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ABSTRACT

In mountainous areas, landslides brought on by earthquakes are a major threat to infrastructure, human life, and sustainable
development. Thousands of landslides were caused by the 2015 Mw 7.8 Gorkha earthquake in Nepal, underscoring the
critical need for trustworthy techniques to pinpoint regions most susceptible to seismically induced slope failures. In the
Sindhupalchowk District, one of the areas most severely impacted by earthquakes, this study suggests a boosting-based
framework for mapping landslide susceptibility using slope units. Twelve geophysical covariates representing terrain,
hydrological, geological, and seismic conditions were integrated with a thorough landslide inventory comprising 7,159
earthquake-induced landslides. In contrast to traditional grid-based methods, slope units were employed as mapping units
to more accurately depict geomorphological processes. The boosting model was trained using 70% of the dataset and
validated with the remaining 30%. The receiver operating characteristic curve was one of several statistical metrics used
to assess the model's performance. With an area under the curve value of 0.83, the results demonstrate strong predictive
capability and good discrimination between slope units that are prone to landslides and those that are stable. High-risk
areas are concentrated along steep slopes, deeply carved valleys, and regions that experience severe ground shaking,
according to the resulting susceptibility map. Overall, in seismically active mountainous areas, the suggested framework
offers a reliable and comprehensible method for evaluating landslide susceptibility to earthquakes and offers insightful
information to support hazard mitigation, land-use planning, and disaster risk reduction.
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INTRODUCTION

Landslides are among the most catastrophic natural hazards
globally, causing substantial financial loss and hundreds
of deaths and injuries each year (Crozier and Glade, 2012).
Landslides caused by earthquakes are known to be a major
natural hazard, in some cases causing as much or more damage
than the initial ground shaking. On 25 April 2015, a catastrophic
earthquake of Mw 7.8 was struck Nepal at 06:11:26 UTC. The
epicenter of the main shock was located at Barpak, (28°15'07"
N, 84°07'02" E) in the Gorkha District, approximately 75 km
east of Kathmandu. The earthquake killed more than 9000
people, and fully or partially damaged 1.1 million houses.
Over 400 aftershocks of >Mw 4 were recorded within two
years after the main quake. The earthquake also triggered
various mass movements, some of which caused damage,
such as blocked roads and dammed rivers, and threatened
infrastructures in many parts of the earthquake-affected arecas
with steep topography and deep valleys.

Large earthquakes frequently set off numerous landslides
(Keefer 1984) and Gorkha earthquake was no exception.
The earthquake and its aftershocks triggered thousands of
landslides and some avalanches in the mountainous areas of
Nepal with rugged topography, high relief, steep slopes and
deep valleys (Collins and Jibson, 2015; Regmi et al. 2016).
These significantly impacted the lives and economy of Nepal,
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the majority of which occurred between the epicenter of
the mainshock and that of the May 12 aftershock. The main
consequences of landslides resulting from this earthquake
and its aftershocks were fatalities, property loss, river flow
blockage, and damage to infrastructural systems. Shaking
induced by previous events might weaken slopes (by opening
joints in rock masses, fracturing materials, increasing pore
water pressure in soil slopes, reducing cohesion in soils, etc.).
The effects can cause slopes to fail in subsequent earthquakes,
even under low-intensity events.

There are differing viewpoints among researchers regarding
the identification of the most accurate prediction methodology
or a combination of methods (Moayedi and Dehrashid, 2023).
The reliability of landslide assessment in a particular area
depends on the data quality used and the modeling method
applied (Pradhan et al. 2023). The utilization of machine
learning methodologies in research focused on Nepal's
mountainous regions has been restricted primarily due to
inadequate historical landslide datasets and current geospatial
data. Furthermore, the present findings are independent and
have not been incorporated into global or state databases.

During the past two decades, several models for landslide
susceptibility mapping have been published, assuming that
landslides occur in settings analogous to prior landslides and
may be evaluated given the causative link is recognized (Liu
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et al. 2023; Lombardo et al. 2018; Pradhan et al. 2016). These
approaches are classified into two types: qualitative methods
and quantitative methods.

The main objective of this study is to assess earthquake-
induced landslide susceptibility in Sindhupalchowk District,
central Nepal, using a boosting framework. The research
focuses on capturing the nonlinear relationships between
earthquake-related and terrain conditioning factors and the
occurrence of landslides triggered by seismic events. The
boosting is implemented within a geographic information
system (GIS) wuser interface to support efficient data
preparation, susceptibility map generation, and visualization.
Model performance is evaluated using established validation
techniques and statistical accuracy metrics. The resulting
susceptibility map is intended to support earthquake risk
mitigation, landuse planning, and disaster management in
seismically active mountainous regions.

