories using the natural breaks method and adjustment from field evidences: very low, low, medium, high and very
high. The very high, high and medium susceptibility classes comprised of 38.91%, 33.29%, 18.76% for all landslides
and 39.51%, 29.65%, 20.98% for LSL. The result clearly indicated that the role of controlling factors varies differently
depending upon the size of distributed landslides. To understand the significance of controlling factors for LSL, different
potential cases were validated by success rates with area under the curve (AUC). The computed AUC in success rates for
LSL is 65% and for overall landslides with similar controlling factors is 75%. The AUC values in different potential cases

showed that the prime factors to control the LSL are geomorphology, rainfall, and geological structures.
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INTRODUCTION

The complex geological nature and uneven fragile topography
cause the landslides common in the Himalaya. Landslides are
one of the most significant land degradation processes prevalent
in the central Nepal Himalaya. This region is tectonically
unstable with uneven topography, unstable geological
structures, soft and fragile rocks, frequent earthquakes, along
with heavy and prolonged precipitations during monsoon
periods (Devkota et al., 2013; Nepal et al., 2019).

Landslides in the Himalaya are very common process of mass
wasting and are scale dependent from small slope failures
to massive extent of whole mountain collapse (Shroder and
Bishop, 1998; Shang et al., 2003). Landslides often classified
based on factors; materials, landslide scale, or type of
movement (Varnes, 1978; Cruden and Varnes, 1996; Hungr et
al., 2014). The size of landslide larger than 10° m? is commonly
accepted to be large-scale landslides (Wen and Chen, 2007;
Lin et al., 2013; Zhou and Cheng, 2015) and volume larger
than 10° m? (Brueckl and Parotidis, 2001; Zerathe et al., 2014;
Chung et al., 2018; Kuo et al., 2018).

The large-scale landslides (LSL) are characterized by complex
nature of failure (Varnes, 1978; Wilson et al., 2003; Ghobadi
et al., 2017; Kuo et al., 2018). The LSL is largely controlled
by the geological setting of the area i.e. orientation of the rock
strata with respect to slope (Timilsina et al., 2012; Chung et al.,
2017; Ghobadi et al., 2017). Inter-bedding characteristics of
rock strata with different mechanical property is another prime
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geological factor (Zerathe et al., 2014; Ghobadi et al., 2017;
Zhou et al., 2019). The distribution pattern of LSL shows close
relation to the seismic fault/thrust (Huang and Li, 2008, 2009)
and most of the LSL are found to be oriented perpendicular
to direction of the regional thrust system and proximity to the
fault/thrust system (Timilsina et al., 2012; Zhou et al., 2019).

The effects of rainfall duration and cumulated rainfall are
much more remarkable for LSL than for small landslides (Kuo
et al.,, 2018). The major factors that affect the distribution
of LSL triggered by the seismic event are distance effect,
locked segment effect, hanging wall effect and direction effect
(Xu et al., 2011). LSL triggered by the earthquake are to be
concentrated in large seismic energy concentrated area due to
energy released in these areas after rupture and displacement
of the seismic fault. The majority of LSL are distributed on
the hanging wall of the seismic fault and susceptible towards
the slope facing to the travel direction of seismic wave as
well as coincide with the staggering direction of the seismic
fault (Xu et al., 2011). Timilsina et al. (2012) and Hasegawa
et al. (2008) describe findings of the morphometric and
geomorphic characteristics and its causes in Nepal Himalaya.
The spatial distribution and failure characteristics can only
be understandable after knowing the role and contribution
of controlling factors. Therefore, the aim of this research is
to identify the distribution pattern of LSL in central Nepal
Himalaya and role of the controlling factors in terms of other
smaller landslides converging to the LSL or isolated slides.
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GEOLOGICAL SETTING

