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ABSTRACT

In mountainous areas, landslides brought on by earthquakes are a major threat to infrastructure, human life, and sustainable 
development. Thousands of landslides were caused by the 2015 Mw 7.8 Gorkha earthquake in Nepal, underscoring the 
critical need for trustworthy techniques to pinpoint regions most susceptible to seismically induced slope failures. In the 
Sindhupalchowk District, one of the areas most severely impacted by earthquakes, this study suggests a boosting-based 
framework for mapping landslide susceptibility using slope units. Twelve geophysical covariates representing terrain, 
hydrological, geological, and seismic conditions were integrated with a thorough landslide inventory comprising 7,159 
earthquake-induced landslides. In contrast to traditional grid-based methods, slope units were employed as mapping units 
to more accurately depict geomorphological processes. The boosting model was trained using 70% of the dataset and 
validated with the remaining 30%. The receiver operating characteristic curve was one of several statistical metrics used 
to assess the model's performance. With an area under the curve value of 0.83, the results demonstrate strong predictive 
capability and good discrimination between slope units that are prone to landslides and those that are stable. High-risk 
areas are concentrated along steep slopes, deeply carved valleys, and regions that experience severe ground shaking, 
according to the resulting susceptibility map. Overall, in seismically active mountainous areas, the suggested framework 
offers a reliable and comprehensible method for evaluating landslide susceptibility to earthquakes and offers insightful 
information to support hazard mitigation, land-use planning, and disaster risk reduction.
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INTRODUCTION 

Landslides are among the most catastrophic natural hazards 
globally, causing substantial financial loss and hundreds 
of deaths and injuries each year (Crozier and Glade, 2012). 
Landslides caused by earthquakes are known to be a major 
natural hazard, in some cases causing as much or more damage 
than the initial ground shaking. On 25 April 2015, a catastrophic 
earthquake of Mw 7.8 was struck Nepal at 06:11:26 UTC. The 
epicenter of the main shock was located at Barpak, (28°15′07″ 
N, 84°07′02″ E) in the Gorkha District, approximately 75 km 
east of Kathmandu. The earthquake killed more than 9000 
people, and fully or partially damaged 1.1 million houses. 
Over 400 aftershocks of ≥Mw 4 were recorded within two 
years after the main quake. The earthquake also triggered 
various mass movements, some of which caused damage, 
such as blocked roads and dammed rivers, and threatened 
infrastructures in many parts of the earthquake-affected areas 
with steep topography and deep valleys.

Large earthquakes frequently set off numerous landslides 
(Keefer 1984) and Gorkha earthquake was no exception. 
The earthquake and its aftershocks triggered thousands of 
landslides and some avalanches in the mountainous areas of 
Nepal with rugged topography, high relief, steep slopes and 
deep valleys (Collins and Jibson, 2015; Regmi et al. 2016). 
These significantly impacted the lives and economy of Nepal, 

the majority of which occurred between the epicenter of 
the mainshock and that of the May 12 aftershock. The main 
consequences of landslides resulting from this earthquake 
and its aftershocks were fatalities, property loss, river flow 
blockage, and damage to infrastructural systems. Shaking 
induced by previous events might weaken slopes (by opening 
joints in rock masses, fracturing materials, increasing pore 
water pressure in soil slopes, reducing cohesion in soils, etc.). 
The effects can cause slopes to fail in subsequent earthquakes, 
even under low-intensity events. 

There are differing viewpoints among researchers regarding 
the identification of the most accurate prediction methodology 
or a combination of methods (Moayedi and Dehrashid, 2023). 
The reliability of landslide assessment in a particular area 
depends on the data quality used  and the modeling method 
applied (Pradhan et al. 2023). The utilization of machine 
learning methodologies in research focused on Nepal's 
mountainous regions has been restricted primarily due to 
inadequate historical landslide datasets and current geospatial 
data. Furthermore, the present findings are independent and 
have not been incorporated into global or state databases.

During the past two decades, several models for landslide 
susceptibility mapping have been published, assuming that 
landslides occur in settings analogous to prior landslides and 
may be evaluated given the causative link is recognized (Liu 
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et al. 2023; Lombardo et al. 2018; Pradhan et al. 2016). These 
approaches are classified into two types: qualitative methods 
and quantitative methods.

The main objective of this study is to assess earthquake-
induced landslide susceptibility in Sindhupalchowk District, 
central Nepal, using a boosting framework. The research 
focuses on capturing the nonlinear relationships between 
earthquake-related and terrain conditioning factors and the 
occurrence of landslides triggered by seismic events. The 
boosting is implemented within a geographic information 
system (GIS) user interface to support efficient data 
preparation, susceptibility map generation, and visualization. 
Model performance is evaluated using established validation 
techniques and statistical accuracy metrics. The resulting 
susceptibility map is intended to support earthquake risk 
mitigation, landuse planning, and disaster management in 
seismically active mountainous regions.