Study area And earthquake-induced landslides

The Sindhupalchowk District is located in central Nepal (85.44—
86.06E and 27.61-28.20N) at an elevation of 750—7080 meter
above sea level (masl) and covers about 2542 Km?. The yearly
rainfall is about 2500 mm, and the average temperature ranges
from 7.5 degree to 32° Celsius. The region is hilly and full of
rich resources in which majority of the population depend on
agriculture for a livelihood. The region has a moderate slope
with agricultural land, followed by woods with higher slope
angles in the upper hills (Shrestha et al. 2017a). The district
is known for its mountainous terrain, beautiful landscapes,
and cultural diversity. The 2015 Nepal earthquake affected the
district severely, causing widespread damage and loss of life.
Reconstruction efforts are still underway in the area. Figure la
depicts map showing the location of Sindhupalchowk District,
Nepal.

A landslide inventory map is essential for examining the
relationship between landslide occurrence and covariates.
Such a map records the geographic locations of past
landslides along with information on their type, size, and other

distinguishing characteristics (Einstein, 1988). It therefore
provides a fundamental basis for analyzing how landslides are
distributed in relation to potential risk factors (Ma et al. 2025).
In this study, 7159 landslides were identified by integrating
information from previous reports, satellite imagery, and field
surveys (Fig. 1b).

Geophysical covariates: landscape characteristics and
ground motion data

This section describes the covariates used to explain the
variability in the distribution of co-seismic landslide areas
across the affected Sindhupalchowk District. Geophysical
covariates are the terrain and environmental attributes that
influence the balance between driving and resisting forces
governing landslide movement (Pradhan and Kim, 2014;
Shrestha et al. 2017a, 2017b). These factors define the
underlying conditions that make a slope prone to failure.
When such conditions are favorable, landslides are initiated
in response to one or more triggering mechanisms. Since
landslide occurrence is strongly controlled by topographic,
hydrological, seismic, and geological characteristics.

In this work, 12 landslide geophysical covariates (Table
1, Figs. 2a, b, c, d, e, f, g, h, and 1) typically reported in the
literature were initially produced based on the assessment
of the landslide inventory plot. We used a 20 m resolution
digital elevation model (DEM) from Department of Survey,
Government of Nepal. From this DEM, we derived a set of
basic terrain attributes, including elevation, slope, curvature,
topographic position index (TPI), topographic wetness index
(TWI), stream power index (SPI), and sediment transport index
(STI). Similarly, drainage proximity and drainage density were
derived from Euclidian distance algorithm in GIS. Whereas,
geological data was obtained from Department of Mines and
Geology (DMG, 2020) and fault proximity was obtained
from fault and thrust lines of geological map and Euclidian
distance algorithm. The peak ground acceleration (PGA) data
of the 2015 Gorkha earthquake were obtained from the US
Geological Survey (USGS, 2015).
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Fig. 1: a) Location map of Sidhnupalchowk district, and b) landslide distribution.

34



A boosting framework for earthquake-induced landslide susceptibility

Table 1: Selected geophysical covariates and its significance.

Geophysical covariates

Its significance

Elevation controls climatic conditions, vegetation cover, weathering intensity, and seismic wave

Slope angle is a primary controlling factor, as steeper slopes experience higher shear stress and are

Surface curvature affects stress concentration and drainage behavior; convex slopes tend to amplify

Elevati . . S ; o .
evation amplification, all of which influence slope instability during earthquakes.
Slope . LT .2 .
more susceptible to seismic shaking—induced failure.
Curvature . . . . .
Hrvatt seismic forces, while concave slopes favor material accumulation and saturation.
TPI

TPI distinguishes ridges, mid-slopes, and valleys; ridges and upper slopes often experience stronger

ground motion amplification during earthquakes.

Drainage proximity

Drainage density

Areas close to streams are prone to toe erosion and higher pore-water pressure, which reduce slope
stability when subjected to seismic shaking.

High drainage density indicates intense surface dissection and weaker slope materials, increasing
susceptibility to earthquake-triggered failures.

TWI represents potential soil moisture accumulation; saturated soils are more vulnerable to strength
SPI reflects erosive power of flowing water, which weakens slope toes and predisposes slopes to

STI indicates sediment movement potential on slopes; areas with high sediment transport are often

Lithology and structural conditions govern material strength, degree of fracturing, and weathering,

Twl loss under cyclic seismic loading.

