STATUS OF POTENTIAL NON-TIMBER FOREST PRODUCTS FOR WISE USE AND CONSERVATION IN THE LANGTANG NATIONAL PARK'S BUFFER ZONE

BHUVAN KESHAR SHARMA¹ AND RAM CHANDRA KANDEL²

¹Green Governance Nepal Kathmandu, Nepal ²Bardiya National Park Thakurdwara, Bardia, Nepal bhuvan_keshars@hotmail.com

ABSTRACT

Non-timber forest products are non-wooded biological resources derived from both natural and managed forests and other wooded areas. The objective of the study was to perform resource assessment for baseline information on the status and distribution of locally prioritized plant based non-timber forest products in Nuwakot and Sindhupalchok districts of Langtang National Park's buffer zones. Consultative workshops and forest inventory techniques were applied to collect data. From the consultative workshops 133 species of plants having use value were identified. It was identified that *Gaultheria fragrantissima* and *Edgeworthia gardneri* were more potential species for commercial production and utilization. For commercial production and collection of *Gaultheria fragrantissima*, buffer zone areas of Nuwakot district will be the better place. Similarly, the commercial production and collection of *Edgeworthia gardneri* will be better in buffer zone areas of Sindhupalchok district.

Keywords: Langtang National Park, buffer zone, Prominence value, perception

INTRODUCTION

Non-timber forest products (NTFPs) are a collection of biological resources derived from both natural and managed forests and other wooded areas (Peters,1996). NTFPs are culturally important, cheap and accessible biological resources to local people. On the basis of their use, plant based NTFPs can be categorized in different types (Kochhar, 1992; FAO, 2004; Sharma, 2014). In Nepal, the occurrences of NTFPs have been reported from the all altitudinal range and protected areas. There are 3,172 species of plants and animals which are reported as NTFPs in Nepal. Those included 2,349 species of vascular plants, 65 species of mammals and 758 species of birds (Sharma, 2014).

Langtang National Park (LNP) was established in 1976 by covering 1,710 km² area of Nuwakot, Rasuwa and Sindhupalchok districts. In 1998, an area of 420 km² around the park containing 28 Village Development Committees (VDCs) was declared as its buffer zone (DNPWC, 1999; Myint *et al.*, 2000). There are four distinct vegetation zones in LNP (LNP, 2001): sub-tropical zone (<1,000-2,000 m), temperate zone (2,600-3,000 m), lower sub-alpine zone (3,000-34000 m), and alpine zone (> 4,000 m). Realizing the crucial lack of information about the status of NTFPs, this study was undertaken to better understand about the quantitative status of NTFPs in the buffer zone of Langtang National Park. The main objective of the study was to perform resource assessment for finding baseline information on the status and distribution of locally prioritized plant based NTFPs in Nuwakot and Sindhupalchok districts of Langtang National Park's Buffer zones.

MATERIALS AND METHODS

Study sites

The study sites were located in the southern part of LNP's buffer zone. They were distributed in the subtropical and temperate vegetation zones of Nuwakot and Sindhupalchok districts. The study sites included thirteen VDCs, eight in Nuwakot district and five in Sindhupalchok district. The studied VDCs of Nuwakot are Urleni, Raluka, Rajang, Gjyangphedi, Sikharbesi, Gaunkharka, Samundratar, and Rautbesi. Similarly, the VDCs of Sindhupalchok district are Helambu, Boruwa, Kiul, Selang, and Syaule. Forest inventory were conducted within the altitudinal range of 1,659 m to 2,412 m in the buffer zone forest of Nuwakot district. In Sindhupalchok district forest inventory were made between 1,882 m to 2,620 m elevation of buffer zone forest.

NTFPs category

Plant based NTFPs were categorized in 14 different types on the basis of their use. They were: fiber and fiber yielding; sugar starch and cellulose products; legume or pulses; vegetable oils and fats; fruits and nuts; vegetable; starch and cellulose products; spices, condiments and other flavourings; fumitory and masticatory; beverages; dyeing and tannins; medicine; insecticides and herbicides; and miscellaneous (Kochhar, 1992; FAO, 2004; FRA/DFRS, 2014; Sharma, 2014).

Data collection

Both the qualitative and quantitative techniques were applied for data collection. The qualitative data were collected from the Focus Group Discussion (FGD). This included the name of plants according to their uses, local distribution and their cultivation as well as collection sites. The quantitative data incorporated the number and coverage of each plant species in quadrat. Two approaches namely social and ecological survey were used to collect those data.