The central Nepal Himalaya is characterized by the complex
geological and structural nature from Sub-Himalayan,
Lesser Himalayan, Higher Himalayan and Tethys Himalayan
tectonic divisions. Dhital (2015) described the rock sequences
chronologically in the central Nepal Himalaya (Fig. 1). The
Main Frontal Thrust (MFT) distinguishes the quaternary
sediments of Terai from Sub-Himalayan rock strata (Middle
Miocene to Early Pleistocene) mainly having sandstone,
mudstone, conglomerate (Dhital, 2015). Similarly, the Main
Boundary Thrust (MBT) separates the Sub-Himalayan
rocks from Lesser Himalayan rocks (Paleoproterozoic to
Neoproterozoic) and Main Central Thrust (MCT) separates
the Lesser Himalayan rock from Higher Himalayan rocks
(Stocklin and Bhattarai, 1977; Stocklin, 1980). The major
tectonic structures are Midland Antiform, Great Mahabharat
Synclinorium, Okhaladhunga Window and Kathmandu Nappe
(Stocklin and Bhattarai, 1977; Dhital, 2015). These structures
resulted intense deformation within a rock stratum of the area,
which can be one of the major reason to initiate and propagate
the LSL.

METHODOLOGICAL APPROACH

The methodological approach have involved the acquisition of
database, derivation of characteristics of landsides with respect
to controlling parameters, evaluation of landslide susceptibility,
validation and effect analysis (Fig. 2). The series of landslide
data were collected during the study by the interpretation of
satellite images, geological maps and geomorphic features.
Field surveyed data were accompanied during the study to
prepare the landslide database and inventory map. Landslides
from the study area were extracted during the study and total
7239 landslides were mapped. Based on the size (e.g. Bruckl,
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2001; Lin et al., 2013; Chung et al., 2018), 73 landslides are
classified as large-scale landslides in the study area.

Database acquisition

A landslide inventory database is the vital information for
landslide distribution and activity defined by Cruden and
Varnes (1996) and WP/WLI (1993). Landslide inventory is the
starting point for the landslide hazard or risk study to insight
the spatial and temporal frequencies distribution in both space
and time frame under international nomenclature (IAEG
Commission on Landslides, 1990). A landslide inventory map
is useful to establish the relationships between landslides and
influencing factors as well as it is prerequisite to evaluate the
landslide susceptibility (Chen et al., 2017).

The controlling factors of large-scale landslides (LSL) often
defined by the geological condition, landslide scale (depth,
area or volume), or type of movement. In Taiwan the current
agreed-upon definition for a LSL is a landslide that is larger
than 100,000 m* in volume (Brueckl and Parotidis, 2001;
Zerathe et al., 2014; Chung et al., 2018). According to the
Lin et al. (2013) the LSL are those having area larger than 10
ha (100,000 m?). LSL can be clearly observed, the widened
and flooded river channel filled by debris. As well as some
researchers defined LSL based on its size (>100,000 m?) (Wen
and Chen, 2007; Zhou and Cheng, 2015) to make the inventory
process casier.

The landslide spatial data were acquired by the interpretation
of satellite images, geological maps and geomorphic features.
Field surveyed data were accompanied during the study to
verify the landslide database and inventory map. Spatial and
attribute database of landslides were compiled and a total of
7239 landslides were depicted (Fig. 3). Based on the size,
73 landslides were initially classified as large-scale landslide

86°15'0"E

28°0'0”"N

27°30'0"N

Study Area &k

27°00°N

28°0'0"N

Legend

Il Large scale landslides

~~ Thrust/Fault

I Rivers

[IPlio-pleistocene sediments (PPS)

[=]Neogene (Siwaliks) (Si)

[ZX Miocene leucogranite (ML)

Paleozoic granite (Pgr)

Tethys Himalayan Sequence

[1Paleozoic rocks (Prc)

Lesser Himalayan Sequence

E=3 Proterozoic carbonate bands (Pr-C)

== Proterozoic shale, slate, siltstone, sandstone (Pr-SSS)
E=3 Proterozoic carbonate bands (Pr-C)

