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geological factor (Zerathe et al., 2014; Ghobadi et al., 2017; 
Zhou et al., 2019). The distribution pattern of LSL shows close 
relation to the seismic fault/thrust (Huang and Li, 2008, 2009) 
and most of the LSL are found to be oriented perpendicular 
to direction of the regional thrust system and proximity to the 
fault/thrust system (Timilsina et al., 2012; Zhou et al., 2019). 

The effects of rainfall duration and cumulated rainfall are 
much more remarkable for LSL than for small landslides (Kuo 
et al., 2018). The major factors that affect the distribution 
of LSL triggered by the seismic event are distance effect, 
locked segment effect, hanging wall effect and direction effect 
(Xu et al., 2011). LSL triggered by the earthquake are to be 
concentrated in large seismic energy concentrated area due to 
energy released in these areas after rupture and displacement 
of the seismic fault. The majority of LSL are distributed on 
the hanging wall of the seismic fault and susceptible towards 
the slope facing to the travel direction of seismic wave as 
well as coincide with the staggering direction of the seismic 
fault (Xu et al., 2011). Timilsina et al. (2012) and Hasegawa 
et al. (2008) describe findings of the morphometric and 
geomorphic characteristics and its causes in Nepal Himalaya. 
The spatial distribution and failure characteristics can only 
be understandable after knowing the role and contribution 
of controlling factors. Therefore, the aim of this research is 
to identify the distribution pattern of LSL in central Nepal 
Himalaya and role of the controlling factors in terms of other 
smaller landslides converging to the LSL or isolated slides.
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ABSTRACT
Large-scale landslides (LSL) are characterized by complex nature of failure mechanism, which depend on geological 
setting and associated factors of the area. The aim of this research is to identify the distribution pattern of LSL and all 
landslides in the central Nepal Himalaya and evaluation of their controlling factors. 7239 landslides were extracted from 
the study area by the interpretation of satellite imageries and field surveyed information. 28 landslides were classified as 
LSL and descriptive statistics were calculated. A comparative susceptibility assessment between all landslides and LSL 
was performed by frequency ratio model (FRM). Landslide susceptibility assessed from FRM was classified into five 
categories using the natural breaks method and adjustment from field evidences: very low, low, medium, high and very 
high. The very high, high and medium susceptibility classes comprised of 38.91%, 33.29%, 18.76% for all landslides 
and 39.51%, 29.65%, 20.98% for LSL. The result clearly indicated that the role of controlling factors varies differently 
depending upon the size of distributed landslides. To understand the significance of controlling factors for LSL, different 
potential cases were validated by success rates with area under the curve (AUC). The computed AUC in success rates for 
LSL is 65% and for overall landslides with similar controlling factors is 75%. The AUC values in different potential cases 
showed that the prime factors to control the LSL are geomorphology, rainfall, and geological structures.
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INTRODUCTION

The complex geological nature and uneven fragile topography 
cause the landslides common in the Himalaya. Landslides are 
one of the most significant land degradation processes prevalent 
in the central Nepal Himalaya. This region is tectonically 
unstable with uneven topography, unstable geological 
structures, soft and fragile rocks, frequent earthquakes, along 
with heavy and prolonged precipitations during monsoon 
periods (Devkota et al., 2013; Nepal et al., 2019).

Landslides in the Himalaya are very common process of mass 
wasting and are scale dependent from small slope failures 
to massive extent of whole mountain collapse (Shroder and 
Bishop, 1998; Shang et al., 2003). Landslides often classified 
based on factors; materials, landslide scale, or type of 
movement (Varnes, 1978; Cruden and Varnes, 1996; Hungr et 
al., 2014). The size of landslide larger than 105 m2 is commonly 
accepted to be large-scale landslides (Wen and Chen, 2007; 
Lin et al., 2013; Zhou and Cheng, 2015) and volume larger 
than 106 m3 (Brueckl and Parotidis, 2001; Zerathe et al., 2014; 
Chung et al., 2018; Kuo et al., 2018).