SPI failure during earthquakes.

STI mechanically unstable under seismic excitation.
Geology

Fault proximity

PGA

strongly influencing landslide response to seismic shaking.

Proximity to active faults increases ground motion intensity and permanent ground deformation,
making nearby slopes highly susceptible to earthquake-induced landslides.

PGA directly represents seismic shaking intensity; higher PGA values significantly increase the

likelihood of slope failure during earthquakes.

MAPPING UNITS

Slope Units (SU) are more adept at accurately capturing the
geophysical covariates conducive to landslide formation,
signifying their geological importance (Ma et al. 2023). The
SU concept pertains to terrain segments delineated by drainage
and divide lines. SU offers a solution to address the limitation
of Grid Units (GU) analyses, as highlighted by Tanyas et al.
(2019). This study utilized the R-statistical programming
language (Pradhan et al. 2025; Yu and Chen, 2020) for
hydrological analysis using DEM data to define hydrological
“half-basin” boundaries.

The resulting SUs provided a medium-resolution representation
of the Sindhupalchowk district (Fig. 3), comprising a total of
4,184 SU. The planimetric area of these SUs has a mean value
of 0.59 km?, with a standard deviation of 0.53 km?. Out of
4,184, 1390 SU contains landslides.

METHODOLOGY

The methodology depicted in the flowchart (Fig. 4) outlines
a systematic machine learning approach for modeling
earthquake-induced landslide susceptibility. The process
begins by integrating two primary data sources: a landslide

35

inventory, and geophysical covariates. These inputs are
mapped onto a SU framework, which serves as the primary
terrain subdivision for analysis.

To develop and validate the predictive model, the integrated
dataset is partitioned into a 70% training set to calibrate the
algorithm and a 30% test set for independent evaluation. These
data subsets are processed through a boosting model. Following
the modeling phase, an accuracy assessment is performed to
verify the performance of the algorithm against the test data.
The final output of this workflow is a susceptibility map or
index that identifies areas most prone to landslides triggered
by seismic activity.

In the context of earthquake-induced landslide susceptibility,
the boosting method is an iterative ensemble learning technique
that enhances predictive performance by sequentially
combining multiple "weak" learners, typically simple decision
trees to form a robust "strong" model. Unlike parallel methods
that build independent models, boosting trains each new tree
to specifically minimize the residual errors of its predecessor,
effectively "boosting" the importance of SUs that were
previously misclassified or difficult to predict. This sequential
refinement is particularly advantageous for earthquake-induced
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Fig. 2: Example of geophysical covariates used for the analysis.
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Fig. 4: Methodological framework of the study.
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landslide modeling because it can capture the complex, non-
linear interactions between static terrain factors (like slope and
curvature) and dynamic seismic triggers (like PGA).

The core idea of most model evaluation procedures involves
spliting the dataset into training and test sets. The training set
was used to fit the model, which was subsequently applied
to the test set to evaluate its predictive capabilities. Out of
4184 SUs, 70% (2929 SUs) were subjected to the training

Table 2: Model performance matrices.

Matrices Equation
(2 x Precison x Recall)/(Precision +
F1 Score Recall), where Precision= TP/(TP + FP)
and Recall=TP/(TP + FN)
True Negative Rate  TNR=TN/TN+FP

False Negative Rate FNR=FN/FN+TP

RESULTS
Landslide predictive map

The boosting-based model successfully generated an
earthquake-induced landslide susceptibility map for the
Sindhupalchowk District using SUs as the mapping framework
(Fig. 6). The final susceptibility map shows a clear spatial
differentiation of landslide-prone areas, with high and very

the model and 30% (1255 SUs) were for the test the model.
A The results were systematically organized into a confusion
matrix, which presents a detailed breakdown of the predictions
across four categories: False Positives (FP), False Negatives
(FN), True Positives (TP), and True Negatives (TN). A
summary and explanation of each metric is given in Table 1.
The performance of the model was evaluated using a variety of
standard evaluation metrics as given in Table 2.