Proterozoic phyllite, schist, metasandstone (Pr-PSM)
Lesser Himalayan gneiss/Ulleri (LHG)

Higher Himalayan Sequence

27°30'0"N

? Neoproterozoic-Cambrian phyllite, metasandstone (NC)
| =3 Proterozoic lime-silicate band(Pr-LS)

S \} [EJHigher Himalayan Crystalline (HHC)
E£3 Higher Himalayan gneiss (HHG)

27°0'0’N

84°45'0"E 85°30'0"E

86°15'0"E

Fig. 1: Generalized geological map of the study area (modified after Dhital, 2015; DMG, 1980).
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Fig. 3: Landslides inventory map of the central Nepal Himalaya.
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(Bruckl, 2001; Lin et al., 2013; Chung et al., 2018). After
considering the geological variation with associated structures
and geometrical characteristics of slope and rock strata, 28
landslides were identified as LSL.

Spatial distribution pattern of LSL shows that majority of LSL
(71%) having area less than 500,000 m?, 25% of LSL have arca
range 500,000 to 1,000,000 m? and 4% of LSL have area size
greater than 1,000,000 m? (Fig. 4). The average size of LSL
is 356,706 m? that have mean length of 1125 m and width of
543 m.
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Fig. 4: Distribution pattern of large-scale landslides (LSL).

Controlling parameters

Reasonable classification of controlling factors helps to
improve the reliability of landslide susceptibility mapping.
Traditionally, it is done by extracting ridge lines and valley lines
from high-resolution digital terrain models (DTM). It divides
watersheds into separate slopes based on hydrological analysis
(Giles and Franklin, 1998; Guzzetti et al., 1999). Based on the
geological environment and landslide distribution pattern, a
total of thirteen landslide conditioning factors were considered
during the landslide susceptibility mapping: elevation, slope
angle, slope aspect, curvature, stream power index (SPI),
topographic roughness index (TRI), topographic wetness
index (TWI), distance to road, distance to river, distance to
thrust, rainfall, lithology, and land cover (Fig. 5).

Slope angle is widely used in landslide susceptibility evaluation
and is also an important factor when evaluating slope stability.
The possibility of landslide occurrence increases with
increasing slope angle (Demir et al., 2013). Slope angles in the
study area are divided into five classes: <15°, 15-25°, 25-35°,
35-45°, and >45° (Fig. 5a).

Slope aspect refers to variation in the intensity of sunlight
received, which affects soil moisture, evaporation and erosion.
These factors influence the development of landslides (Ilia and
Tsangaratos, 2016). In the study area, slope aspect is divided
into nine classes: flat, north, northeast, east, southeast, south,
southwest, west and northwest as shown in Figure 5b. Distance
from river, affects the concentration of landslides, shows
inverse relationship. In this study distance to rivers is classified
as <20 m, 20—40 m and >40 m (Fig. 5c).

The curvature map in the study area is sub-classified in to
three class; concave, flat and convex (Fig 5d). Elevation is
considered a vital factor that influences the occurrence and
distribution of landslides, degree of weathering and human
activities (Hong et al., 2016). In the study area, the elevation

values are divided into four classes: <1000 m, 1000-2000 m,
2000-3000 m, 30004000 m and >4000 m (Fig. 5¢). Similarly,
the area is separated based on the proximity to road and divided
into <25 m, 25-50 m, >50 m sub-classes (Fig. 5f).

TRI express the amount of elevation difference between
adjacent cells of a DEM developed by Riley et al. (1999). In
present study, TRI values divided into three classes as; <0.3,
0.3-0.6, and >0.6 (Fig. 5g). SPI is useful to describe potential
flow erosion at the given point of the topographic surface
(Moore et al., 1991). Three sub-classes; <50, 50-100, and >100
is categorized to describe the SPI classes in this study (Fig.
5h). The proximity to thrust is classified into >50 m and <500
m, 500-1000 m and >1000 m are shown in Figure 5i. The TWI
is a useful model to estimate where water will accumulate in
an area with elevation differences. It is a function of slope and
the upstream contribution area. Three classes are categorized
for this DEM derivatives; <4, 4-6, and >6 (Fig. 5j).