The large-scale landslides (LSL) are characterized by complex 
nature of failure (Varnes, 1978; Wilson et al., 2003; Ghobadi 
et al., 2017; Kuo et al., 2018). The LSL is largely controlled 
by the geological setting of the area i.e. orientation of the rock 
strata with respect to slope (Timilsina et al., 2012; Chung et al., 
2017; Ghobadi et al., 2017). Inter-bedding characteristics of 
rock strata with different mechanical property is another prime 
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GEOLOGICAL SETTING

The central Nepal Himalaya is characterized by the complex 
geological and structural nature from Sub-Himalayan, 
Lesser Himalayan, Higher Himalayan and Tethys Himalayan 
tectonic divisions. Dhital (2015) described the rock sequences 
chronologically in the central Nepal Himalaya (Fig. 1). The 
Main Frontal Thrust (MFT) distinguishes the quaternary 
sediments of Terai from Sub-Himalayan rock strata (Middle 
Miocene to Early Pleistocene) mainly having sandstone, 
mudstone, conglomerate (Dhital, 2015). Similarly, the Main 
Boundary Thrust (MBT) separates the Sub-Himalayan 
rocks from Lesser Himalayan rocks (Paleoproterozoic to 
Neoproterozoic) and Main Central Thrust (MCT) separates 
the Lesser Himalayan rock from Higher Himalayan rocks 
(Stöcklin and Bhattarai, 1977; Stöcklin, 1980). The major 
tectonic structures are Midland Antiform, Great Mahabharat 
Synclinorium, Okhaladhunga Window and Kathmandu Nappe 
(Stöcklin and Bhattarai, 1977; Dhital, 2015). These structures 
resulted intense deformation within a rock stratum of the area, 
which can be one of the major reason to initiate and propagate 
the LSL.  

METHODOLOGICAL APPROACH

The methodological approach have involved the acquisition of 
database, derivation of characteristics of landsides with respect 
to controlling parameters, evaluation of landslide susceptibility, 
validation and effect analysis (Fig. 2). The series of landslide 
data were collected during the study by the interpretation of 
satellite images, geological maps and geomorphic features. 
Field surveyed data were accompanied during the study to 
prepare the landslide database and inventory map. Landslides 
from the study area were extracted during the study and total 
7239 landslides were mapped. Based on the size (e.g. Bruckl, 

2001; Lin et al., 2013; Chung et al., 2018), 73 landslides are 
classified as large-scale landslides in the study area.

Database acquisition

A landslide inventory database is the vital information for 
landslide distribution and activity defined by Cruden and 
Varnes (1996) and WP/WLI (1993). Landslide inventory is the 
starting point for the landslide hazard or risk study to insight 
the spatial and temporal frequencies distribution in both space 
and time frame under international nomenclature (IAEG 
Commission on Landslides, 1990). A landslide inventory map 
is useful to establish the relationships between landslides and 
influencing factors as well as it is prerequisite to evaluate the 
landslide susceptibility (Chen et al., 2017). 
The controlling factors of large-scale landslides (LSL) often 
defined by the geological condition, landslide scale (depth, 
area or volume), or type of movement. In Taiwan the current 
agreed-upon definition for a LSL is a landslide that is larger 
than 100,000 m3 in volume (Brueckl and Parotidis, 2001; 
Zerathe et al., 2014; Chung et al., 2018). According to the 
Lin et al. (2013) the LSL are those having area larger than 10 
ha (100,000 m2). LSL can be clearly observed, the widened 
and flooded river channel filled by debris. As well as some 
researchers defined LSL based on its size (>100,000 m2) (Wen 
and Chen, 2007; Zhou and Cheng, 2015) to make the inventory 
process easier.
The landslide spatial data were acquired by the interpretation 
of satellite images, geological maps and geomorphic features. 
Field surveyed data were accompanied during the study to 
verify the landslide database and inventory map. Spatial and 
attribute database of landslides were compiled and a total of 
7239 landslides were depicted (Fig. 3). Based on the size, 
73 landslides were initially classified as large-scale landslide 

Fig. 1: Generalized geological map of the study area (modified after Dhital, 2015; DMG, 1980).
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Fig. 2: Flowchart of methodological approach.

Fig. 3: Landslides inventory map of the central Nepal Himalaya.
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(Bruckl, 2001; Lin et al., 2013; Chung et al., 2018). After 
considering the geological variation with associated structures 
and geometrical characteristics of slope and rock strata, 28 
landslides were identified as LSL.
Spatial distribution pattern of LSL shows that majority of LSL 
(71%) having area less than 500,000 m2, 25% of LSL have area 
range 500,000 to 1,000,000 m2 and 4% of LSL have area size 
greater than 1,000,000 m2 (Fig. 4). The average size of LSL 
is 356,706 m2 that have mean length of 1125 m and width of 
543 m. 

