Abstract

Background: Developmental challenges and malnutrition are two major childhood health problems in the developing world and malnutrition is a major risk factor for poor development, which can, ultimately, lead to developmental challenges with life-long implications, affecting the individual, the family and the society at-large. Materials and Methods: We searched PUBMED & COCHRANE REVIEW databases, published documents from WHO, UNICEF, UNDP and the World Bank and citations thereof, for relevant literature on brain development and malnutrition, dietary supplementation and brain development. Results: Effect of nutrition on the developing brain has been thoroughly studied and established. Under-nutrition, particularly during fetal and 1st two years of post-natal life, is a major risk factor for poor neuro-development, leading to motor, cognitive and speech delay, as well as behavioral problems and learning disabilities. Macro and micro-nutrients, like proteins, Iron, Iodine, Zinc, vitamins-B, C and D, choline and essential fatty acids are essential for proper brain development. Supplementation of pregnant and lactating mothers, infants and toddlers with multiple micro-nutrient, specially Iron, Iodine, Vitamins B12 and Folate and choline has been found beneficial, particularly among the vulnerable population. Conclusion: Dietary supplementation for pregnant and lactating mothers, infants and toddlers along with a congenial socio-emotional environment and cognitive stimulation from an early age can go a long way to help the child at-risk attain his developmental potential.

Key words: Brain development, under-nutrition, supplementation

Introduction

Malnutrition and developmental challenges are both major health problems of childhood, particularly affecting the developing world. Over 1 billion people worldwide are under-nourished and 1 billion live with disability\(^1,2\). According to the UNICEF-WHO- World Bank Joint Child Malnutrition Estimates of 2014\(^3\), globally 165 million children under 5 are stunted, 101 million are underweight and 52 million have wasting. 71% of the severely wasted, 56% of the stunted
and 67% of the underweight children hail from Asia. The prevalence of child under-nutrition in India is among the highest in the world; nearly double that of sub-Saharan Africa. Although levels of under-nutrition in India declined modestly during the 1990s, the reductions lagged far behind that achieved by other countries with similar economic growth rates.

Various factors like under-nutrition, poor stimulation and social interaction, environmental toxins, infections and stress during foetal life and early years of postnatal life can affect the structure and function of the brain with long-lasting effect on motor, cognitive and emotional development. Aberrations in neurodevelopment may lead to various conditions ranging from cerebral palsy to poor cognition and global developmental delay (GDD), language and communication disorders, behavioral problems like ADHD (Attention Deficit Hyperactivity Disorder), autism spectrum disorder (ASD), learning disabilities and dyslexia.

The International Child Development Steering group presented an estimate in 2007 that more than 200 million children under 5, mostly from Sub-Saharan Africa and South Asia, do not attain their developmental potential. 80% of world’s disabled population lives in low income countries. A recent survey of disability in 18 low and middle income countries showed that 23% of 2-9 year old children had or were at risk for disabilities. Developmental delays in early childhood are estimated to affect about 10% of children in India.

Studies from across the globe indicate that malnutrition is closely linked with developmental delay in all domains. In this review we propose to look into how and to what extent malnutrition and development are inter-dependent and how different risk factors come into play in causing both malnutrition and poor development.

Methods

For this purpose we searched databases like PUBMED & COCHRANE REVIEW and published documents from WHO, UNICEF, UNDP and the World Bank for relevant literature, using ‘undernutrition AND brain development’ and ‘dietary supplementation AND brain development’ as search words. Relevant citations from retrieved articles were also included. Restricted to studies from 1995 onwards, published in English and done on human population, a total of 761 articles were retrieved, of which 97 were selected as relevant, which included 20 review articles, 6 global reports, and 61 clinical trials.

Discussion

Nutrition & Brain Development

A brief account of the role of nutrients in brain development, will explain, physiologically, how malnutrition can be a risk factor for neuro-development. Brain development starts from the 22nd day of conception with the in folding of the neural plate and continues rapidly-through-out gestation and the first two years of life, with neurogenesis, axonal and dendritic growth, synaptogenesis, programmed cell death and pruning, myelination and gliogenesis and various macro and micro-nutrients play their role at the different stages of development.