Study area And earthquake-induced landslides

The Sindhupalchowk District is located in central Nepal (85.44–
86.06E and 27.61–28.20N) at an elevation of 750–7080 meter 
above sea level (masl) and covers about 2542 Km2. The yearly 
rainfall is about 2500 mm, and the average temperature ranges 
from 7.5 degree to 32  ͦCelsius. The region is hilly and full of 
rich resources in which majority of the population depend on 
agriculture for a livelihood. The region has a moderate slope 
with agricultural land, followed by woods with higher slope 
angles in the upper hills (Shrestha et al. 2017a). The district 
is known for its mountainous terrain, beautiful landscapes, 
and cultural diversity. The 2015 Nepal earthquake affected the 
district severely, causing widespread damage and loss of life. 
Reconstruction efforts are still underway in the area. Figure 1a 
depicts map showing the location of Sindhupalchowk District, 
Nepal.

A landslide inventory map is essential for examining the 
relationship between landslide occurrence and covariates. 
Such a map records the geographic locations of past 
landslides along with information on their type, size, and other 

distinguishing characteristics (Einstein, 1988). It therefore 
provides a fundamental basis for analyzing how landslides are 
distributed in relation to potential risk factors  (Ma et al. 2025). 
In this study, 7159 landslides were identified by integrating 
information from previous reports, satellite imagery, and field 
surveys (Fig. 1b).

Geophysical covariates: landscape characteristics and 
ground motion data

This section describes the covariates used to explain the 
variability in the distribution of co-seismic landslide areas 
across the affected Sindhupalchowk District. Geophysical 
covariates are the terrain and environmental attributes that 
influence the balance between driving and resisting forces 
governing landslide movement (Pradhan and Kim, 2014; 
Shrestha et al. 2017a, 2017b). These factors define the 
underlying conditions that make a slope prone to failure. 
When such conditions are favorable, landslides are initiated 
in response to one or more triggering mechanisms. Since 
landslide occurrence is strongly controlled by topographic, 
hydrological, seismic, and geological characteristics.

In this work, 12 landslide geophysical covariates (Table 
1, Figs. 2a, b, c, d, e, f, g, h, and i) typically reported in the 
literature were initially produced based on the assessment 
of the landslide inventory plot. We used a 20 m resolution 
digital elevation model (DEM) from Department of Survey, 
Government of Nepal. From this DEM, we derived a set of 
basic terrain attributes, including elevation, slope, curvature, 
topographic position index (TPI), topographic wetness index 
(TWI), stream power index (SPI), and sediment transport index 
(STI). Similarly, drainage proximity and drainage density were 
derived from Euclidian distance algorithm in GIS. Whereas, 
geological data was obtained from Department of Mines and 
Geology (DMG, 2020) and fault proximity was obtained 
from fault and thrust lines of geological map and Euclidian 
distance algorithm. The peak ground acceleration (PGA) data 
of the 2015 Gorkha earthquake were obtained from the US 
Geological Survey (USGS, 2015). 

Fig. 1: a) Location map of Sidhnupalchowk district, and b) landslide distribution.
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Table 1: Selected geophysical covariates and its significance.

Geophysical covariates Its significance

Elevation Elevation controls climatic conditions, vegetation cover, weathering intensity, and seismic wave 
amplification, all of which influence slope instability during earthquakes.

Slope Slope angle is a primary controlling factor, as steeper slopes experience higher shear stress and are 
more susceptible to seismic shaking–induced failure.

Curvature Surface curvature affects stress concentration and drainage behavior; convex slopes tend to amplify 
seismic forces, while concave slopes favor material accumulation and saturation.

TPI TPI distinguishes ridges, mid-slopes, and valleys; ridges and upper slopes often experience stronger 
ground motion amplification during earthquakes.

Drainage proximity Areas close to streams are prone to toe erosion and higher pore-water pressure, which reduce slope 
stability when subjected to seismic shaking.

Drainage density High drainage density indicates intense surface dissection and weaker slope materials, increasing 
susceptibility to earthquake-triggered failures.

TWI TWI represents potential soil moisture accumulation; saturated soils are more vulnerable to strength 
loss under cyclic seismic loading.

SPI SPI reflects erosive power of flowing water, which weakens slope toes and predisposes slopes to 
failure during earthquakes.

STI STI indicates sediment movement potential on slopes; areas with high sediment transport are often 
mechanically unstable under seismic excitation.