values are divided into four classes: <1000 m, 1000–2000 m, 
2000–3000 m, 3000–4000 m and >4000 m (Fig. 5e). Similarly, 
the area is separated based on the proximity to road and divided 
into <25 m, 25–50 m, >50 m sub-classes (Fig. 5f).
TRI express the amount of elevation difference between 
adjacent cells of a DEM developed by Riley et al. (1999). In 
present study, TRI values divided into three classes as; <0.3, 
0.3–0.6, and >0.6 (Fig. 5g). SPI is useful to describe potential 
flow erosion at the given point of the topographic surface 
(Moore et al., 1991). Three sub-classes; <50, 50–100, and >100 
is categorized to describe the SPI classes in this study (Fig. 
5h). The proximity to thrust is classified into >50 m and <500 
m, 500–1000 m and >1000 m are shown in Figure 5i. The TWI 
is a useful model to estimate where water will accumulate in 
an area with elevation differences. It is a function of slope and 
the upstream contribution area. Three classes are categorized 
for this DEM derivatives; <4, 4–6, and >6 (Fig. 5j).
Annual rainfall is important triggering factor of landslide. 
Chalise and Khanal (2001) established 1500–2500 mm mean 
annual rainfall are predominates over most of the country. 
It is taken as important triggering factor and is classified as 
<1200 mm, 1200–1400 mm, 1400–1600 mm, 1600–1800 
mm, >1800 mm sub-classes (Fig. 5k). Land cover pattern also 
play significant role to produce the landslides. The land cover 
map of the study area is categorized as barren land, buildings, 
bush, cliff, cultivation, forest, glacier, grass, lake, river, sand, 
snow and swamp (Fig. 5l). Lithology is an important factor 
in the formation and evolution of landslides, as it forms the 
material base for landslide generation (Yalcin et al., 2011). 
Slopes formed by different rock and soil masses have different 
physio-mechanical properties (Pellicani et al., 2014). There are 
fourteen lithological units in the study area.
The landslide controlling thematic layers were used 
subsequently to derive the landslides characteristics, 
susceptibility evaluation and validation of analysis. Descriptive 
statistics values for different LSL controlling parameters is 
presented in the Table 1.

Table 1: Descriptive statistics of landslide controlling factors.

Controlling
Variables

Statistical values
Min. Max. Mean Std. dev.

Landslide area 102459.6 1020250 356706.5 239464.8
Landslide length 457 2186 1125.86 511.27
Landslide width 257 1277 543.96 244.69
Slope angle 0 86.21 27.64 14.64
Slope aspect -1 359.9 178.63 103.21
Curvature -655 1095 0 8.81
Elevation 102 6962 1476.02 1101.58
TRI 0.01 0.99 0.5 0.09
SPI 0 2222558 234.04 2576.69
TWI -0.38 20.89 4.6 1.83
Distance to river 0 8761.47 1443.17 1459.26
Distance to road 0 30104.72 5262.04 4883.97
Distance to thrust 0 33966.17 4185.28 5070.96
Rainfall 1076.09 2185.62 1591.46 152.73

Fig. 4: Distribution pattern of large-scale landslides (LSL).

Controlling parameters

Reasonable classification of controlling factors helps to 
improve the reliability of landslide susceptibility mapping. 
Traditionally, it is done by extracting ridge lines and valley lines 
from high-resolution digital terrain models (DTM). It divides 
watersheds into separate slopes based on hydrological analysis 
(Giles and Franklin, 1998; Guzzetti et al., 1999). Based on the 
geological environment and landslide distribution pattern, a 
total of thirteen landslide conditioning factors were considered 
during the landslide susceptibility mapping: elevation, slope 
angle, slope aspect, curvature, stream power index (SPI), 
topographic roughness index (TRI), topographic wetness 
index (TWI), distance to road, distance to river, distance to 
thrust, rainfall, lithology, and land cover (Fig. 5). 
Slope angle is widely used in landslide susceptibility evaluation 
and is also an important factor when evaluating slope stability. 
The possibility of landslide occurrence increases with 
increasing slope angle (Demir et al., 2013). Slope angles in the 
study area are divided into five classes: <15°, 15–25°, 25–35°, 
35–45°, and >45° (Fig. 5a).
Slope aspect refers to variation in the intensity of sunlight 
received, which affects soil moisture, evaporation and erosion. 
These factors influence the development of landslides (Ilia and 
Tsangaratos, 2016). In the study area, slope aspect is divided 
into nine classes: flat, north, northeast, east, southeast, south, 
southwest, west and northwest as shown in Figure 5b. Distance 
from river, affects the concentration of landslides, shows 
inverse relationship. In this study distance to rivers is classified 
as <20 m, 20–40 m and >40 m (Fig. 5c).
The curvature map in the study area is sub-classified in to 
three class; concave, flat and convex (Fig 5d). Elevation is 
considered a vital factor that influences the occurrence and 
distribution of landslides, degree of weathering and human 
activities (Hong et al., 2016). In the study area, the elevation 
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Fig. 5: Thematic layers; a) Slope angle, b) Slope aspect, c) Distance to river, d) Curvature, e) Elevation, f) Distance to road, g) TRI, 
 h) SPI, i) Distance to thrust, j) TWI, k) Rainfall, l) Land cover.