Annual rainfall is important triggering factor of landslide.
Chalise and Khanal (2001) established 1500-2500 mm mean
annual rainfall are predominates over most of the country.
It is taken as important triggering factor and is classified as
<1200 mm, 1200-1400 mm, 1400-1600 mm, 1600-1800
mm, >1800 mm sub-classes (Fig. 5k). Land cover pattern also
play significant role to produce the landslides. The land cover
map of the study area is categorized as barren land, buildings,
bush, cliff, cultivation, forest, glacier, grass, lake, river, sand,
snow and swamp (Fig. 51). Lithology is an important factor
in the formation and evolution of landslides, as it forms the
material base for landslide generation (Yalcin et al., 2011).
Slopes formed by different rock and soil masses have different
physio-mechanical properties (Pellicani et al., 2014). There are
fourteen lithological units in the study area.

The landslide controlling thematic layers were used
subsequently to derive the landslides characteristics,
susceptibility evaluation and validation of analysis. Descriptive
statistics values for different LSL controlling parameters is
presented in the Table 1.

Table 1: Descriptive statistics of landslide controlling factors.

Controlling Statistical values

Variables Min. Max. Mean Std. dev.
Landslide area 102459.6 1020250 356706.5  239464.8
Landslide length 457 2186 1125.86 511.27
Landslide width 257 1277 543.96 244.69
Slope angle 0 86.21 27.64 14.64
Slope aspect -1 359.9 178.63 103.21
Curvature -655 1095 0 8.81
Elevation 102 6962 1476.02 1101.58
TRI 0.01 0.99 0.5 0.09
SPI 0 2222558  234.04 2576.69
TWI -0.38 20.89 4.6 1.83
Distance to river 0 8761.47 1443.17 1459.26
Distance to road 0 30104.72  5262.04 4883.97
Distance to thrust 0 33966.17 4185.28 5070.96
Rainfall 1076.09 2185.62  1591.46 152.73
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Fig. 5: Thematic layers; a) Slope angle, b) Slope aspect, ¢) Distance to river, d) Curvature, ¢) Elevation, f) Distance to road, g) TRI,

h) SPI, i) Distance to thrust, j) TWI, k) Rainfall, I) Land cover.

Assessment methods

The theoretical concepts of assessment method include the
univariate analysis for distribution pattern and landslide
characteristics. Bivariate approach has evaluated the landslide
susceptibility and validation of results. The landslide
susceptibility assessment is based on the influences of
controlling factors over the spatial distribution of landslides

and the prediction of landslide events will occur under the
same physio-mechanical environment of the past events (Lee
and Talib, 2005). The relationship between spatial distribution
and controlling factors to distinguish the degree of susceptible
zone, landslide susceptibility mapping is usually done using
soft computing-based techniques and geographic information
system (Cardenas and Mera, 2016). The deterministic models
for the susceptibility assessment are based on mathematical

113



Phuyal et al.

relations that depends on the physical laws of resisting and
driving forces acting on a slope masses. The statistical models
are data driven method that possess the inaccuracy in the input
data may cause a significance error in the results. Thus, it
requires the complete inventory dataset for the assessment and
model validation (Van Westen et al, 2008; Trigila et al., 2015).

The FRM is used in this study, based on the spatial relationships
between all landslides and each landslide conditioning factor,
is a simple probabilistic model that is widely used in landslide
susceptibility mapping (Choi et al., 2012; Mohammady et al.,
2012). This quantitative approach for landslide susceptibility
is examined using GIS techniques and spatial data (Lee and
Talib, 2005; Reis et al., 2012; Umer et al., 2014; Chen et al.,
2016; Ding et al., 2017, Wang and Li, 2017). The frequency
ratio (FR) is the ratio of landslide areas to the total study
area and is also the ratio of landslide occurrence probability
to non-occurrence for a given attribute. If the ratio is >1, it
indicates a higher correlation and if the ratio is <1 there is a
lower correlation. The value of FR (Mondal and Maiti, 2013;
Youssef et al., 2015) is expressed as Equation 1.