Geology Lithology and structural conditions govern material strength, degree of fracturing, and weathering, 
strongly influencing landslide response to seismic shaking.

Fault proximity Proximity to active faults increases ground motion intensity and permanent ground deformation, 
making nearby slopes highly susceptible to earthquake-induced landslides.

PGA PGA directly represents seismic shaking intensity; higher PGA values significantly increase the 
likelihood of slope failure during earthquakes.

MAPPING UNITS

Slope Units (SU) are more adept at accurately capturing the 
geophysical covariates conducive to landslide formation, 
signifying their geological importance (Ma et al. 2023). The 
SU concept pertains to terrain segments delineated by drainage 
and divide lines. SU offers a solution to address the limitation 
of Grid Units (GU) analyses, as highlighted by Tanyas et al. 
(2019). This study utilized the R-statistical programming 
language (Pradhan et al. 2025; Yu and Chen, 2020) for 
hydrological analysis using DEM data to define hydrological 
“half-basin” boundaries.

The resulting SUs provided a medium-resolution representation 
of the Sindhupalchowk district (Fig. 3), comprising a total of 
4,184 SU. The planimetric area of these SUs has a mean value 
of 0.59 km², with a standard deviation of 0.53 km². Out of 
4,184, 1390 SU contains landslides.

METHODOLOGY

The methodology depicted in the flowchart (Fig. 4) outlines 
a systematic machine learning approach for modeling 
earthquake-induced landslide susceptibility. The process 
begins by integrating two primary data sources: a landslide 

inventory, and geophysical covariates. These inputs are 
mapped onto a SU framework, which serves as the primary 
terrain subdivision for analysis.

To develop and validate the predictive model, the integrated 
dataset is partitioned into a 70% training set to calibrate the 
algorithm and a 30% test set for independent evaluation. These 
data subsets are processed through a boosting model. Following 
the modeling phase, an accuracy assessment is performed to 
verify the performance of the algorithm against the test data. 
The final output of this workflow is a susceptibility map or 
index that identifies areas most prone to landslides triggered 
by seismic activity.

In the context of earthquake-induced landslide susceptibility, 
the boosting method is an iterative ensemble learning technique 
that enhances predictive performance by sequentially 
combining multiple "weak" learners, typically simple decision 
trees to form a robust "strong" model. Unlike parallel methods 
that build independent models, boosting trains each new tree 
to specifically minimize the residual errors of its predecessor, 
effectively "boosting" the importance of SUs that were 
previously misclassified or difficult to predict. This sequential 
refinement is particularly advantageous for earthquake-induced 
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Fig. 2: Example of geophysical covariates used for the analysis.
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Fig. 3: SU distribution in the study area.

Fig. 4: Methodological framework of the study.
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landslide modeling because it can capture the complex, non-
linear interactions between static terrain factors (like slope and 
curvature) and dynamic seismic triggers (like PGA). 

The core idea of most model evaluation procedures involves 
spliting the dataset into training and test sets. The training set 
was used to fit the model, which was subsequently applied 
to the test set to evaluate its predictive capabilities. Out of 
4184 SUs, 70% (2929 SUs) were subjected to the training 

the model and 30% (1255 SUs) were for the test the model. 
A The results were systematically organized into a confusion 
matrix, which presents a detailed breakdown of the predictions 
across four categories: False Positives (FP), False Negatives 
(FN), True Positives (TP), and True Negatives (TN). A 
summary and explanation of each metric is given in Table 1. 
The performance of the model was evaluated using a variety of 
standard evaluation metrics as given in Table 2.

Table 2: Model performance matrices.

Matrices Equation Meaning

F1 Score
(2 × Precison × Recall)/(Precision + 
Recall), where Precision= TP/(TP + FP) 
and Recall= TP/(TP + FN)

The harmonic mean of precision and recall and provides a 
balanced measure of classification performance, especially 
useful for imbalanced datasets

True Negative Rate TNR=TN/TN+FP
Referred to as specificity, measures the proportion of non-
landslide units correctly classified as non-landslide

False Negative Rate FNR=FN/FN+TP
Quantifies the proportion of landslide-affected units that are 
incorrectly classified as non-landslide.

RESULTS
Landslide predictive map
The boosting-based model successfully generated an 
earthquake-induced landslide susceptibility map for the 
Sindhupalchowk District using SUs as the mapping framework 
(Fig. 6). The final susceptibility map shows a clear spatial 
differentiation of landslide-prone areas, with high and very 

high susceptibility zones predominantly concentrated along 
steep slopes, deeply incised valleys, and regions subjected to 
strong ground shaking during the 2015 Gorkha earthquake. 
These zones align well with the observed distribution of 
co-seismic landslides, indicating that the model effectively 
captured the combined influence of terrain characteristics and 
seismic forcing.