Assessment methods

The theoretical concepts of assessment method include the 
univariate analysis for distribution pattern and landslide 
characteristics. Bivariate approach has evaluated the landslide 
susceptibility and validation of results. The landslide 
susceptibility assessment is based on the influences of 
controlling factors over the spatial distribution of landslides 

and the prediction of landslide events will occur under the 
same physio-mechanical environment of the past events (Lee 
and Talib, 2005). The relationship between spatial distribution 
and controlling factors to distinguish the degree of susceptible 
zone, landslide susceptibility mapping is usually done using 
soft computing-based techniques and geographic information 
system (Cardenas and Mera, 2016). The deterministic models 
for the susceptibility assessment are based on mathematical 
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relations that depends on the physical laws of resisting and 
driving forces acting on a slope masses. The statistical models 
are data driven method that possess the inaccuracy in the input 
data may cause a significance error in the results. Thus, it 
requires the complete inventory dataset for the assessment and 
model validation (Van Westen et al, 2008; Trigila et al., 2015).

The FRM is used in this study, based on the spatial relationships 
between all landslides and each landslide conditioning factor, 
is a simple probabilistic model that is widely used in landslide 
susceptibility mapping (Choi et al., 2012; Mohammady et al., 
2012). This quantitative approach for landslide susceptibility 
is examined using GIS techniques and spatial data (Lee and 
Talib, 2005; Reis et al., 2012; Umer et al., 2014; Chen et al., 
2016; Ding et al., 2017, Wang and Li, 2017). The frequency 
ratio (FR) is the ratio of landslide areas to the total study 
area and is also the ratio of landslide occurrence probability 
to non-occurrence for a given attribute. If the ratio is >1, it 
indicates a higher correlation and if the ratio is <1 there is a 
lower correlation. The value of FR (Mondal and Maiti, 2013; 
Youssef et al., 2015) is expressed as Equation 1.

with the area under the curve (AUC) calculation from Equation 
3 (Pimiento, 2010).
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 𝐹𝐹𝐹𝐹 = 𝑀𝑀𝑀𝑀/𝑀𝑀
𝑁𝑁𝑁𝑁/𝑁𝑁      (1) 

Where, Mi is the number of pixels with landslides for each subclass conditioning factor, M is the 
total number of landslides in the study area, Ni is the number of pixels in the subclass area of 
each factor and N is the number of total pixels in the study area. 
In this study modified frequency ratio method used to deliver the output. The calculation is 
followed to normalization of each derived FR value to discretize the continuous factor values 
from 0 to 1 range. In arrange to discover the relative significance of each spatial factor with the 
accessible preparing dataset; the prediction rate (PR) was analyzed depending upon its degree of 
spatial affiliation with the preparing datasets (Baral et al., 2021). 

𝑃𝑃𝑃𝑃 = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅−𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅)𝑚𝑚𝑚𝑚𝑚𝑚    (2) 

Where, RFmax and RFmin is the maximum and minimum relative frequency among the classes 
within a factor, (RFmax–RFmin)min is the is the minimum values among all the factors 
considered. 
Essential component of the landslide assessment is the validation of analysis results that can be 
used for the prediction of landslides with areas having similar controlling factors (Gorsevski et 
al., 2000; Lee at al., 2004; Chung and Fabbri, 2003; Wubalem, 2021). The validation of the 
landslide susceptibility generally follows the calculation of the success and prediction rates. The 
success of the model is based on known landslide events whereas the prediction rate fits with 
landslides which are not incorpoted in the model evaluation (Chung and Fabbri, 1999) and many 
authors have addressed their corresponding issues of the result validation (Carrara et al., 1991; 
Chung et al., 1995; Luzi and Pergalani, 1996; Chung and Fabbri, 2003; Dymond et al., 2006;  
Meusburger and Alewell, 2009; Wahono, 2010). The calculated results are plotted in percentage 
that classified as susceptible (x-axis) versus the cumulative percent of landslide occurrence (y-
axis), with the area under curve (AUC) calculation from Equation 3 (Pimiento, 2010). 
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A𝑈𝑈𝑈𝑈 =∑ (𝑥𝑥i − 𝑥𝑥i 1)𝑦𝑦i − [(𝑥𝑥i−𝑥𝑥i 1)(𝑦𝑦i−𝑦𝑦i 1)2 ]
𝑛𝑛