FR = XM (1)
Ni/N
where, Mi is the number of pixels with landslides for each
subclass conditioning factor, M is the total number of landslides
in the study area, Ni is the number of pixels in the subclass area
of each factor and N is the number of total pixels in the study
area.

In this study, normalized frequency ratio method used to
deliver the output. The calculation is followed to normalization
of each derived FR value to discretize the continuous factor
values from 0 to 1 range. In arrange to discover the relative
significance of each spatial factor with the accessible preparing
dataset; the prediction rate (PR) was analyzed depending upon
its degree of spatial affiliation with the preparing datasets
(Eq. 2) (Baral et al., 2021).

RFmax—RFmin (2)

PR =

" (RFmax—RFmin)min

where, RFmax and RFmin is the maximum and minimum
relative frequency among the classes within a factor, (RFmax—
RFmin)min is the is the minimum values among all the factors
considered.

Essential component of the landslide assessment is the
validation of analysis results that can be used for the prediction
of landslides with areas having similar controlling factors
(Gorsevski et al., 2000; Lee at al., 2004; Chung and Fabbri,
2003; Wubalem, 2021). The validation of the landslide
susceptibility generally follows the calculation of the success
and prediction rates. The success of the model is based on
known landslide events whereas the prediction rate fits with
landslides which are not incorpoted in the model evaluation
(Chung and Fabbri, 1999) and many authors have addressed
their corresponding issues of the result validation (Carrara et
al., 1991; Chung et al., 1995; Luzi and Pergalani, 1996; Chung
and Fabbri, 2003; Dymond et al., 2006; Meusburger and
Alewell, 2009; Wahono, 2010). The calculated results were
plotted in percentage that classified as susceptible (x-axis)
versus the cumulative percent of landslide occurrence (y-axis),

with the area under the curve (AUC) calculation from Equation
3 (Pimiento, 2010).

- " ) ) ) (ti—xi1) (Yi—yi1)
AUC = (xl — Xl—l)yl — [f] 3)
i=0

The AUC measures the accuracy of results in the assessment
landslide susceptibility (e.g. Chung, and Fabbri, 2003;
Pimiento, 2010, Fleuchaus et al., 2021). The values of AUC
is between a maximum value of 1 or equal to 100% and 0.5 or
equal to 50%. Different ranges of AUC can be classified for
the prediction models (0.9 as a very good, 0.8-0.9 as a good,
0.7-0.8 as a medium or reasonable, and <0.6 poor) i.e. the
higher the AUC value of an influencing factor, the higher the
influence of the landslide event (Silalahi et al., 2019).

RESULT AND DISCUSSION

Based on the spatial and attribute databases of landslides
and their controlling parameter, distribution pattern and
characteristics of landslides were derived. Frequency ratio
model was implemented to evaluate landslide susceptibility.
The susceptibility models were validated by computing success
rates and the influence of various controlling parameters were
evaluated by adjusting parameter combinations in effect
analysis.

Distribution pattern and characterization

The distribution pattern of landslides in the central Nepal
Himalaya is influenced by the role of controlling factors
(Hasegawa et al., 2008; Timilsina et al., 2012). Slope is the
prime geomorphometric factor to influence the landslide
patterns in the region. The study has shown that slope angle
map has a significant impact on the distribution of landslides.
The landslides occurrence rate is increased with increasing
slope angles. The higher landslide frequency at the slope angle
25°-45°. The lower landslide frequency at the low slope angle
(<25°) is due to less driving force acting on gentle slope. The
presence of cliffs at high slope angle area is another reason to
be less prone for the landslide events. Study showed higher the
gradient high FR and greater than one for slope angle greater
than 25°. The highest FR is 2.5+0.28 for the slope angle greater
than 45°. The FR exceed one at southeast, south and southwest
facing slopes (Table 2) that represent the landslides are more
likely on these slopes. Conversely, FR values of the remaining
slope aspect categories are lesser than one, indicating low
probability of landslide occurrences. The concave slope
curvature has high landslides distribution with FR 1.09+0.03.
The elevation range showed distinct landslide distribution
patter. The distribution of landslides is high in the elevation
range 1000-3000 m with maximum obtained FR is 3.7+0.38
showing a positive correlation with landslide occurrence.