The developing brain between 24-42 weeks of gestation is particularly vulnerable to nutritional insults. Human studies reveal that maternal malnutrition can result in global and specific neuro-developmental sequelae developing at different stages of life. Hippocampus, cortex and auditory area are most vulnerable to nutritional deprivation in early pregnancy which may lead to poor cognition, motor and speech delay. Effects may also be evident later in life in the form of ADHD and conduct disorders. Walther FJ had demonstrated in his study that both verbal comprehension and expressive language were significantly less developed in IUGR babies and a firm relation existed between language delay and behavioral problems. The brain’s vulnerability at this stage may outweigh its plasticity resulting in brain dysfunction even after post-natal repletion.

Different nutrients preferentially affect different brain functions, for example, protein-energy malnutrition causes global deficits, and Iron deficiency alters myelination, monoamine neurotransmitter synthesis, and hippocampal energy metabolism in the neonatal period, affecting motor development, cognition and memory. Zinc deficiency alters autonomic nervous system regulation and hippocampal and cerebellar development. Long-chain polyunsaturated fatty acids are important for synaptogenesis, membrane function, and, potentially, myelination. The impact of nutrients on permanent cognitive deficits is influenced by various factors like a) degree of deficiency, b) timing of deficiency, c) environmental stimulation, d) poverty, e) poor health care, f) maternal education etc.

Clinical Correlation

The co-existence of malnutrition and developmental delay has been studied in various geographic and socio-
Malnutrition and Development in Children

economic fields and growth retardation in the form of stunting, as a result of poor nutrition has been identified as a major indicator of poor development6.

Studies have shown that children exposed to severe acute malnutrition in early life have poor cognitive function, poor school achievement and behavioral problems16,17,18,19,20,21, and may also progress to attention deficit and lower socio-economic status in adulthood22. Chronic malnutrition in the form of underweight or stunting in children below two years can lead to deficits in cognition and scholastic achievement in later childhood and adolescence.

Longitudinal studies conducted in Pakistan, Guatemala, Peru, Philippines and Jamaica 23,24,25,26 have shown a relation with age of walking, cognition, IQ and school enrolment and dropout. In a meta-analysis in 2007, Walker SP, etal27 demonstrated that moderate to severe stunting was associated to the scores on cognition and the effect size varied from 0.4-1.05 SD. Low weight-for-age and height-for-age were also reported to be associated with developmental delay from studies conducted in India, Ethiopia and Bangladesh 28,29,30. Similar associations were also reported from Papua, New Guinea, Guatemala, Chile, Jamaica and Kenya. So we may conclude that clinical assessment also reveals that malnutrition has a definite relation to poor development, both motor and cognitive.

Poor nutrition also affects the temperament and behavior of children. In studies from Jamaica and Bangladesh, stunted children were found to be less happy and enthusiastic, showing more apathy and were less sociable than well-nourished controls, but the long-term effect on behavior have been shown to be reversible31.

Developmental challenges may, in its turn, perpetuate the malnourished state. The challenged child cannot compete for the family plate in a setting where food quantum is restricted, which leads to less food intake. These children tend to be neglected in the family. Moreover, recurrent infections, chronic diseases and vomiting in these vulnerable children further affect their nutrition6.

Correlation between malnutrition and poor development has been studied extensively in international adopted children (IAC). IAC commonly show features of growth retardation and developmental delays32,33,34, which possibly is a result of the psychosocial deprivation, poor nutrition and infections. A multi-country meta-analysis and a large Rumanian study have shown that height & weight show greater catch up than head circumference35,36 and a few studies have shown good catch up in developmental milestones too36,37, though long term deficits in the form of Specific Learning Disability and poor executive function tend to persist38. One cross sectional study has shown that lower Z scores for height, weight and head circumference were associated with higher incidence of delayed motor and language skills. A longitudinal study from Cleveland, Ohio followed 58 IAC below 42 mo of age, for a period of one year, to demonstrate that nutritional status had a significant impact on cognitive and psychomotor development, at the time of adoption as well as throughout the catch up period39.