Social survey

This study basically used participatory rapid approach including stakeholder consultation and interaction with focus group discussion (FGD) for data and information collection. The relevant individuals were contacted and uses and distribution of NTFPs in the LNP's buffer zone area were investigated (Mikkelsen, 1995). Informants for the FGD included members of Buffer Zone Users Committees (BZUCs), members of Buffer Zone Users' Groups (BZUGs), members of Buffer zone Community Forests (BZCF), local political leaders, local healers, teachers, and local people. Locations for carrying out FGD and participants from community and local level authorities were identified from prior discussion with LNP officials. The number of participants in one FGD was not exceeded15 personnel.

Prior to the FGD, a checklist regarding use categories of plant was prepared and used during discussion. Name of plant species in each use type were asked and grouped on the specific

categories. They were also asked to prioritize the identified NTFPs on the basis of their commercial and local uses. The local distributions of the available NTFPs were also identified from the discussion and were marked on the available topographical maps.

During FGD local people were also requested to provide best locality for cultivation and collection of prioritized NTFPs. The basis to identify suitable locations was current regeneration scenario and collection practices of NTFPs.

Ecological survey

Immediately after collecting the information from FGD, extensive field visits were made for forest inventory by using quadrat method. The survey was conducted in the specified sites identified from the FGD, by using systematic random sampling techniques along the altitudinal gradient of 100m difference. The recognized NTFPs were either shrub or herb. So, quadrats of 1m *1m and 5m*5m were utilized to collect data about herbaceous plant and understory species respectively.

Geographical location, elevation and distance from cultivated land of each surveyed plot were recorded by using Geographical Positioning System (GPS). Coverage of the species was identified from ocular estimation. Removal of thin layer from top soil was considered as light erosion. The nomenclatures of plants were provided from the published literatures (DPR, 2002, 2010, 2011, 2012; Sharma, 2014).

Data recording and analysis

Both the secondary and primary data and information were the sources for this study. Secondary sources of information were published & unpublished documents and reports. In addition, information from LNP, BZ and local VDCs were also used as the secondary sources of data. The data and information were recorded in data sheets and note books.

Collected data from primary and secondary sources were processed and analyzed. The descriptive statistics such as simple means, frequencies and percentage were used for the analysis of quantitative data. Microsoft excel software was used for data processing.

Local perceptions (%) about the suitable places of NTFPs cultivation and collection were analyzed by using following formula (Tamrakar & Sharma, 2002):

Local perception =
$$\frac{\text{Number of people selected the location}}{\text{Total number of people participated}} *100$$

The calculated mean was utilized to analyze prominence value. Frequency, density, mean percent cover and prominence value of the species were calculated by using following formula (Zobel *et al.*, 1987, Sharma *et al.*, 2012):

 $Frequency = \frac{Number of quadrat in which species i occurred}{Total number of quadrats studied} *100$

 $Density = \frac{Total number of individuals of species i}{Total number of quadrats studied * Area of a quadrat} *10000$

Mean Percent Cover = $\frac{\text{Total cover percentage of species i}}{\text{Total number of plot studied}}$

Prominence Value = Mean percent cover of species i $\sqrt{Frequency of species i}$

RESULTS

Priority

Major NTFPs of the LNP buffer zone in Nuwakot district were classified on the basis of their use categories. Two consultative workshops were organized in Ramati village of Samundratar VDC and Timbu village of Helambu VDC of Nuwakot and Sindhupalchok districts respectively. From the consultative workshops 133 species of plants were identified having use value (annex-1). Local peoples (n = 45) provided their perception, to prioritize those species with their specific location, during consultative workshop.

Local people perceived that the most useful NTFPs for the Nuwakot district were *Gaultheria fragrantissima*, *Edgeworthia gardneri*, *Drepanostachyum falcatum*, *Girardinia diversifolia*, *Swertia chirayita* and *Urtica dioica* respectively. Most of the local people provided their interest to extract essential oil from *Gaultheria fragrantissima*. The buffer zone areas of LNP in Nuwakot district are mostly located below 2200 m elevation which is suitable habitat for *Gaultheria fragrantissima* (Polunin & Stainton, 1984). The prioritized NTFPs were distributed in all buffer zone forest of LNP in Nuwakot district. Although the general distribution of *Edgeworthia gardneri* is ranged between 1500 to 3000 m elevations, it was more abundantly distributed above 2200 m elevation in south-east portion of LNP. So, in the study area the natural habitat of *Edgeworthia gardneri* agardneri is above 2200 m elevation. It is mostly distributed in Gaunkharka VDC and some areas of Urleni VDC. It was observed that above 2200 m elevation abandoned agricultural land was perfect habitat for *Edgeworthia gardneri*.