𝑖𝑖=0
   (3) 

The AUC measures the accuracy of results in the assessment landslide susceptibility (e.g. Chung, 
and Fabbri, 2003; Pimiento, 2010, Fleuchaus et al., 2021). The values of AUC is between a 
maximum value of 1 or equal to 100% and 0.5 or equal to 50%. Different ranges of AUC can be 
classified for the prediction models (0.9 as a very good, 0.8–0.9 as a good, 0.7–0.8 as a medium 
or reasonable, and <0.6 poor) i.e. the higher the AUC value of an influencing factor, the higher 
the influence of the landslide event (Silalahi et al., 2019). 

RESULT AND DISCUSSION 

Based on the spatial and attribute databases of landslides and their controlling parameters, 
distribution pattern and characteristics of landslides were derived. Frequency ratio model (FRM) 
was implemented to evaluate landslide susceptibility. The susceptibility models were validated 
by computing success rates and the influence of various controlling parameters were evaluated 
by adjusting parameter combinations in effect analysis.  
The distribution pattern of LSL has a close relation with the seismic fault/thrust (Huang and Li, 
2008, 2009). The major factors that affect the distribution of LSL triggered by the seismic event 
(Wenchuan Earthquake, 5.12) are distance effect, locked segment effect, hanging wall effect and 
direction effect (Xu et al., 2011). LSL triggered by earthquake are to be concentrated in the large 
seismic energy concentrated area due to energy released in these areas after rupture and 
displacement of the seismic fault. The majority of LSL were found to be distributed on the 
hanging wall of the seismic fault. LSL were found to be more susceptible towards the slope 
facing to the travel direction of seismic wave and sliding direction of the LSL were found to 
coincide with the staggering direction of the seismic fault.  
Orientation of bedding of rock mass is another factor to control the LSL. Bedding dipping 
towards the slope dips favors for the LSL (Chung et al., 2017; Ghobadi et al., 2017; Timilsina et 
al., 2012). Inter-bedding characteristic of rock strata having high difference of mechanical 
properties usually supports to the occurrence of LSL (Ghobadi et al., 2017; Zerathe et al., 2014). 
Many researchers mentioned that LSL are characterized by the complex nature of geology 
defined by Varnes 1978 (Ghobadi et al., 2017; Wilson et al., 2003; Kuo et al., 2018). LSL are 
mainly controlled by topographic, geomorphic and geologic factors. 
Majority of LSL are oriented at the perpendicular direction of the regional thrust system. From 
the study it is clear that LSL are also control by the altered lithological units and distance to 
faults (Zhou et al., 2019). Also, the effects of rainfall duration and cumulated rainfall are much 
more remarkable for LSL than for small landslides (Kuo et al., 2018). 
 

Landslide Characteristics 

The relationship between the large-scale landslides and their controlling factors are shown in 
Figure 5. The slope of the study area ranges from 0 to 86.21 degrees. The landslide occurrences 
in slope gradients are found to be higher and nearly proportion in more than 45° (28.04%) and 

The AUC measures the accuracy of results in the assessment 
landslide susceptibility (e.g. Chung, and Fabbri, 2003; 
Pimiento, 2010, Fleuchaus et al., 2021). The values of AUC 
is between a maximum value of 1 or equal to 100% and 0.5 or 
equal to 50%. Different ranges of AUC can be classified for 
the prediction models (0.9 as a very good, 0.8–0.9 as a good, 
0.7–0.8 as a medium or reasonable, and <0.6 poor) i.e. the 
higher the AUC value of an influencing factor, the higher the 
influence of the landslide event (Silalahi et al., 2019).

