Antimicrobial resistance pattern of bacterial isolates causing urinary tract infection

Shrestha P*, Malla S*, Basnyat S*, Dumre S*, Upadhyaya B* and Lamichhane S*

Abstract

Introduction

Urinary tract infection (UTI) is one of the most important cause of mortality and morbidity in the world affecting all age groups. It is estimated that 150 million cases of UTI occur on a global basis per year resulting in more than 4 billion pounds (6 billion dollars) in direct health care expenditure. Resistance to antibiotics is highly prevalent in bacterial isolates all over the world, particularly in developing countries and is an evolving and eroding problem in UTI.

Objectives

To isolate the bacteria causing UTI and determine their antimicrobial resistance trend in urinary isolates in current situation.

Methods

This prospective study was conducted in microbiology section of NPHL, Teku from May to September 2006. During this period, three hundred and fifty two mid-stream urine samples collected were investigated by conventional semi-quantitative culture technique and antibiotic susceptibility test.

Results

Altogether 11 different bacteria were isolated among which Escherichia coli (48.8%) was the most predominant organism followed by Klebsiella pneumoniae (18.8%), Proteus mirabilis (7.5%), Proteus vulgaris (6.3%), Coagulase-negative Staphylococci (5.0%), K. oxytoca (3.8%), Enterobacter spp. (3.8%), Citrobacter freundii (2.5%), Acinetobacter spp. (1.3%), Alcaligenes spp. (1.3%) and Staphylococcus aureus (1.3%). The rate of infection was high in females (29.8%) than males (15.2%). Multidrug resistance (MDR) isolates accounted for 36 out of total 80 isolates (45.0%).

Conclusion

Regular monitoring of emergence of resistance is highly recommended and specific antibiotics should be given only after the laboratory results are available. A regular feedback and antibiotic analysis should be given to the clinicians for effective management of UTI.

Keywords

Urinary tract infection. Multidrug-resistance.

Introduction

Urinary tract infection is one of the commonest domiciliary and nosocomial bacterial infections, comprising of a variety of clinical conditions caused by microbial invasion of tissue lining the urinary tract which extends from renal cortex to urethral meatus1. UTI is a serious health problem affecting millions of people each year. It has been estimated that about six million patients visit out patient departments and about 300,000 are treated in the wards every year for UTI worldwide2. It is estimated that 150 million cases of UTI occur on a global basis per year resulting in more than 4 billion pounds (6 billion dollars) in direct health care expenditure3. According to the annual report published by Department of Health Services (2002/03), morbidity of UTI in Nepal is 1. 25.058. Geographical distribution of UTI in Mountain, Hill and Terai regions of Nepal are 13. 518. 68.858 and 42,682 respectively4.

Reporting of antimicrobial susceptibility testing of the urinary tract is usually achieved 48 hours following sampling, and therefore in the majority of community-acquired UTIs (CA-UTIs), the treatment decision is empirical, being influenced by available data reflecting antibiotic resistance1. Since the initiation of antimicrobial therapy in CA-UTIs is

Corresponding Author: Ms. Padma Shrestha. E-mail: padmashresth@yahoo.com. *Central Department of Microbiology, Tribhuvan University. Kirtipur. †National Public Health Laboratory, Teku, Kathmandu.

49
empirical knowledge of the antimicrobial resistance patterns of common uropathogens is essential to provide clinically appropriate and cost effective therapy. In many parts of Nepal, the facilities for urine culture and antimicrobial susceptibility testing are not available thus leading to incorrect diagnosis and management of UTI.

Effective management of UTIs in both the inpatient and outpatient settings has been complicated by the fact that many uropathogenic strains have developed resistance to antimicrobials, including Cotrimoxazole, the current first-line treatment for uncomplicated UTIs in the US and many other countries. The current trend of rising Trimethoprim-sulphamethoxazole (TMP/SMX) and beta-lactam resistance rates is problematic. Of more concern, however, are the emerging issues of fluoroquinolone resistance and MDR among community-acquired urinary isolates. MDR was defined as resistance to three or more of the antimicrobial agents evaluated in the study. This study was conducted to observe the current trend of antibiotic resistance of bacteria causing UTI.