According to local people commercially most useful NTFPs in LNPBZ of Sindhupalchok district were *Edgeworthia gardneri*, *Gaultheria fragrantissima*, *Swertia chirayita*, *Juglans regia*, and *Rubia manjith*. In this area people were mostly interested to extract bark of *Edgeworthia gardneri* for making paper. The buffer zone area of LNP in Sindhupalchok is distributed above 2200 m elevation, which is suitable habitat for *Edgeworthia gardneri*. So, there is the potentiality of commercial farming and natural extraction of this species in LNPBZ of Sindhupalchok district. The prioritized NTFPs were distributed in all buffer zone VDCs of LNP in Sindhupalchok district. The natural habitat of *Gaultheria fragrantissima* is below 2200 m elevation. It is mostly found in lower altitudinal ranges of Helambu and Kiul VDCs. Similarly, *Edgeworthia gardneri* is naturally distributed above 2200 m elevation of the buffer zone areas and there were possibilities of farming *Edgeworthia gardneri* in those spaces.

Name of potential VDCs	Specific places	District
Urleni VDC	All areas	Nuwakot
Sikharbesi VDC	Ward no 3, 4, 8	Nuwakot
Gaunkharka UC	Ward no. 5, 7, 8	Nuwakot
Boruwa VDC		Sindhupalchok
Helambu VDC	Ward no 1-7	Sindhupalchok
Kiul VDC		Sindhupalchok
Selang VDC		Sindhupalchok
Syaule VDC		Sindhupalchok

TABLE 1. Distribution of NTFPs in Langtang National Park's buffer zone VDCs.

People were also asked to provide the name of appropriate sites to cultivate and collect the NTFPs from the buffer zone areas. In Nuwakot district, most of the people (65.2%) identified Urleni was quite suitable VDC for farming of commercially important NTFPs. Similarly, other suitable VDCs were Ghyangphedi, Sikharbesi, Gaunkharka and Samundratar (including Rautbesi VDC). Similarly, in Sindhupalchok district most of the people (66.7%) perceived Helambu VDC was quite suitable for cultivation and collection of NTFPs. The other suitable VDCs for the commercial cultivation of NTFPs were Boruwa and Kiul (table 2).

TABLE 2. More suitable places of NTFPs cultivation and collection in LNP's buffer zone
forests, outcome of the consultative workshops.

Nuwakot district		Sindhupalchok district	
VDCs	Local perception (%)	VDCs	Local perception (%)
Urleni (including Raluka & Rajang)	65.2	Helambu	66.7
Gjyangphedi	60.9	Boruwa	50.0
Sikharbesi	43.5	Kiul	22.2
Gaunkharka	26.1	Selang	NA
Samundratar (including Rautbesi)	4.3	Syaule	NA

Inventory

The inventories of NTFPs were conducted within the altitudinal range of 1659 m to 2412 m in the LNP's buffer zone forest of Nuwakot district. The slopes of the sampling area were ranging from 30° to 45° with the average slope 39°. All survey sites were disturbed by the human activities. Average distance of survey sites to cultivated land was 185 m. Most of the survey plots were distributed in north-western aspect (35%). While 25%, 15%, 10%, 10% and 5% plots were distributed in eastern, western, south-western, south-eastern and north-eastern

aspects respectively. All survey sites received light erosion. The average cover of understory vegetation in the survey site was 87.5%. In total 12.5% ground was covered from litters. Lichens were distributed in all survey sites. The data were collected from 63 plots in Nuwakot district.

Inventory in Sindhupalchok district were made between 1882 m to 2620 m elevation. The average slope of the sampling area was 19° and ranging from 5° to 50°. Survey areas were disturbed by the human activities. The average distance from the survey sites to cultivated land was 755 m. Most of the survey plots were distributed in south-eastern aspect (50%). While 22%, 14% and 14% plots were distributed in north-west, south-west and eastern aspect respectively. The survey site received light erosion. Average cover of the understory vegetation in the survey area was 77.5%. In the survey site 45% ground were covered by the litters. In total 86% area included mosses while remaining 14% area included lichens. All together 90 plots were used for data collection in Sindhupalchok district.