RESULT AND DISCUSSION

Based on the spatial and attribute databases of landslides 
and their controlling parameter, distribution pattern and 
characteristics of landslides were derived. Frequency ratio 
model was implemented to evaluate landslide susceptibility. 
The susceptibility models were validated by computing success 
rates and the influence of various controlling parameters were 
evaluated by adjusting parameter combinations in effect 
analysis.

Distribution pattern and characterization

The distribution pattern of landslides in the central Nepal 
Himalaya is influenced by the role of controlling factors 
(Hasegawa et al., 2008; Timilsina et al., 2012). Slope is the 
prime geomorphometric factor to influence the landslide 
patterns in the region. The study has shown that slope angle 
map has a significant impact on the distribution of landslides. 
The landslides occurrence rate is increased with increasing 
slope angles. The higher landslide frequency at the slope angle 
25°–45°. The lower landslide frequency at the low slope angle 
(<25°) is due to less driving force acting on gentle slope. The 
presence of cliffs at high slope angle area is another reason to 
be less prone for the landslide events. Study showed higher the 
gradient high FR and greater than one for slope angle greater 
than 25°. The highest FR is 2.5±0.28 for the slope angle greater 
than 45°. The FR exceed one at southeast, south and southwest 
facing slopes (Table 2) that represent the landslides are more 
likely on these slopes. Conversely, FR values of the remaining 
slope aspect categories are lesser than one, indicating low 
probability of landslide occurrences. The concave slope 
curvature has high landslides distribution with FR 1.09±0.03. 
The elevation range showed distinct landslide distribution 
patter. The distribution of landslides is high in the elevation 
range 1000–3000 m with maximum obtained FR is 3.7±0.38 
showing a positive correlation with landslide occurrence. 

The most significant landslide triggering factor is rainfall which 
is more remarkable for LSL distribution (Kuo et al., 2018). In 
the area, rainfall 1600–1800 mm presented higher number of 
landslide distribution and the calculated FR for same rainfall 
class is 1.12±0.1, suggest that such rainfall class area is prone 
to trigger the landslide. In the area, the geological units; Higher 
Himalayan Crystalline, Lesser Himalayan Gneiss, Proterozoic 

(1)

(2)

(3)
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carbonate rocks, Paleozoic rocks and Miocene leuco-granite 
have high landslide frequency and the FR is significant (>1). 
This indicates that these geological classes are prone to the 
LSL due to variable mechanical properties of inter-bedding 
characteristics and geometric orientation of rock strata (Wilson 
et al., 2003; Timilsina et al., 2012; Zerathe et al., 2014; 
Chung et al., 2017; Ghobadi et al., 2017; Kuo et al., 2018). 
The land cover types; barren land, bush/grass land and forest, 
which represents to high landslide distribution with some of 
significant FR (>1) is shown in Table 2.

The spatial distribution of the landslides in the Himalayan 
terrain is significantly influenced by the fault/thrust systems. 

The distribution of landslides in the proximity to the thrust is 
appreciably high in case of LSL than all landslides (Table 2). 
It clearly showed seismic fault/thrust has a close relation to 
the LSL distribution pattern (Huang and Li, 2008, 2009; Xu 
et al, 2011; Zhou et al., 2019). Also, the orientational direction 
of LSL are mostly perpendicular with the regional fault/thrust 
system (Xu et al., 2011). The proximity to road and river also 
indicated certain distribution patterns of landslides in the 
vicinity of 40-50 m (Table 2). 

This study focused on the characterization of LSL after knowing 
its distribution pattern in the central Nepal by establishing 
the relationship between the LSL and its controlling factors. 