The most significant landslide triggering factor is rainfall which
is more remarkable for LSL distribution (Kuo et al., 2018). In
the area, rainfall 1600—1800 mm presented higher number of
landslide distribution and the calculated FR for same rainfall
class is 1.12+0.1, suggest that such rainfall class area is prone
to trigger the landslide. In the area, the geological units; Higher
Himalayan Crystalline, Lesser Himalayan Gneiss, Proterozoic
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carbonate rocks, Paleozoic rocks and Miocene leuco-granite
have high landslide frequency and the FR is significant (>1).
This indicates that these geological classes are prone to the
LSL due to variable mechanical properties of inter-bedding
characteristics and geometric orientation of rock strata (Wilson
et al., 2003; Timilsina et al., 2012; Zerathe et al., 2014;
Chung et al., 2017; Ghobadi et al., 2017; Kuo et al., 2018).
The land cover types; barren land, bush/grass land and forest,
which represents to high landslide distribution with some of
significant FR (>1) is shown in Table 2.

The spatial distribution of the landslides in the Himalayan
terrain is significantly influenced by the fault/thrust systems.

The distribution of landslides in the proximity to the thrust is
appreciably high in case of LSL than all landslides (Table 2).
It clearly showed seismic fault/thrust has a close relation to
the LSL distribution pattern (Huang and Li, 2008, 2009; Xu
etal, 2011; Zhou et al., 2019). Also, the orientational direction
of LSL are mostly perpendicular with the regional fault/thrust
system (Xu et al., 2011). The proximity to road and river also
indicated certain distribution patterns of landslides in the
vicinity of 40-50 m (Table 2).

This study focused on the characterization of LSL after knowing
its distribution pattern in the central Nepal by establishing
the relationship between the LSL and its controlling factors.
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Geomorphometric, geological, hydrogeological and landcover/
land-use practice are major factors associated with the LSL
(Huang and Li, 2008; Timilsina et al., 2012; Ghobadi et al.,
2017). Slope is the prime factor to define the dimension of the
landslides and in the region study area ranges from 0° to 86.21°
slope angle which is divided into 5 intervals. The pixel count
of LSL in the interval greater than 45° is largest (28.04%)
and followed by interval 25°-35° i.e. 27.84%. The landslide
area percentage (LAP) plot reached their peak 0.11% at class
interval of greater than 45°. The result shows that higher the
slope then more likely LSL is to occur (Fig. 6a). The slope
angle class 25°-45° is found to be sensitive for the LSL due
to vertical and lateral thickness of slope forming materials
in this slope angle range (Li et al., 2022). The slope aspect is
categorized to 9 classes from -1 to 359.9. The large number
of LSL falls on south aspect (19.28%) and the LAP reached
its peak (0.08%) at the same class of slope aspect (Fig. 6b).
The most of LSL (97.4%) falls at greater than 40 m distance to
river and peak LAP (0.05%) at same class (Fig. 6¢). Similarly,
curvature of the area ranges from -655 to 1095. The concave
slope has large number of LSL (48.73%) and in the same class
of curvature LAP has its peak value (0.05%) (Fig. 6d). The
large number of LSL are present in classes as less than 4 by
58.65% and LAP reached their peak 0.06% at less than 4 (Fig.
6e). 99.06% of LSL are present at less than 50 m distance to
road and peak LAP value is 0.05% for same distance to roads
classes (Fig. 6f). The classes of TRI and SPI categorized to 3
classes. The large number of LSL are present in classes as 0.3
to 0.6 by 61.82% (Fig. 6g) and less than 50 by 98.99% (Fig.
6h) for TRI and SPI respectively. The LAP for same factors
reached their peak 0.06% at 0.3 to 0.6 and 0.36% at greater
than 100 accordingly. Likewise, most of LSL (81.54%) falls at
greater than 1000 m distance to thrust and higher value of LAP
belongs to same class having value 0.06% (Fig. 61).