In the LNP's buffer zone forests at Nuwakot district, *Gaultheria fragrantissima* was most prominent (PV = 251.40) species in understory layer. Similarly, other more prominent species in this layer were *Berberis asiatica, Lyonia ovalifolia* and *Eurya acuminata* with prominence value of 47.73, 30.52 and 29.58 respectively (table 3). In Sindhupalchok district *Edgeworthia gardneri* was the most prominent (PV = 14.85) species in understory layer. Other prominent species in understory layer were *Gaultheria fragrantissima* (PV = 10.10), *Lyonia ovalifolia* (PV = 3.38) and *Berberis asiatica* (PV = 2.73) respectively (table 3).

SN	Local name	Colontifio nomo	PV	
SIN	Local name	Scientific name	Nuwakot	Sindhupalchok
1	Patpate	Gaultheria fragrantissima	251.4	10.1
2	Chutro	Berberis asiatica	47.73	2.73
3	Angeri	Lyonia ovalifolia	30.52	3.38
4	Jhigane	Eurya acuminate	29.58	
5	Setikath	Myrsine capitellata	28.76	
6	Argeli	Edgeworthia gardneri		14.85
7	Banmara	Eupatorium adenophorum		2.02

TABLE 3. Prominence value of five most abundant shrub species in LNP's buffer zone forests of Nuwakot and Sindhupalchok districts.

Among the herbaceous species *Eupatorium adenophorum* was the most prominent (PV = 3.80) species in the LNP's buffer zone forests of Nuwakot district. Simlarly, *Polystichium squarrosum* (PV = 0.81), *Imperata cylindrica* (PV = 0.42) and *Aster* sp (PV = 0.41) were other more prominent herbaceous species in this area (table. 4). In Sindhupalchok district *Elsholtzia* sp was the most prominent (PV = 3.78) herbaceous species in the LNP's buffer zone forest. Similarly, *Aster* sp (PV = 3.44), *Potentilla* sp (PV = 2.15) and *Cyperus* sp (PV = 1.34) were more prominent herbaceous species in this area (table 4).

TABLE 4. Prominence value of five most abundant herbaceous species in LNP's buffer zone forests of Nuwakot and Sindhupalchok district of LNPBZ.

SN	Local name	Scientific name		PV
SN	Local name	Scientific name	Nuwakot	Sindhupalchok
1	Banmara	Eupatorium adenophorum	3.8	
2	Unau	Polystichum squarrosum	0.81	
3	Siru	Imperata cylindrica	0.42	
4	Buki	Aster sp	0.41	3.44
5	Rubia	<i>Rubia</i> sp	0.24	
6	Bansilam	Elsholtzia sp		3.78
7	Bajradanti	Potentilla sp		2.15
8	Mothe	Cyperus sp		1.34
9	Majito	Rubia manjith		1.29

Natural habitat of *Gaultheria fragrantissima* is at lower elevation than that of *Edgeworthia gardneri*. Buffer zone VDCs of Nuwakot district is mostly located at the lower elevation. So, there are higher density of *Gaultheria fragrantissima* (3140 individuals/ha) than that of *Edgeworthia gardneri* (360 individuals/ha). Similarly, as the buffer zone VDCs in Sindhupalchok district are located at higher elevation, population of *Gaultheria fragrantissima* (1314 individuals/ha) is lower than that of *Edgeworthia gardneri* (3000 individuals/ha) (table 5).

TABLE 5. Density per hector of five most abundant species of understory vegetation in LNP's buffer zone forests of Nuwakot and Sindhupalchok districts.

SN	Local name Scientific name	Density/ha		
SN	Local name	Scientific name	Nuwakot	Sindhupalchok
1	Patpate	Gaultheria fragrantissima	3140	1314
2	Banmara	Eupatorium adenephorum	700	1086
3	Argeli	Edgeworthia gardneri	360	3000
4	Khareto	Phyllanthus parvifolius	360	
5	Angeri	Lyonia ovalifolia	320	
6	Lokta	Daphne bholua		1000
7	Gurans	Rhododendron arboreum		771

DISCUSSION

The commercially important NTFPs were using by the local people for some other traditional purposes. In almost all study area, commercially important *Gaultheria fragrantissima* was utilized for livestock bedding. Langtang National Park established a distillation unit to extract essential oils from Gaultheria in Rasuwa district. After its establishment, Gaunkharka VDC of Nuwakot district banned to collect *Gaultheria fragrantissima* from buffer zone community forest areas.