Fig. 6: Earthquake-induced landslide susceptibility 
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Model performance was evaluated using several statistical 
metrics derived from the independent test dataset. The receiver 
operating characteristic (ROC) curve demonstrates strong 
discriminative capability, with an area under the curve (AUC) 
value of 0.83, indicating good overall predictive accuracy 
(Fig. 7). This result confirms that the boosting framework can 
reliably distinguish between SUs with and without landslide 
occurrences. The F1 score of 0.642 further reflects a balanced 
performance between precision and recall, suggesting that the 
model is effective in identifying landslide-prone SUs while 
limiting misclassification (Table 3).

conditions and geomorphic positioning, emphasizing the 
combined role of seismic triggering and terrain predisposition 
in earthquake-induced landsliding.

Fig. 7: ROC curves plot.

Table 3: Model performance matrices and corresponding 
value

Matrices Value
F1 Score 0.642
True Negative Rate 0.855
False Negative Rate 0.387

Additional performance indicators support the robustness of the 
model. The true negative rate of 0.855 and negative predictive 
value of 0.818 indicate that SUs classified as stable are, in most 
cases, correctly identified. Although the false negative rate is 
relatively moderate (0.387), the overall threat score of 0.626 
suggests a reasonable capability of the model to capture actual 
landslide occurrences. The statistical parity value of 0.299 
indicates some imbalance between predicted classes, which 
is expected given the inherent imbalance between landslide-
affected and non-affected SUs.

The out-of-bag improvement plot illustrates a steady 
enhancement in model performance with successive 
boosting iterations (Fig. 8), confirming that each additional 
learner contributes to reducing prediction errors. This 
behavior highlights the advantage of the boosting approach 
in progressively refining model accuracy by focusing on 
previously misclassified SUs. 

Furthermore, the relative influence plot reveals that seismic 
and topographic variables play dominant roles in controlling 
landslide susceptibility as shown in Fig. 9. Peak ground 
acceleration and slope-related parameters exhibit the highest 
influence, followed by terrain indices linked to hydrological 

Fig. 8: Out-of-bag improvement plot

Fig. 9: Relative influence plot.

DISCUSSION

The results of this study indicate that the boosting-based 
framework is well suited for earthquake-induced landslide 
susceptibility mapping in the mountainous terrain of 
Sindhupalchowk District. The spatial agreement between high-
susceptibility zones and the observed distribution of co-seismic 
landslides suggests that the model effectively captured the 
combined influence of seismic triggering and terrain-controlled 
preconditioning factors. This supports the applicability of 
boosting algorithms for representing the complex, non-linear 
relationships involved in landslide initiation during strong 
earthquakes.

The model achieved good predictive performance, with an 
AUC value of 0.83, demonstrating its ability to distinguish 
between landslide-affected and stable slope units. The iterative 
learning mechanism of boosting, which emphasizes previously 
misclassified units, contributed to improved classification 
accuracy compared to single-model approaches. This advantage 
is particularly important in seismically active regions, where 
landslide occurrence is governed by the interaction of ground 
motion intensity and terrain characteristics.
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The SU-based approach further enhanced model reliability by 
providing geomorphologically meaningful mapping units that 
better reflect landslide processes than conventional grid cells. 
Relative influence analysis identified peak ground acceleration 
and slope-related parameters as the most influential predictors, 
confirming the dominant role of seismic shaking and 
topographic controls. However, the moderate false negative 
rate highlights the influence of inventory uncertainties and 
the lack of detailed geotechnical data. Future studies could 
address these limitations by integrating additional subsurface 
information and advanced strategies for handling class 
imbalance.

CONCLUSIONS

This study presents a boosting-based framework for earthquake-
induced landslide susceptibility mapping using slope units 
in the Sindhupalchowk District of central Nepal. The results 
demonstrate that the proposed approach effectively captures 
the complex interactions between seismic triggering factors 
and terrain conditioning variables. The generated susceptibility 
map shows strong spatial agreement with observed co-seismic 
landslides from the 2015 Gorkha earthquake, confirming the 
reliability of the model for regional-scale hazard assessment. 
Model validation indicates good predictive performance, 
with an AUC value of 0.83, highlighting the advantage of 
boosting algorithms in handling non-linear relationships and 
heterogeneous geophysical conditions. The slope unit-based 
representation further improves process realism by aligning 
mapping units with geomorphological and hydrological 
boundaries. Relative influence analysis emphasizes the 
dominant role of peak ground acceleration and slope-related 
parameters in controlling landslide occurrence.
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