The rainfall of the study area ranged from 1076 to 2185 mm
and is divided into 5 intervals in this work. The pixel count of
LSL in the interval 1400-1600 mm is largest (42.91%) and
followed by interval 1600-1800 mm i.e. 40.98%. LAP plot
also reaches their peak 0.05% at class interval of 1400-1600
mm (Fig. 6j). The elevation of the study area ranges from 102
to 6963 m, divided at 1000 m intervals in this work. Statistics
show that most of the LSL (34.27%) are located at elevations
from 1000 to 2000 m. The peak value of LAP is 0.2% at 3000 to
4000 m (Fig. 6k). Lithological unit from study area i.e. Higher
Himalayan Crystalline has large number of LSL (49.91%) and
the LAP value is higher (0.2%) for Miocene Leucogranite. This
indicates the lithological classes are highly prone to LSL. The
influence of land cover types on the occurrence of landslides is
also obvious. Among the classes, barren land has large number
of LSL present (34.94%) and the LAP reaches the peak 0.36%
for same class, implying LSL prone area (Fig. 6l).

Susceptibility zonation

Using frequency ratio model (FRM), the susceptibility
zonation were carried out by utilizing two different spatial sets
of landslides. Many researchers in the Himalayan terrain (e.g.
Devkota et al., 2012; Regmi et al., 2012; Thapa, 2011; Pathak,
2016) used the FRM and combinations of similar parameters
for the landslide susceptibility assessment. The comparison was

performed between the all landslides and large-scale landslides
to characterize the influence of controlling parameters for
susceptibility zonation.

The landslide susceptibility Index (LSI) map based on the
distribution of all slides was derived using FR model from the
selected controlling factors classes were processed in GIS. The
LSI map is reclassified into five categories via natural breaks
method; very low, low, medium, high and very high (Fig. 7a).
Each of these categories covers 13.79%, 28.76%, 29.28%,
20.06% and 8.11% of the total area of the region, respectively.
The very high, high and medium areas contain 38.91%, 33.29%
and 18.76% of the total of all landslides, respectively; while the
low and very low areas contain only 7.37% and 1.66% of the
total landslides, respectively.

The LSI map from the distribution of the LSL also obtained
using FR values which was divided into five categories using
the natural breaks method: very low, low, medium, high and
very high (Fig. 7b). Each of these categories covers 8.09%,
23.06%, 32.07%, 25.94% and 10.84% of the total area of the
region, respectively. The very high, high and medium areas
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Fig. 7: Landslide susceptibility maps based on datasets:
(a) All landslides, (b) Large-scale landslides.
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contain 39.51%, 29.65% and 20.98% of the LSL, respectively;
while the low and very low areas contain only 8.12% and
1.73% of the total LSL, respectively (Fig. 8).

Analysis of landslide controlling factors for landslides and
LSL showed the differential influence, which were assessed
based on the frequency ratio (FR) values. The combination
of DEM derivatives with the geology, rainfall, and land cover
were utilized landslide susceptibility evaluation. The majority
of landslides are found to be occurred in the areas of highly
susceptible zones that verified the effectiveness of the landslide
susceptibility mapping (Chen et al., 2017). 73% and 69% of
small and large-scale landslides of this study are located in
very high and high susceptibility classes. This result clearly
indicated that significance of controlling factors for both all
and large-scale landslides are different.
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Fig. 8: Distribution of landslides
susceptibility classes.