Common Risk Factors

Compromised development in the first 5 years of life and poor nutrition are commonly linked to various other biological and social factors. The International Child Development Steering Group led by Susan P Walker in 200740 identified modifiable risk factors like inadequate cognitive stimulation, iodine deficiency and iron deficiency anaemia. The same authors, in 2011, have emphasised on other risk factors like Malaria, IUGR, violence and exposure to heavy metals, maternal depression, institutionalization and societal violence, with adequate research evidence7 as contributing factors.

Poor nutrition in mother can lead to IUGR and poor brain development. LBW babies showed delayed development at 1 year of age in a study from Brazil40. Though association between birth size and development at 6 and 24 months has been demonstrated, evidence of long-term effects on neuro-development are less consistent7. Protective factors after birth, as discussed below, may reduce the risk of long term effects. Preterm babies are also vulnerable to the effects of malnutrition, largely affecting later cognitive development41,42 and improving early energy deficit in them may promote brain growth43.

Mothers with nutritional deficiencies are more prone to infections including malaria, which in turn, can impede fetal development and lead to IUGR. A malnourished short stunted mother is likely to have cephalo-pelvic disproportion, leading to birth trauma and birth asphyxia, which may also lead to brain damage in the newborn.

Protective factors have also been identified which attenuate the negative effects of risk factors. These factors need active promotion to curb developmental
impairment in children. Major protective factors are breast feeding, maternal education and socio-emotional stimulation.

Breast feeding has been proved to have a definite impact on cognitive and emotional development of the child, both through the nutritional value of breast milk and better emotional bonding between mother and infant. Several studies performed worldwide have demonstrated strong correlation between duration of exclusive breast feeding and an improved developmental score in all age groups and at all geographical locations. Duration of exclusive breastfeeding also has a significant impact on cognitive development. A study on 771 low birth weight babies revealed that breast fed babies had a 8 point advantage in the Bayley mental developmental index over infants who were denied breast feeding. The results of a large, cluster-randomized trial of a breastfeeding promotion intervention in the Republic of Belarus have also yielded important positive findings bearing on the long-term health and neuro-developmental outcome. Results from a Brazilian study suggest that the impact of breastfeeding on intellectual development may lead to sizeable differences in adult education and wage-earning performance.

Maternal education is directly linked with better ante-natal care, smaller family size and better nutrition and healthcare for the children. Young children of educated mothers have higher levels of cognitive development. Even high-risk infants show better developmental trajectories when born to educated mothers. EL Prado, in his study made an interesting observation that an improvement in maternal cognition with multi micro-nutrient (MMN) supplementation increased the quality of care mothers provide for their infants, thus enhancing neuro-development. This is an indirect impact of maternal nutrition on infant health.

Supplementation

Trials on food supplementation provide stronger evidence of cause and effect relation between nutrition and brain development. As nutritional deficiency has major impact on brain development in the fetal life and 1st two years of post-natal life, all supplementation should be aimed during this period. It has been shown that the adverse effects of early malnutrition on cognitive functioning appear to diminish over time possibly due to the neuro-plasticity of the brain. Nutrient supplementation and psycho-social stimulation helps in overcoming the damage. Stunted children who had experienced catch-up growth had verbal vocabulary and quantitative test scores that did not differ from children who were not stunted. Supplementation in older children does not demonstrate such an impact on cognition. A review of 13 randomized controlled trials published since 2000, found a lack of consistency in the impact of micronutrient supplementation in older children aged 5-15 years, on intelligence, long term mental functions and school examination grades of the children. A beneficial effect of micronutrient supplementation on short term memory was more consistently reported.

Iron deficiency anaemia in infancy affects motor and cognitive development while IDA in children results in poor cognition and school achievement. Long term effects may persist even with provision of treatment in infancy. Adequate maternal Iron intake and provision of Iron to infants in low & middle income countries have led to improved outcomes. A Costa Rican study in 2006 showed that children with chronic IDA did not catch up in cognitive development with the control group and the gap in IQ levels increased with age, which was more pronounced among children from low income families.

Studies have shown iodine deficiency to affect IQ by upto 12.5-13.5 points. Prevention of iodine deficiency in pregnant mothers can help promote neuro-development in children.