Some local people collect and sell the bark of *Edgeworthia gardneri* to nearby market. There were some traders, in Chanauta bazaar of Sindhupalchok district, who were collecting those bark from local herders. There was no record of other NTFPs which were commercially traded from this area. The commercial use of these valuable products can also threaten their availability. The collection methods used by the local people can accelerate to reduce the population of NTFPs.

Plants are sensitive to the local climatic condition. Small changes in the microclimate may differs their distribution pattern. The current distribution of *Gaultheria fragrantissima* is between 1200 to 2400 m elevation (Polunin & Stainton, 1984) in moist and open areas. Similarly, current distribution of *Edgeworthia gardneri* is between 1500 to 3000 m elevations (Polunin & Stainton, 1984) in open areas.

All tradable NTFPs play a vital role in the livelihood of local people, although small quantitity of them are commercially used by few people. Among them sporangia of *Lycopodium clavatum*, fruits of *Myrica esculenta*, bark of *Daphne bholua* & *Edgeworthia gardneri*, and extracted fibre from *Girardiana diversifolia* were previously sold by the local people. According to them all these materials were locally sold except the sporangia of *Lycopodium clavatum*, which was used to collect by external mediator.

The preferred and prioritized species by the local people were naturally available in the buffer zone forests of LNP. As there are enough barren private lands in the buffer zone areas, there are also potentialities of their commercial farming. Some people started to plant and preserved them in their private land.

There are markets for the essential oils of *Gaultheria fragrantissima* as it is an important constituent for pain relief massages. The fiber of *Edgeworthia gardneri* is used to make Nepali papers. The Nepali paper is used for all government official processes in Nepal. Similarly, it is used to make different souvenirs and calendars. The semi processed bark of *Edgeworthia gardneri* is also used for Japanese products (Biggs & Messerschmidt, 2005).

Buffer zone forest areas of Langtang National Park at Nuwakot and Sindhupalchok districts were quite favourable for NTFPs production. The local people showed their interest for conservation and sustainable use of commercial species. Current study indicated that *Gaultheria fragrantissima* and *Edgeworthia gardneri* were more potential species for commercial production and utilization in the study area. For commercial production and collection of *Gaultheria fragrantissima*, buffer zone areas of Nuwakot district will be the better place. Similarly, the commercial production and collection of *Edgeworthia gardneri* will be better in Sindhupalchok district as this area incorporated natural habitat of this species.

ACKNOWLEDGEMENTS

Department of National Parks and Wildlife Conservation for providing research permission. Langtang National Park is acknowledged for funding arrangement and providing research permit. Buffer zone Management Committee for facilitating the research work. Local peoples are acknowledged for providing their valuable time and necessary information.

ABBREVIATIONS USED

BZ – Buffer zone, BZCF – Buffer zone community forest, BZUG – Buffer zone users' group, DNPWC – Department of National Parks and Wildlife Conservation, FGD – Focus Group Discussion, LNP – Langtang National Park, LNPBZ – Langtang National Park's Buffer zone, NTFPs – Non-timber Forest Products, PV – Prominence value, VDC – Village Development Committee.

REFERENCES

BIGGS, S; MESSERSCHMIDT, D (2005) Social responsibility in the growing handmade paper industry of Nepal. *Elsevier.* DOI: 10.1016/j.worlddev.2005.06.002

DNPWC (1999) Langtang National Park management strategy framework. Department of National Parks and Wildlife Conservation (DNPWC).

DPR (2002) Pteridophytes of Nepal. Department of Plant Resources (DPR), Kathmandu, Nepal; 175 pp.

DPR (2010) Catalogue of Nepalese flowering plants – I (Gymnosperms and Monocotyledons). Department of Plant Resources (DPR), Kathmandu, Nepal; 174 pp.

DPR (2011) Catalogue of Nepalese flowering plants – II, Dicotyledons (Ranunculaceae to Dipsacaceae). Department of Plant Resources (DPR), Kathmandu, Nepal; 210 pp.