in predicted landslide

100 pp—— 5 <~
e 5
S . - 1,7
QA2 oot
..... el l”
80 5 !
2 R A
= :* ]
- ot s prd
= 154 o
S : ..'./ J
S o 4 PR
2 60 N ’,
) K -7 ]
] : 7 4
E It /'
Y Cd
g o
g. U ’
. 7 .
o 40 s ,’ o ,’
2 VM [}
5 z <01
= P S
g A 4
= ’ 2 @.‘ /'
© JISE S e Landslide (FR)
N
E I Landslide (NFR)
N4
'l H _jl = === Large-scale landslide (FR)
X4 .
l:"," ====Large-scale landslide (NFR)
0
0 20 40 60 80 100

Cumulative area frequency

Fig. 9: Validation of landslide susceptibility assessment by success
rates.

Validation and effect analysis

In the present study the AUC value for the success rate
were determined and was checked in the field for the cross
verification. The observation shows that area of high susceptible
zone have significant presence of slope instability phenomena
marked by landslide events. From the validation process, the
AUC value of the success rate is 0.67 for all landslides and
0.58 for the LSL while picking the same controlling factors to
the landslide events using normalized frequency ratio (NFR)
values. However, the same quantitative validation results of
AUC value for the all landslides is 0.75 and for LSL is 0.69
from the FR model. The result showed satisfactory aggrement
between landslide susceptibility map and the prior landslide
events. The AUC analysis (Fig. 9) shows that the results
(success rate) of the susceptibility are more reliable for the all
mapped landslides than LSL in both NFR and FR models in
validation process.

Factor effect analysis is conducted by various researchers to
evaluate the effects of controlling factors by adjusting input
parameters (e.g. Lee and Talib, 2005; Pradhan and Lee, 2010).
In this study, the accuracy assessment results of LSL showed
the model accuracy by calculating success rates in terms of
different combination of factors which is shown in Figure 10.
The success rate calculated based on nine factors (slope, aspect,
curvature, elevation, rainfall, geology, distance to thrust,
distance to river, distance to road), the AUC is 0.65 i.e. accuracy
of 65% (case I). In the case II, seven controlling factors were
taken and AUC is found to be 0.69 (69% accuracy). Similarly,
when six controlling factors for LSL were used (slope, aspect,
curvature, rainfall, geology, distance to thrust), the AUC shows
that the result of the susceptibility obtained from the FR model
is the accuracy of 74% (case III). The better prediction of 79%
accuracy model is accomplished by using prominent four
factors (slope, rainfall, geology, distance to thrust) which is
more valid and reliable susceptibility model (Fig. 10).
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CONCLUSIONS

The spatial distribution, failure characteristics of landslides
and role of its controlling factors were examined from the
datasets of small/large-scale landslides. The assessment of the
landslide inventory with its controlling factors showed that
slope geometry, landuse/land-cover, geology and proximity to
river/road are the most influential controlling parameters for
the spatial distribution of the landslides in the study area. The
differential geological conditions associated with structural
discontinuities, rainfall and slope geometry are the significant
factors to control the LSL.

By crossing susceptibility and all landslides maps, it is found
that 38.91%, 33.29% and 18.76% of landslides are overlaid in
very high, high and medium susceptible zone; while around 9%
of the landslides are located in low and very low susceptible
zones. The result showed similar kind of distribution in case of
LSL susceptibility zonation of 39.51%, 29.65% and 20.98%
in very high, high and medium susceptible zones respectively.

The AUC of the success rates for all landslides is 0.67 whereas
0.58 for LSL from NFR model which is lower values in
comparison to FR model 0.75 for all landslides and 0.69 is in
LSL. Such a variation is attributed to the significance of the
controlling factors in the case of large dimensional failures are
due to complex mechanism which is clarifed from the effect
analysis. Thus, the susceptibility model evaluations indicated
that the major controlling factors for the LSL are the geology
and structural discontinuities, slope geometry and rainfall with
the predication accuracy of 79%.
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