Culture and Sensitivity Pattern of Urinary Tract Infection in Hospitalized Children in Patan Hospital

Amatya P¹, Joshi S², Shrestha S³

¹Dr. Puja Amatya, MBBS, MD, Lecturer, ²Dr. Suchita Joshi, MBBS, MD, Assistant Professor, ³Dr. Shrijana Shrestha, MBBS. MD. Professor. All from the department of Paediatrics, Patan Academy of Health Sciences.

Address for correspondence:
Dr. Puja Amatya, Lecturer
Patan Academy of Health Sciences (PAHS)
Lagankhel, Lalitpur, Nepal
Tel: +9779841401394
E-mail: pujaamatya@pahs.edu.np

Abstract

Introduction: Urinary tract infection is one of the most common infections in children. Antibiotics are usually given empirically before urine culture reports are available. The primary aim of this study was to see the causative organisms and culture and sensitivity pattern of urinary tract infection in hospitalized children. Material and Methods: All children aged 0-15 years with culture positive urinary tract infections who were admitted to children’s ward from 14th April 2013 to 14th April 2014 were included. The causative organisms for urinary tract infection along with its antibiotic sensitivity pattern were retrospectively reviewed and analyzed. Results: 48 cases of culture positive urinary tract infection were enrolled in this study in a period of 12 months. The most common causative organism was Escherichia coli (67%), followed by Klebsiella pneumoniae (21%), Non-hemolytics streptococcus (4%), Enterobacter (2%), Acinetobacter (2%), Proteus (2%) and Coagulase negative staphylococcus (2%). Most cases of the culture positive urinary tract infection occurred between 2 months to 1 year of age. Out of 48 cases, 90% were sensitive to Amikacin and 85% were resistant to Ofloxacin. Conclusion: Escherichia coli is the most common organism causing urinary tract infection in children. As resistant to first line antibiotic is increasing, antibiotic stewardship programme should be strengthened.

Key words: Urinary tract infection (UTI), Antibiotics

Introduction

Urinary tract infection (UTI) is one of the most common infections in children. Antibiotics are usually given empirically before the laboratory results of urine culture are available. To ensure appropriate therapy, current knowledge of the organisms that cause UTI and their antibiotic susceptibility is mandatory¹. The spectrum of etiologic agents causing urinary tract infection and their antimicrobial resistance pattern has been continuously changing over the years, both in community and in hospitals². Escherichia coli is still the most frequently isolated pathogen followed by Klebsiella spp, Proteus, and Enterobacter spp³. Especially, in the underdeveloped and developing countries,
due to inappropriate use of antibiotics, antibiotic resistance is increasing and treatment of urinary tract infection is becoming more difficult. Physicians should understand the regional antibiotic resistance pattern for determining empirical therapy until the results for culture and sensitivity are available. The knowledge on local antibiotic susceptibility is not only helpful for empirical therapy but also necessary to cycle the antibiotics regularly.

According to the hospital policy and guideline, the first line antibiotic used for UTI in children in our hospital is Ofloxacin. Anecdotally, it was noted that children treated with oral Ofloxacin in the outpatient department were increasingly being admitted due to non-response to treatment. Therefore, the objectives of this study were to investigate the common microorganisms causing urinary tract infections and to identify the status of their antibiotic susceptibility in those children who were admitted with UTI.

Material and Methods

This retrospective study was performed on patients admitted to the children’s ward of Patan hospital with a diagnosis of culture positive UTI. All children aged 0-15 years with culture positive UTI who were admitted to children’s ward from 14th April 2013 to 14th April 2014 were included. The clinical as well as demographic data of each case was reviewed and recorded in the patient proforma. The case notes were reviewed along with investigation reports to identify the most common pathogens causing urinary tract infection as well as the sensitivity pattern.

Urine samples were collected according to Paediatric protocol of Patan hospital. Catheter sample was collected in children with no urinary control and midstream clean catch collection in children with urinary control.

Criteria for culture positive UTI

<table>
<thead>
<tr>
<th>Method of collection</th>
<th>Colony count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suprapubic aspiration</td>
<td>Urinary pathogen in any number</td>
</tr>
<tr>
<td>Urethral catheterization</td>
<td>$\geq50\times10^3$ CFU/ml</td>
</tr>
<tr>
<td>Midstream clean catch</td>
<td>$>10^5$ CFU/ml</td>
</tr>
</tbody>
</table>

CFU: colony forming units

Bacterial isolates and antimicrobial testing

A total 48 bacterial isolates were identified from 48 patients. Urine microscopy was sent in all cases along with culture and sensitivity. These isolates were identified in microbiology laboratory of Patan hospital. Urine samples were plated out on selective Petri plates.
Out of 48 patients, 80% (N=38) had fever at the time of presentation. Those who didn’t had fever at presentation were all less than two months of age. Other common symptoms at admission were vomiting, pain or crying during micturition and loose stool. Three patients had neonatal jaundice. Among 48 admitted culture positive UTI cases, three cases had one episode and one had two previous episodes of UTI. None of the patients had congenital abnormality of urinary tract like vesico-ureteric reflux. Out of forty eight patients, three also had pyelonephritis on ultrasonography. One had bilateral calcification of renal pelviccalyceal system, two had echogenic kidneys and one had mild hydronephrosis on ultrasonography.