Essential Fatty acids (EFA) are important for neurogenesis and myelination, but the benefits of EFA supplementation is not yet well established. Use of EFA containing formula in term babies showed no effect on neuro development whereas beneficial effect has been seen in pre term babies. EFA supplementation in children in low & middle income countries shows mixed results: studies from Turkey, Ghana & China suggest positive impact whereas trials in Gambia and Malawi, India showed no effect. The effect of prenatal EFA supplementation on fetal brain development is also not clear.

Zinc contributes to brain structure through its role in DNA and RNA synthesis. However, randomized trials in Nepal and Peru have shown no effect of Zinc supplementation in pregnancy on neuro-development. Most trials on Zn supplementation in infancy showed improvement only in motor development.

Thiamine deficiency with neurological symptoms and poor language development is relatively high in low income countries. Other observational studies have demonstrated association between infant development and maternal niacin and B6 intake and infant cobalamine...
and folate status\(^\text{67}\). Molloy AM et al have established that serum concentration of Vitamin B12 (\(< 250 \text{ ng/l}\)) during pregnancy has high correlation with neural tube defect in foetus\(^\text{68}\) and significant association with cognitive performance\(^\text{69}\). Another Indian study adds that higher maternal folate levels predict better cognitive development in the child\(^\text{70}\). Vitamin C is a pivotal antioxidant in the brain and neonatal brain is particularly susceptible to vitamin C deficiency and may adversely affect early brain development\(^\text{71}\). The fetus and neonate have high demands for choline, while, pregnancy and lactation are periods when maternal reserves of choline are depleted, hence maternal dietary intake/supplementation is particularly important for normal brain development of the offspring, especially memory performance\(^\text{72}\). Vitamin D plays an important role in brain functioning, but the impact of maternal vitamin D deficiency on the neuro-cognitive development of the offspring remains equivocal\(^\text{73,74}\).

The present consensus is that the effect of supplementation is more pronounced in the vulnerable groups, such as mothers with a poor nutritional level and very low birth weight or preterm babies. A review conducted by Morse NL of studies from 2000 to 2012 revealed that maternal DHA intake during pregnancy and/or lactation can prolong high risk pregnancies, increase birth weight, head circumference and birth length, and can enhance visual acuity, hand and eye coordination, attention, problem solving and information processing. Vitamin D helps maintain pregnancy and promotes normal skeletal and brain development. Folic acid is necessary for normal foetal spine, brain and skull development. Iodine is essential for thyroid hormone production necessary for normal brain and nervous system development during gestation that impacts childhood function, thus concluding that maternal supplementation within recommended safe intakes in populations with dietary deficiencies may prevent many brain and central nervous system malfunctions and even enhance brain development and function in their offspring\(^\text{75}\).

Moreover, difference in neuro-development with supplementation though not remarkable in the toddler age group, assessment at an older age has revealed better cognition, memory, and behavioral maturation like rule learning and inhibition\(^\text{76}\). Hence dietary supplementation may be considered beneficial in the long run.

Newer aspects of the role of nutrients in brain development is also being explored. A recent study suggests that nutritional components with immunomodulatory and/or anti-inflammation effects may serve as neuroprotective agents by preventing inflammation and perinatal infection of the neonatal brain, which plays a crucial role in the pathogenesis of white matter injury. To quote a study by Keunek K “Growing evidence supports the existence of a microbiome-gut-brain axis. The microbiome is thought to interact with the brain through immunological, endocrine, and neural pathways. Consequently, nutritional components that may influence gut microbiota may also exert beneficial effects on the developing brain. Based on these properties, probiotics, prebiotic oligosaccharides, and certain amino acids are potential candidates for neuroprotection\(^\text{77}\). It is thus evident that various nutrients play their roles in brain development and a balanced diet with multi-nutrient supplementation is more important than individual supplementations for normal brain development. Trials that provide supplement to both pregnant mothers and children up to age two years demonstrated stronger evidence of long term positive effect.

Conclusion

Developmental challenges account for major morbidity and disability in childhood as well as compromised output in adult life. Children with poor cognitive levels suffer in education and ultimately earn less as adults, leading to further poverty. Moreover, poor cognitive development and lack of education in women is related to increased fertility, poor child survival and inadequate environmental stimulation for the off-springs, thus perpetuating the cycle of under-nutrition, poor development and poverty.