Fig. 6: Controlling factors of LSL and  their frequency distribution; (a) Slope angle, (b) Slope aspect, (c) Distance to river, (d) Slope 
curvature, (e) Topographic wetness index, (f) Distance to road, (g) Topographic roughness index, (h) Stream power index, (i) Distance 
to thrust, (j) Rainfall, (k) Elevation, (l) Land-cover.
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Geomorphometric, geological, hydrogeological and landcover/
land-use practice are major factors associated with the LSL 
(Huang and Li, 2008; Timilsina et al., 2012; Ghobadi et al., 
2017). Slope is the prime factor to define the dimension of the 
landslides and in the region study area ranges from 0° to 86.21° 
slope angle which is divided into 5 intervals. The pixel count 
of LSL in the interval greater than 45° is largest (28.04%) 
and followed by interval 25°–35° i.e. 27.84%. The landslide 
area percentage (LAP) plot reached their peak 0.11% at class 
interval of greater than 45°. The result shows that higher the 
slope then more likely LSL is to occur (Fig. 6a). The slope 
angle class 25°–45° is found to be sensitive for the LSL due 
to vertical and lateral thickness of slope forming materials 
in this slope angle range (Li et al., 2022). The slope aspect is 
categorized to 9 classes from -1 to 359.9. The large number 
of LSL falls on south aspect (19.28%) and the LAP reached 
its peak (0.08%) at the same class of slope aspect (Fig. 6b). 
The most of LSL (97.4%) falls at greater than 40 m distance to 
river and peak LAP (0.05%) at same class (Fig. 6c). Similarly, 
curvature of the area ranges from -655 to 1095. The concave 
slope has large number of LSL (48.73%) and in the same class 
of curvature LAP has its peak value (0.05%) (Fig. 6d). The 
large number of LSL are present in classes as less than 4 by 
58.65% and LAP reached their peak 0.06% at less than 4 (Fig. 
6e). 99.06% of LSL are present at less than 50 m distance to 
road and peak LAP value is 0.05% for same distance to roads 
classes (Fig. 6f). The classes of TRI and SPI categorized to 3 
classes. The large number of LSL are present in classes as 0.3 
to 0.6 by 61.82% (Fig. 6g) and less than 50 by 98.99% (Fig. 
6h) for TRI and SPI respectively. The LAP for same factors 
reached their peak 0.06% at 0.3 to 0.6 and 0.36% at greater 
than 100 accordingly. Likewise, most of LSL (81.54%) falls at 
greater than 1000 m distance to thrust and higher value of LAP 
belongs to same class having value 0.06% (Fig. 6i). 

The rainfall of the study area ranged from 1076 to 2185 mm 
and is divided into 5 intervals in this work. The pixel count of 
LSL in the interval 1400–1600 mm is largest (42.91%) and 
followed by interval 1600–1800 mm i.e. 40.98%. LAP plot 
also reaches their peak 0.05% at class interval of   1400–1600 
mm (Fig. 6j). The elevation of the study area ranges from 102 
to 6963 m, divided at 1000 m intervals in this work. Statistics 
show that most of the LSL (34.27%) are located at elevations 
from 1000 to 2000 m. The peak value of LAP is 0.2% at 3000 to 
4000 m (Fig. 6k).  Lithological unit from study area i.e. Higher 
Himalayan Crystalline has large number of LSL (49.91%) and 
the LAP value is higher (0.2%) for Miocene Leucogranite. This 
indicates the lithological classes are highly prone to LSL. The 
influence of land cover types on the occurrence of landslides is 
also obvious. Among the classes, barren land has large number 
of LSL present (34.94%) and the LAP reaches the peak 0.36% 
for same class, implying LSL prone area (Fig. 6l).

Susceptibility zonation

Using frequency ratio model (FRM), the susceptibility 
zonation were carried out by utilizing two different spatial sets 
of landslides. Many researchers in the Himalayan terrain (e.g. 
Devkota et al., 2012; Regmi et al., 2012; Thapa, 2011; Pathak, 
2016) used the FRM and combinations of similar parameters 
for the landslide susceptibility assessment. The comparison was 

performed between the all landslides and large-scale landslides 
to characterize the influence of controlling parameters for 
susceptibility zonation. 

The landslide susceptibility Index (LSI) map based on the 
distribution of all slides was derived using FR model from the 
selected controlling factors classes were processed in GIS. The 
LSI map is reclassified into five categories via natural breaks 
method; very low, low, medium, high and very high (Fig. 7a). 
Each of these categories covers 13.79%, 28.76%, 29.28%, 
20.06% and 8.11% of the total area of the region, respectively. 
The very high, high and medium areas contain 38.91%, 33.29% 
and 18.76% of the total of all landslides, respectively; while the 
low and very low areas contain only 7.37% and 1.66% of the 
total landslides, respectively.

The LSI map from the distribution of the LSL also obtained 
using FR values which was divided into five categories using 
the natural breaks method: very low, low, medium, high and 
very high (Fig. 7b). Each of these categories covers 8.09%, 
23.06%, 32.07%, 25.94% and 10.84% of the total area of the 
region, respectively. The very high, high and medium areas 

Fig. 7: Landslide susceptibility maps based on datasets:  
(a) All landslides, (b) Large-scale landslides.

(a)

(b)
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contain 39.51%, 29.65% and 20.98% of the LSL, respectively; 
while the low and very low areas contain only 8.12% and 
1.73% of the total LSL, respectively (Fig. 8).