The most common bacteria isolated in urine culture was *Escherichia coli* 67% (N=32) followed by *Klebsiella pneumoniae* 21% (N=10). The pattern of bacteria causing UTI is shown in Figure 2.

Out of thirty two *Escherichia coli* positive cases, 30 cases (93%) were resistant to Amoxycillin followed by Nalidixic acid in 28 (87.5%) cases, Ciprofloxacin in 27 (84.3%) cases, Cefotaxim in 26 (81.2%) cases, Ofloxacin in 26 (81.2%) cases, Cotrimoxazole in 22 (68.75%) cases, Getamicin in 17 (53.1%) cases, Nitrofurantoin in 15 (46.8%) cases and Amikacin in 5 (15.6%) cases. Fig 3.

Out of eleven case of *Klebsiella pneumoniae*, Amoxycillin was resistant in 10 (100%) cases followed by Nitrofurantoin in 8 (80%) cases, Gentamicin in 7 (70%) cases, Cotrimoxazole in 7 (70%) cases, Cefotaxim in 7 (70%) cases, Cefotaxim in 7 (70%) cases, Nalidixic acid in 7 (70%) cases, Ciprofloxacin in 6 (60%) cases, Ofloxacin in 4 (40%) cases and Amikacin in 2 (20%) cases. Fig 4.

In this study, the *Enterobacter* was sensitive only to Ofloxacin and Colistin. *Non-hemolytic streptococcus* was sensitive only to Amoxicillin and Chloramphenicol. *Coagulase negatives staphylococcus aureus* was sensitive to Oxacillin, Erythromycin and Ofloxacin. *Acinetobacter* was sensitive to only to Amikacin.

Out of forty eight urine culture positive cases three organisms were resistant to all first line antibiotics. Out of three, two were *Klebsiella pneumoniae* and one was *Escherichia coli*. Both were sensitive only to Meropenem, Imipenem and Colistin.

Among all the patients, 58% received Amikacin followed by Ofloxacin, Cefotaxim, Chloramphenicol, Vancomycin and Meropenem in 17%, 15%, 6%, 2%, 2% respectively.

Fig 1: Depicting age wise distribution of cases of the study population.

Fig 2: Showing Common pathogens causing urinary tract infections during the study.
Discussion

Escherichia coli is the most commonly reported pathogen causing UTI[^6,7,8,9,10]. This is also reflected in this study.

In the study done by Durgesh et al[^7], Escherichia coli was the predominant (31.25%) isolates causing UTI, followed by _Staphylococcus aureus_ (25%), _Pseudomonas aeruginosa_ (15.62%), _Proteus mirabilis_ (15.62%), _Klebsiella pneumoniae_ (6.25%) and _Serratia marcescens_ (6.25%) where as in our study the most common organism causing UTI was _Escherichia coli_ (67%) followed by _Klebsiella pneumoniae_ (21%), _Non haemolytic streptococcus_ (4%), _Enterobacter_ (2%), _Acinetobacter_ (2%), _Proteus_ (2%) and _Coagulase negative staphylococcus aureus_ (2%). Similarly, in the study done by Yolbaset al[^6] and Mostafa et al[^8] and, _Escherichia coli_ was the most common organism causing urinary tract infection followed by _Klebsiella_ which was similar to our study. Similar results were observed in studies done by Rehamanet al[^9] and CW kwan et al[^10]. This difference may be due to the variation in geographical distribution.

Study done by Haller et al showed the effective empirical intravenous and oral antibiotics for the treatment of community-acquired UTIs include Ampicillin and Aminoglycosides[^11], whereas the oral antibiotic of choice by Prais D et al[^12] and Hoberman et al[^13] showed Amoxicillin-Clavulanate or Cefuroxime and Cefixime respectively. In our study, uropathogens showed
increased resistant pattern to oral antibiotics (Fig 3.4). The reason may be easy availability to antibiotics from pharmacy. We haven’t seen the sensitivity with oral Cefixime as this disc was not available while this study was done. Hence this study cannot recommend the choice of empirical oral antibiotic.