Materials and Methods

During May to September 2006, a total of 352 mid-stream urine samples from patients suspected of UTI were collected and processed according to the standard laboratory methods. These samples were cultured on MacConkey agar and Blood agar plates and incubated at 37°C for 24 hours. The isolated bacteria were identified by Gram staining and biochemical tests. Bacterial colonies more than 10^7 CFU/ml of urine were considered as significant. The isolates were then subjected to antibiotic susceptibility test on Mueller Hinton agar using different antibiotic discs by Kirby-Bauer’s disc diffusion method. The drugs used were Ampicillin (Amp), Ceftriazone (CRO), Ciprofloxacin (Cip), Cloxacillin (Ob), Cotrimoxazole (Co), Erythromycin (E), Gentamicin (G), Nitrofurantoin (Nf), Norfloxacin (Nx), Ofloxacin (Ofx) and Oxacillin (Ox). Data were statistically analysed using Chi-square test.

Result

Of the total 352 patients suspected of UTI, 171 males and 181 females were included in this study and 22.7% (80/352) showed significant bacteriuria (Figure 1).

![Figure 1: Pattern of urine culture result](image1)

As shown in figure 2, *Escherichia coli* (48.8%) was the predominant bacterial isolate causing UTI followed by *Klebsiella pneumoniae* (18.8%), *Proteus mirabilis* (7.5%) and so on.

![Figure 2: Percentage distribution of bacterial isolates from urine culture](image2)
Higher rate of infection was found in female patients percent (26/171) as shown in figure 3.
29.8 percent (54/181) compared to male patients 15.2

![Figure 3: Pattern of urine culture results in male and female patients](image)

The antibiotic susceptibility profile studied showed that most of urinary bacterial isolates were resistant to almost all the common antibiotics tested. Among the common antibiotics tested against all Gram negative bacteria, the most effective antibiotic was found to be Gentamicin (80.0%) followed by Ceftriaxone (76.0%). Most of the Gram negative bacteria i.e. 71 (94.7%) was resistant to Amoxicillin. Among the 5 Gram positive bacteria, 100 percent of the isolates were susceptible to Nitrofurantoin. Oxacillin and Cloxacillin (60%) were found to be the least effective. The percentage rate and susceptibility of gram-negative isolates to each antibiotic tested was as shown in table 1.

Table 1: Antibiotic susceptibility pattern of gram-negative bacterial isolates causine UTI

<table>
<thead>
<tr>
<th>Isolates tested</th>
<th>Amp</th>
<th>CRO</th>
<th>Cip</th>
<th>Co</th>
<th>G</th>
<th>Nf</th>
<th>Ns</th>
<th>Ofx</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli (N=39)</td>
<td>97.4</td>
<td>2.6</td>
<td>20.5</td>
<td>79.5</td>
<td>30.8</td>
<td>69.2</td>
<td>46.2</td>
<td>53.9</td>
</tr>
<tr>
<td>Klebsiella pneumoniae (N=15)</td>
<td>86.7</td>
<td>13.3</td>
<td>26.7</td>
<td>73.3</td>
<td>26.7</td>
<td>40.0</td>
<td>60.0</td>
<td>20.0</td>
</tr>
<tr>
<td>Klebsiella oxytoca (N=3)</td>
<td>100.0</td>
<td>0</td>
<td>33.3</td>
<td>66.7</td>
<td>66.7</td>
<td>66.7</td>
<td>33.3</td>
<td>33.3</td>
</tr>
<tr>
<td>Proteus mirabilis (N=6)</td>
<td>100.0</td>
<td>0</td>
<td>16.7</td>
<td>83.3</td>
<td>0</td>
<td>100.0</td>
<td>33.3</td>
<td>66.7</td>
</tr>
<tr>
<td>Proteus vulgaris (N=5)</td>
<td>80.0</td>
<td>20</td>
<td>20</td>
<td>80</td>
<td>20</td>
<td>40</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Enterobacter spp.(N=3)</td>
<td>100.0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>33.3</td>
<td>66.7</td>
<td>33.3</td>
<td>66.7</td>
</tr>
<tr>
<td>Citrobacter freundii (N=2)</td>
<td>100.0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>Acinetobacter spp.(N=1)</td>
<td>100.0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>Alcaligenes spp.(N=1)</td>
<td>100.0</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>0</td>
</tr>
</tbody>
</table>