Recommendations

Provision of proper nutrition along with a congenial socio-emotional environment and cognitive stimulation from an early age will help the child to attain his developmental potential. Dietary supplementation for pregnant and lactating mothers, infants and toddlers with Iron, Iodine, Vitamins B12 and Folate and choline can go a long way to augment the child’s neuro-development. A balanced diet and a stimulating environment provided at home and through educational programs will be conducive to development for the children at risk.

Key Messages

- Malnutrition hinders motor, cognitive and behavioral development in a child
• The most vulnerable age for impairment of brain development is the fetal life and 1st 2 years of postnatal life

• Dietary supplementation in pregnant and lactating mothers and children upto 2 years, particularly among the under privileged can help improve neuro-development in children.

• Multi-nutrient supplementation is much more effective than single nutrient therapy.

• A balanced and complete diet along-with early psycho-social stimulation promotes brain development.

References

6. Operational Guidelines, RashtriyaBalSurakshaKaryakram (RBSK), under NRHM, Govt of India. Website: http://nrhm.gov.in/nrhm-components/rmnch-a-child-health-immunization/rashtriya-bal-swaasthya-karyakram-rbsk/background.html [ACCESSSED ON 05.03.15]

25. Berkman DS, Lescano AG, Gilman RH, Lopez SL, Black MM. Effects of stunting, diarrhoeal disease, and parasitic infection during infancy on cognition in late
term consequences of growth retardation during early
childhood. In: Hernandez M, Argenta J, eds. Human
growth: basic and clinical aspects. Amsterdam:
Elsevier, 1992: 143-149.
27. Walker SP, Chang SM, Powell CA, SimonoffE,
28. Vazir S, Naidu AN, Vidyasagar P. Nutritional status,
29. Hamadani JD, Fuchs GJ, Osendarp SJ, Khatun F,
30. Albers LH, Johnson DE, Hostetter MK, Iverson S,
31. Liu J1, Raine A. The effect of childhood
32. Albers LH, Johnson DE, Hostetter MK, Iverson S,
33. Johnson DE, Miller LC, Iverson S, Thomas W,
34. Lien NM, Meyer KK, Winick M. Early malnutrition
and "late" adoption: A study of their effects on
the development of Korean orphans adopted into
American families. Am J ClinNutr 1997;278:922-
924.
35. Johnson DE, Miller LC, Iverson S, Thomas W,
36. Rutter M. Developmental catch-up, and de
37. Benoit TC, Joeelyn LJ, Moddemann DM, EmbreeJE.
38. Park H, Bothe D, Holsinger E, Kirchner HL, Oness
K, Mandalakas A. The Impact of Nutritional Status
and Longitudinal Recovery of Motor and Cognitive
Milestones in Internationally Adopted Children. Int J
39. Walker SP, Wachs TD, Meeks-Gardner JM,Lozoff B,
SS,Assuncião AM. The development of low birth
weight term infantsand the effects of the environment
41. Lundgren EM, Tuvemo T. Effects of being born small for
gestational age on long-term intellectual performance.
42. Embleton ND. Early nutrition and later outcomes in
43. Tan M1, Abernethy L, Cooke R. Improving head growth
in preterm infants—a randomised controlled trial II:
MRI and developmental outcomes in the first year.
Arch Dis Child Fetal Neonatal Ed2008;93(5):F342-
6.
44. Rao MR, Hediger ML, Levine RJ, Naficy AB,
45. Kramer MS, Aboud F,Maniak M, Mironova E,
and school achievement in Brazilian adolescents.
47. Barros AJ, Matijasevich A, Santos IS, Halpern R,
48. Wang LW, Wang ST, Huang CC. Preterm infants of
educated mothers have better outcome. ActaPaediatri
2008;97:568-73.
49. Prado EL1, Ullman MT, Muadz H, Alcock KJ, Shankar
AH. The effect of maternal multiple micronutrient
supplementation on cognition and mood during pregnancy
and postpartum in Indonesia: a randomized trial.SUMMIT Study Group
50. Boddy J1, Skuse D, Andrews B. The developmental
sequelae of nonorganic failure to thrive. J Child
PsycholPsychiatr2000;41(8):1003-14
51. Martins VJ, Toledo Florêncio TM, Grillo LP, do Carmo
PFM, Martins PA, Clemente AP et al. Long-lasting