Compared to the study done by Yolbas et al8, in which \textit{Escherichia coli} was resistant to Amikacin in 3%, Nitrofurantoin 9%, Trimethoprim/ Sulfamethoxazole 58% and Cefotaxime 51%, in our study \textit{Escherichia coli} showed more resistant pattern to these antibiotics i.e Amikacin (15.6%), Nitrofurantoin (46.8%), Cotrimoxazole (68.75%) and Cefotaxim (81%). The reason for increase in resistance may be due to the excessive use of third generation Cephalosporins both as oral and intravenous route.

In the study done by Durgesh et al7, the mean sensitivity to Penicillin and Ciprofloxacin were 70.83% and 60% respectively. \textit{Staphylococcus aureus} showed 75% resistance to Methicillin, Oxacillin and Vancomycin. Uropathogens were sensitive to Norfloxacin, Cotrimoxazole and Ofloxacin. These results were in contrast to our study in which \textit{Escherichia coli} was sensitive to Amoxycillin and Ciprofloxacin in only 6% and 15.6% respectively, and in case of \textit{Klebsiella pneumoniae} none was sensitive to Amoxycillin and only 40% were sensitive to Ciprofloxacin. The reason for this difference may be due to the injudicious over the counter use of antibiotics.

In the study done by Mostafa et al8, \textit{Escherichia coli} had a sensitivity rate of 97.8% to Ceftriaxone and 95.2% to Cefotaxime in contrast to our study in which Cefotaxim was sensitive only in 18.7% of cases. The highest resistance rate of \textit{Escherichia coli} was to Penicillin (95.2%) followed by Amoxycillin and Cotrimoxazole (79 and 74.2% respectively) in the study by Mostafa et al11 whereas in our study \textit{Escherichia coli} showed high resistant to Amoxycillin (93%) followed by Nalidixic acid (87.5%). According to Mostafa et al8 \textit{Klebsiella} spp. showed the highest sensitivity to Ciprofloxacin (95.1) and Ceftriaxone 90.7% which was in contrast to our study in which \textit{Klebsiella} was sensitive to Ciprofloxacin and Cefotaxim only in 40% and 30% respectively, in our study \textit{Klebsiella} showed highest resistant to Amoxycillin which was similar to study done by Mostafa et al8.

In Study done by Rehamet al9, 59.9% isolates of \textit{Escherichia coli} were multidrug resistant where as in our study only one \textit{Escherichia coli} was multidrug resistant. In our study \textit{Escherichia coli} showed increase in resistant to oral antibiotics; Amoxycillin (93%), Ofloxacin (81.2%), Ciprofloxacin (84.3%) Cotrimoxazole (68.75%), and Nitrofurantoin (46.8%) which was similar to the results in study done by Rehamet al9. The reason may be easy access to oral antibiotics from pharmacy.

In our study \textit{E. coli} was sensitive to Cefotaxim in only 18.75% where as in study done by CW Kwan et al10, \textit{Escherichia coli} was sensitive to greater than 95% of third-generation Cephalosporins (Ceftriaxone and Ceftazidime). In their study bacteria were frequently resistant to ampicillin (54.4%) and Trimethoprim-Sulfamethoxazole (40.4%) which was comparable to our study.

In our study \textit{Escherichia coli} (81.2%) and \textit{Klebsiella pneumoniae} (70%) showed increase in resistance pattern to Cephalosporins which was comparable to study done by Stephanie A et al14 in which there was high rate of resistance to third generation Cephalosporins in subpopulations of children admitted to the hospital for UTIs.

In the study done by Rasoulet et al15, most isolates showed high resistance against Ampicillin, Cotrimoxazole, Nalidixic acid, and Nitrofurantoin and \textit{Klebsiella} isolates showed more resistance against tested antibiotics than \textit{Escherichia coli} isolates which was comparable to our study.

Although our study suggested high resistance to oral antibiotics, there was a caveat that this study included in-patients only. This might have caused some selection bias. However, this information raises an important issue regarding antibiotic resistance in UTI. A future study including both in-patients and out-patients would help clarify if resistance to oral antibiotics has indeed emerged in the organisms causing UTI in the community.

Conclusion

\textit{Escherichia coli} is the most common organism causing urinary tract infection in children. Urine microscopy as well as urine culture sensitivity should be sent before starting antibiotics. Uropathogens showed increased resistance to oral antibiotics. Amikacin remains the first line intravenous antibiotic in hospitalized patients.
References

14. Stephanie A. Lutter, MD; Melissa L. Currie, MD; Lindsay B. Mitz, BA; Larry A. Greenbaum, MD, PhD. Antibiotic Resistance Patterns in Children Hospitalized for Urinary Tract Infections. *Arch Pediatr Adolesc Med* 2005;159:924-928.