Note: R=Resistance, S=Susceptibility, Amp=Amoxicillin, CRO=Ceftriaxone, Cip=Ciprofloxacin, Co=Cotrimoxazole, G=Gentamicin, Nf=Nitrofurantoin, Nx=Norfloxacin, Ofx=Ofloxacin

Most of the bacteria isolated were found to be resistant to three or more drugs (45.0%) and were considered MDR. Among the MDR strains, 51.3 % (20/39) of E. coli and 33.3 % (5/15) of K. pneumoniae were found to be MDR (Table 2).
Table 2: Resistance pattern and distribution of MDR bacterial isolates

<table>
<thead>
<tr>
<th>Organisms</th>
<th>Total no. of isolates</th>
<th>Sensitive to all</th>
<th>Resistant to 1 drug</th>
<th>2 drugs</th>
<th>MDR Strains 3 drugs</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>39</td>
<td>1</td>
<td>8</td>
<td>10</td>
<td>20</td>
<td>51.3</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>15</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>33.3</td>
</tr>
<tr>
<td>K. oxytoca</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>100.0</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>16.7</td>
</tr>
<tr>
<td>Proteus vulgaris</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>40.0</td>
</tr>
<tr>
<td>Enterobacter spp.</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>33.3</td>
</tr>
<tr>
<td>Citrobacter freundii</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>50.0</td>
</tr>
<tr>
<td>Acinetobacter spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>100.0</td>
</tr>
<tr>
<td>Alcaligenes spp.</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>S. aureus</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CoNS</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>50.0</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>5</td>
<td>21</td>
<td>18</td>
<td>36</td>
<td>45.0</td>
</tr>
</tbody>
</table>

Discussion

This study revealed the pattern of UTI prevalent according to sex, organism affecting and the antimicrobials used. In this study, overall 22.7 percent of MSU samples from patients visiting NPHL with suspected cases of UTI showed significant bacteriuria. The low growth positive rate observed in this study might be due to inclusion of kidney transplant patients and others for routine check up only and also due to self medication.

In present study, the rate of growth positivity was found to be 29.8 percent (54/181) in females and 15.2 percent (26/171) in males. This higher growth positivity seen in females was found to be statistically significant (p<0.05) and may be attributed to their anatomical structure (short urethra and proximity to anal orifice) leading to easy access for coliform bacilli. This was in agreement with the findings of other investigators from Nepal11,12,13,14 and elsewhere15.

In this study, 93.8 percent (75/80) Gram negative bacteria were isolated which was higher than Gram positive bacteria 6.3 percent (5/80). The most prevalent organism found was E. coli (48%), which was in agreement with other studies conducted both in Nepal11,12,16,17 and elsewhere15,18,19.

In this study, Gentamicin (80%) was found to be the most effective antibiotic against Gram negative bacteria followed by Ceftriaxone with a susceptibility of 76 percent. In a similar study by Jha and Baapat20 at Sukhrarai Tropical Hospital, 92.5 percent of urinary isolates were susceptible to Gentamicin. On the other hand, Ampicillin was found to be the least effective drug against Gram negative bacteria (94.7% resistant).

Similarly, 97.4 percent of E. coli and 86.7 percent of K. pneumoniae were found to be resistant to Ampicillin in this study. Resistant to Ampicillin was also observed by various other researchers17,18,20. In this study, Nitrofurantoin was the choice of drug for E. coli followed by Ceftriaxone. Gentamicin and others. Among Gram positive isolates, the most effective drug was found to be Nitrofurantoin (100%) followed by Ampicillin, Ceftriaxone, Cotrimoxazole, Ciprofloxacin and Erythromycin with the susceptibility of 80 percent for all five drugs.

As evident from table 2, MDR isolates accounted for 36 out of the 80 isolates (45%). In a study done by Tuladhar et al21 at TUTH. MDR bacterial strains were detected in 35.2 percent cases.