DPR (2012) Catalogue of Nepalese flowering plants – III, Dicotyledons (Compositae to Salicaceae). Department of Plant Resources (DPR), Kathmandu, Nepal; 255 pp.

FAO (2004) National forest Inventory field manual template. Food and Agriculture Organization of the United Nations, Working Paper 94/E, Rome; 83 pp.

FRA/DFRS (2014) Terai forests of Nepal (2010 – 2012). Forest resource assessment Nepal project/ Department of Forest Research and Survey, Kathmandu, Nepal; 91 pp.

KOCHHAR, S L (1992) Economic botany in the tropics. Macmillan India Limited, Madras, India; 476 pp.

LNP (2001) Langtang National Park Buffer Zone Management Plan. Langtang National Park (LNP), Nepal.

MIKKELSEN, B (1995) Methods for development work and research. Sage Publications, New Delhi, India.

MYINT, M; SHRESTHA, I; JOSHI, G (2000) An Inventory on biodiversity study of Langtang National Park & surrounding area using Geographic Information System & Remote Sensing. Submitted to MENRIS, ICIMOD, Kathmandu.

PETERS, C M (1996)*The ecology and management of non-timber forest resources*. World Bank, Washington DC, USA; 157 pp.

POLUNIN, O; STAINTON, A (1984) Flowers of the Himalaya. Oxford University Press, Delhi.

SHARMA, B K; CHALISE, M K; SOLANKI, G S (2012) Vegetation types and wildlife occurrence in Baghmara Buffer zone Community Forest, Nepal. *International Multidisciplinary Research Journal* 2(2): 52–65.

SHARMA, B K (2014) Bioresources of Nepal. Subidhya Sharma, Nepal; pp 819.

TAMRAKAR, A; SHARMA, B K (2002) Conservation and development of local forest resources and wildlife through community forestry: a case study from Baghmara Community Forest, Chitwan. *Banko Jankari* 12(1): 49–53.

WOLLENBERG, E; INGLES, A 1998) (eds) Incomes from the forest. Methods for the development and conservation of forest products for local communities. CIFOR/ IUCN, Bogor, Indonesia.

ZOBEL, D B; BEHAN, M J; JHA, P K; YADAV, U K R (1987) A practical manual for ecology. Ratna Book Distributors, Kathmandu, Nepal.

Annex 1. Outcomes of the stakeholder consultation to identify and prioritize NTFPs in Lantang National Park's buffer zone area.

Local name and use categories	Scientific name	
Fiber and fiber yielding		
Kettuke	Agave americana	
Lokta	Daphne bholua	
Allo	Girardiana diversifolia	
Argeli	Edgeworthia gardneri	
Babiyo	Eulaliopsis binata	
Sugar starch and cellulose products		
Bantarul	Dioscorea sp	
Gittha	Dioscorea bulbifera	
Bhyakur	Dioscorea deltoidea	
Legume or pulses		
Tanki	Bauhinia purpurea	
Bhorla	Bauhinia vahlii	
Vegetable oils and fats	·	
Okhar	Juglan regia	
Chiuri	Aesandra butyracea	
Bolung (Bansilam)	Elsholtzia sp	
Silam	Perilla frutescens	
Fruits and nuts		
Kaphal	Myrica esculanta	
Chutro	Berberis asiatica	
Bhakiamilo	Rhus javanica	
Malayo	Viburnum mullaha	
Ainselu	Rubus ellipticus	
Aanp	Mangifera indica	

Aalubakhara	Prunus domestica
Aaru	Prunus persica
Lauth salla	Taxus wallichiana
Lapsi	Choerospondias axillaris
Amala	Phyllanthus emblica
Khurpani	Prunus cornuta
Bankera	Musa sp
Singato	Schisandra grandiflora
Guphla	Holboellia latifolia
Golkankri	Coccinia grandis
Kalo ainselu	Rubus foliolosus
Rato Ainselu	Rubus sp
Bhuin ainselu	Fragaria nubicola
Patpate	Gaultheria fragrantissima
Jamanemandro	Mahonia napaulensis
Muslindi	Elaeagnus parvifolius
Vegetable	
Nyuro	Dryopteris sp
Sisnu	Urtica dioica
Padamchal	Rheum emodi
Thotne	Aconogonum molle
Chyau	Mushroom
Halhale	Rumex crispus
Koiralo	Bauhinia variegata
Siplikan (Chiniya)	Crateva unilocularis
Tusa	Dendracalamus falcata
Dundu	Allium tuberosum
Banlasun	Allium sp