Analysis of landslide controlling factors for landslides and 
LSL showed the differential influence, which were assessed 
based on the frequency ratio (FR) values. The combination 
of DEM derivatives with the geology, rainfall, and land cover 
were utilized landslide susceptibility evaluation. The majority 
of landslides are found to be occurred in the areas of highly 
susceptible zones that verified the effectiveness of the landslide 
susceptibility mapping (Chen et al., 2017). 73% and 69% of 
small and large-scale landslides of this study are located in 
very high and high susceptibility classes. This result clearly 
indicated that significance of controlling factors for both all 
and large-scale landslides are different.

Validation and effect analysis

In the present study the AUC value for the success rate 
were determined and was checked in the field for the cross 
verification. The observation shows that area of high susceptible 
zone have significant presence of slope instability phenomena 
marked by landslide events. From the validation process, the 
AUC value of the success rate is 0.67 for all landslides and 
0.58 for the LSL while picking the same controlling factors to 
the landslide events using normalized frequency ratio (NFR) 
values. However, the same quantitative validation results of 
AUC value for the all landslides is 0.75 and for LSL is 0.69 
from the FR model. The result showed satisfactory aggrement 
between landslide susceptibility map and the prior landslide 
events. The AUC analysis (Fig. 9) shows that the results 
(success rate) of the susceptibility are more reliable for the all 
mapped landslides than LSL in both NFR and FR models in 
validation process.

Factor effect analysis is conducted by various researchers to 
evaluate the effects of controlling factors by adjusting input 
parameters (e.g. Lee and Talib, 2005; Pradhan and Lee, 2010). 
In this study, the accuracy assessment results of LSL showed 
the model accuracy by calculating success rates in terms of 
different combination of factors which is shown in Figure 10. 
The success rate calculated based on nine factors (slope, aspect, 
curvature, elevation, rainfall, geology, distance to thrust, 
distance to river, distance to road), the AUC is 0.65 i.e. accuracy 
of 65% (case I). In the case II, seven controlling factors were 
taken and AUC is found to be 0.69 (69% accuracy). Similarly, 
when six controlling factors for LSL were used (slope, aspect, 
curvature, rainfall, geology, distance to thrust), the AUC shows 
that the result of the susceptibility obtained from the FR model 
is the accuracy of 74% (case III). The better prediction of 79% 
accuracy model is accomplished by using prominent four 
factors (slope, rainfall, geology, distance to thrust) which is 
more valid and reliable susceptibility model (Fig. 10).

Fig. 8: Distribution of landslides in predicted landslide 
susceptibility classes. 

Fig. 9: Validation of landslide susceptibility assessment by success 
rates.

Fig. 10: Effect analysis of controlling factors for large-scale 
landslides (LSL).
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Fleuchaus, P., Blum, P., Wilde, M. Terhorst, B., and Butscher, C., 
2021, Retrospective evaluation of landslide susceptibility maps 
and review of validation practice. Environmental Earth Sciences, 

CONCLUSIONS

The spatial distribution, failure characteristics of landslides 
and role of its controlling factors were examined from the 
datasets of small/large-scale landslides. The assessment of the 
landslide inventory with its controlling factors showed that 
slope geometry, landuse/land-cover, geology and proximity to 
river/road are the most influential controlling parameters for 
the spatial distribution of the landslides in the study area. The 
differential geological conditions associated with structural 
discontinuities, rainfall and slope geometry are the significant 
factors to control the LSL.

By crossing susceptibility and all landslides maps, it is found 
that 38.91%, 33.29% and 18.76% of landslides are overlaid in 
very high, high and medium susceptible zone; while around 9% 
of the landslides are located in low and very low susceptible 
zones. The result showed similar kind of distribution in case of 
LSL susceptibility zonation of 39.51%, 29.65% and 20.98% 
in very high, high and medium susceptible zones respectively.

The AUC of the success rates for all landslides is 0.67 whereas 
0.58 for LSL from NFR model which is lower values in 
comparison to FR model 0.75 for all landslides and 0.69 is in 
LSL. Such a variation is attributed to the significance of the 
controlling factors in the case of large dimensional failures are 
due to complex mechanism which is clarifed from the effect 
analysis. Thus, the susceptibility model evaluations indicated 
that the major controlling factors for the LSL are the geology 
and structural discontinuities, slope geometry and rainfall with 
the predication accuracy of 79%.
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