Higher resistance rates to all antibiotics tested except Gentamicin and Nitrofurantoin may be explained due to high and uncontrolled consumption of these antibiotics during the last decade. These antibiotics were prescribed not only for UTI but also for infections in other body sites. Previous reports have indicated that the high resistance of uropathogenic bacteria to antimicrobial agents in developing countries22 is often due to self-medication, the suboptimal quality of antimicrobial drugs, and poor community and patient hygiene23. Second, inappropriate use of antimicrobial agents is widespread as many people can easily buy antibiotics from pharmacy stores and patent medicine stores, with or without prescriptions. This widespread and inappropriate use of antibiotics is recognized as a significant contributing factor to the spread of bacterial resistance and the development
of resistance to antimicrobial agents. Third, there
is evidence that for most bacteria, increased usage
of a particular antimicrobial agent correlates with
increased levels of bacterial resistance to that
agent.

Conclusion
Inappropriate use of antimicrobial agents should be
avoided. Regular monitoring of emergence of
resistance is highly recommended and specific
antibiotics should be given only after the laboratory
results are available. A regular feedback and
antibioeram should be given to the clinicians for
effective management of UTI.

Acknowledgement
We are grateful to all staffs of NPHL for their kind
co-operation throughout this work.

References
1. Leigh DA. UTI. In: Smith GR and Eason CF, In
(eds.) Topelv and Wilson’s Principles of
Bacteriology, Virology and Immunity. Bacterial
Diseases, 8th ed. Frome and London: Butacr
2. Harding GKM and Ronald AR. The management
of urinary infections: what we have learned in
the past decade. International Journal of
3. Palac DM. Urinary tract infection in women- A
4. Department of Health Services (DoHS). Annual
Report, DoHS, 2002/03. HMG Nepal.
5. Blondeau JM and Tillotson GS. Formula to help
select rational antimicrobial therapy (FRAT): its
application to community and hospital-acquired
urinary tract infections. Int J Antimicrob Agents
1999: 12:145-50
6. Bassetti D, Bassetti M and Mantero E. Strategies
for antibiotic selection in empirical treatment.
7. Sharma PR. Urinary infection- The infection that
8. Blondeau JM. Current issues in the management
of UTIs: extended release ciprofloxacin as a novel
treatment option. Drugs 2004: 64 (6):
611-28
9. Gunta K. Emerging antimicrobial resistance in
urinary tract pathogens. Infect Dis Clin North
10. Kurutene S, Surucuoelu S, Sezein C, Gazi H,
Gulav M and Ozbakalooglu. Increasing

Antimicrobial Resistance in E. coli Isolates from
Community-Acquired Urinary Tract Infections
2005: 58:159-61.
11. Chhetri PK, Rai SK, Pathak UN, Thapa JB,
Devkota KC, Shrestha BO and Shrestha RR.
Retrospective study on urinary tract infection at
Nepal Medical College Teaching Hospital,
Kathmandu. Nepal Med Coll J 2001:
3:83-5.
12. Jha VC and Yadav JN. Bacterial species isolated
from urine of UTI suspected patients and their
sensitivity to commonly available antibiotics.
13. Raihandari R and Shrestha J. Bacteriological
Study of urinary tract infection and its antibiotic
sensitivity test (Hospital based study). J Nepal
14. Jha N and Banat SK. A study of sensitivity and
resistance of pathogenic microorganisms causing
UTI in Kathmandu valley. KUMJ 2005:
15. Steenberge J, Bartels ED and Bav-Nielsen H.
Epidemiology of urinary tract diseases in general
tract infection based on culture and direct
microscopy of urine along with the antibiotic
sensitivity test of urinary pathogen. A
dissertation submitted to the Central Department
of Microbiology, T.U., Kathmandu.
profile of bacterial pathogens in urinary tract
infection with special reference to extended
spectrum â-lactamase (ESBL) producing strains.
A Dissertation submitted to the Central
Department of Microbiology, T.U. Kathmandu.
18. Farrel DJ, Morrissey J, Rubies D, Robbins M and
Felminhem D. A UK multicentre study of the
antimicrobial susceptbility of bacterial
19. Kahlmeter G. The ECO*SENS Project: a
prospective, multinational, multifunctional
epidemiological survey of the prevalence and
antimicrobial susceptibility of urinary tract
pathogens — interim report. J Antimicrob
infection and the prevalence of multidrug-
resistant strains among the bacterial pathogens.
A Derration submitted to the Central
Department of Microbiology, T.U. Kathmandu.
21. Tuladhar NR, Baniade N, Pokharel BM, Rizal B,
Manandhar R, Shrestha S, Shah A and Chaurasia