Meaning
The harmonic mean of precision and recall and provides a
balanced measure of classification performance, especially
useful for imbalanced datasets
Referred to as specificity, measures the proportion of non-

landslide units correctly classified as non-landslide

Quantifies the proportion of landslide-affected units that are

incorrectly classified as non-landslide.

high susceptibility zones predominantly concentrated along
steep slopes, deeply incised valleys, and regions subjected to
strong ground shaking during the 2015 Gorkha earthquake.
These zones align well with the observed distribution of
co-seismic landslides, indicating that the model effectively
captured the combined influence of terrain characteristics and
seismic forcing.
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Fig. 6: Earthquake-induced landslide susceptibility
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Model performance was evaluated using several statistical
metrics derived from the independent test dataset. The receiver
operating characteristic (ROC) curve demonstrates strong
discriminative capability, with an area under the curve (AUC)
value of 0.83, indicating good overall predictive accuracy
(Fig. 7). This result confirms that the boosting framework can
reliably distinguish between SUs with and without landslide
occurrences. The F1 score of 0.642 further reflects a balanced
performance between precision and recall, suggesting that the
model is effective in identifying landslide-prone SUs while
limiting misclassification (Table 3).

Perfect Separation
®

o ©
o =3
) |

True Positive Rate
o
~

0.2 1

Area under the curve=0.83

0.4 0.6 0.8
False Positive Rate

Fig. 7: ROC curves plot.

Table 3: Model performance matrices and corresponding
value

Matrices Value
F1 Score 0.642
True Negative Rate 0.855
False Negative Rate 0.387

Additional performance indicators support the robustness of the
model. The true negative rate of 0.855 and negative predictive
value of 0.818 indicate that SUs classified as stable are, in most
cases, correctly identified. Although the false negative rate is
relatively moderate (0.387), the overall threat score of 0.626
suggests a reasonable capability of the model to capture actual
landslide occurrences. The statistical parity value of 0.299
indicates some imbalance between predicted classes, which
is expected given the inherent imbalance between landslide-
affected and non-affected SUs.

The out-of-bag improvement plot illustrates a steady
enhancement in model performance with successive
boosting iterations (Fig. 8), confirming that each additional
learner contributes to reducing prediction errors. This
behavior highlights the advantage of the boosting approach
in progressively refining model accuracy by focusing on
previously misclassified SUs.

Furthermore, the relative influence plot reveals that seismic
and topographic variables play dominant roles in controlling
landslide susceptibility as shown in Fig. 9. Peak ground
acceleration and slope-related parameters exhibit the highest
influence, followed by terrain indices linked to hydrological
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Fig. 8: Out-of-bag improvement plot

conditions and geomorphic positioning, emphasizing the
combined role of seismic triggering and terrain predisposition
in earthquake-induced landsliding.
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Fig. 9: Relative influence plot.

DISCUSSION

The results of this study indicate that the boosting-based
framework is well suited for earthquake-induced landslide
susceptibility mapping in the mountainous terrain of
Sindhupalchowk District. The spatial agreement between high-
susceptibility zones and the observed distribution of co-seismic
landslides suggests that the model effectively captured the
combined influence of seismic triggering and terrain-controlled
preconditioning factors. This supports the applicability of
boosting algorithms for representing the complex, non-linear
relationships involved in landslide initiation during strong
earthquakes.

The model achieved good predictive performance, with an
AUC value of 0.83, demonstrating its ability to distinguish
between landslide-affected and stable slope units. The iterative
learning mechanism of boosting, which emphasizes previously
misclassified units, contributed to improved -classification
accuracy compared to single-model approaches. This advantage
is particularly important in seismically active regions, where
landslide occurrence is governed by the interaction of ground
motion intensity and terrain characteristics.
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The SU-based approach further enhanced model reliability by
providing geomorphologically meaningful mapping units that
better reflect landslide processes than conventional grid cells.
Relative influence analysis identified peak ground acceleration
and slope-related parameters as the most influential predictors,
confirming the dominant role of seismic shaking and
topographic controls. However, the moderate false negative
rate highlights the influence of inventory uncertainties and
the lack of detailed geotechnical data. Future studies could
address these limitations by integrating additional subsurface
information and advanced strategies for handling class
imbalance.

CONCLUSIONS

This study presents aboosting-based framework for earthquake-
induced landslide susceptibility mapping using slope units
in the Sindhupalchowk District of central Nepal. The results
demonstrate that the proposed approach effectively captures
the complex interactions between seismic triggering factors
and terrain conditioning variables. The generated susceptibility
map shows strong spatial agreement with observed co-seismic
landslides from the 2015 Gorkha earthquake, confirming the
reliability of the model for regional-scale hazard assessment.
Model validation indicates good predictive performance,
with an AUC value of 0.83, highlighting the advantage of
boosting algorithms in handling non-linear relationships and
heterogeneous geophysical conditions. The slope unit-based
representation further improves process realism by aligning
mapping units with geomorphological and hydrological
boundaries. Relative influence analysis emphasizes the
dominant role of peak ground acceleration and slope-related
parameters in controlling landslide occurrence.
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