Kalonyuro	Dryopteris concolor	
Jirenyuro	Actiniopteris sp	
Kurilo	Asparagus racemosus	
Tama	Dendracalamus sp	
Spices, condiments and other flavorings		
Tejpat	Cinnamomum tamala	
Timbur	Zanthoxylum armatum	
Jimbu	Allium hyposistum	
Silam	Perilla frutescens	
Siltimbur	Lindera neesiana	
Jangali timbur	Zanthoxylum acanthopodium	
Fumitory and masticatory	·	
Dhairo	Woodfordia fruticosa	
Khasru	Quercus semicarpifolia	
Kuro	Bidens pilosa	
Pashanbet	Bergenia ciliata	
Saur (Chipsing)	Betula alnoides	
Thulo okhati	Astible rivularis	
Kanchopat	Nicotiana tabacum	
Beverages		
Gurans	Rhododendron arboreum	
Malayo	Viburnum mullaha	
Chutro	Barberis asiatica	
Ainselu	Rubus ellipticus	
Jamanemandro (Kerpa)	Mahonia napaulensis	
Kaphal	Myrica esculenta	
Dyeing and tannins		
Titepati	Artemisia vulgaris	

Chutro	Berberis asiatica
Musurekatush	Castanopsis tribuloides
Jamanemandro (Kerpa)	Mahonia napaulensis
Majito	Rubia manjith
Kaphal	Myrica esculenta
Aanp (leaf)	Mangifera indica
Phalant	Quarcus glauca
Okhar	Juglan regia
Medicine	
Akashbeli	Cuscuta reflexa
Akashbeli	Lycopodium clavatum
Amala	Phyllanthus emblica
Bankapas	Thespesia lampas
Bantulsi	Rabdosia sp
Barro	Terminalia bellirica
Batulpate	Stephania elegans
Chirayto	Swertia chirayita
Chutro	Berberis asiatica
Dhasingare (Patpate)	Gaultheria fragrantissima
Ghiyaukumari	Aloe vera
Ghodtapre	Centella asiatica
Golkankri	Coccinia grandis
Gurjo	Tinospora cordifolia
Halhale	Rumex crispus
Harro	Terminalia chebula
Indreni	Trichosanthes wallichiana
Jibanti	Desmotrichum fimbriatum
Jugargano	Cissampelos pareira

Kurilo	Asparagus racemosus
Kutki	Neopicrorhiza scrophulariiflora
Lajjabati	Mimosa pudica
Lankuri	Fraxinus floribunda
Malati	Mirabilis jalapa
Neem	Azadirachta indica
Padamchal	Rheum emodi
Panchaunle	Dactylorhiza hatagirea
Parijat	Nyctanthes arbor-tritis
Pashanbhed	Bergenia ciliata
Pyauli	Reinwardtia indica
Sisnu	Urtica dioica
Taxus	Taxus wallichiana
Thulo aushadhi	Astible rivularis
Timur	Zanthoxylum armatum
Tite Nigalo	Arundinaria sp
Titepati	Artemisia indica
Insecticides and herbicides	
Aarubakhara	Prunus domistica
Bakaina (leaf)	Melia azederach
Khirro (leaf)	Sapium insigne
Mauwa	Engelhardia spicata
Neem	Azadirachta indica
Timur	Zanthoxylum armatum
Titepati	Artemisia vulgaris
Bojho	Acorus calamus

Miscellaneous		
Local name	Scientific name	Local use
Banmara	Eupatorium adenophorum	Fodder
Dhupi	Juniperus sp	Religious
Gurans	Rhododendron arboreum	Ornamental, Religious
Khanayo	Ficus semicordata	Fodder
Khasru	Quercus semicarpifolia	Fodder
Maharangi	Maharanga emodi	Religious, Medicinal
Musurekatush	Castanopsis tribuloides	Fodder
Nagbeli	Lycopodium clavatum	Gun powder, Ornamental
Nigalo	Dendrophthoe falcata	Fodder
Rittha	Sapindus mukorossi	Soap
Sungava	Orchids	Ornamental
Sunpate	Rhoodendron anthopogon	Religious
Tatelo	Oroxylum indicum	Religious
Titepati	Artemisia indica	Religious