Mitochondrial Diabetes A Rare Case

Singh AK¹, Aoki M², Miyata M³, Mine Y⁴, Suzuki J⁵, Urakami T⁶

Abstract
A 25 years female diagnosed and confirmed mitochondrial by gene analysis mutation DNA 3243(A-G). CQ10 was useful for the resolution of clinical symptoms, and metformin should be avoided in mitochondriod diabetes.

Key words: Mitochondrial diabetes, Metformin, Wolff-Parkinson-White (WPW) syndrome.

Introduction
Mitochondrial diabetes first described in 1992 by van den Ouweland et al in a Dutch family and by Reardon et al in a UK family¹ mitochondrial diabetes is commonly associated with sensorineural deafness and is characterised by progressive non-autoimmune beta-cell failure². Maternal transmission of mutated mitochondrial DNA (mt DNA) can result in maternally inherited diabetes. Although several mutations have been implicated, the strongest evidence relates to a point substitution at nucleotide position 3243 (A to G) in the mitochondrial tRNA [leu(UUR)] gene³. Besides the frequently reported mt DNA 3243A>G mutation⁴, several other mtDNA variants have been associated with a diabetic phenotype suggestive of MIDD⁵,⁶. Characteristics of mitochondrial diabetes mellitus (MDM) presenting with the mitochondrial DNA 3243 (A→G) mutation are short stature, slim body type, neurosensory deafness, cardiomyopathy, and central nervous disorder⁶.

Currently, there is no effective therapy for treating MDM. In this study, we reviewed a case of MDM presenting with the mitochondrial DNA 3243 (A→G) mutation, and CQ10 was useful for the resolution of its characteristic clinical symptoms⁷.

The Case
Twenty five years old female was detected as having glycosuria conducted at her school and referred to Nihon University, Tokyo, Japan about 15 years ago she was not obese and negative for all pancreatic antibodies, her HbA1c was 9.7 % and insulin secretion was not exhausted. After eight months since regular visit, she was diagnosed as having MDM presenting with mitochondrial DNA 3243 (A→G) mutation. She had taken oral hypoglycaemic agents and received insulin injections, and HBA1c level was 8%-9%. Electrocardiogram was done 12 years back where she was diagnosed with Wolff-Parkinson-White (WPW) syndrome.

¹Dr. Arun Kumar Singh, MBBS, MD, Fellowship-Paediatric Endocrinology and Diabetes, BP Koirala Institute of Health Sciences, Dharan, Nepal, ²Dr. Aoki Msasko, ³Dr. Midori Miyata, ⁴Dr. Yusuke Mine, ⁵Dr. Junichi Suzuki, ⁶Dr. Tatsuhiko Urakami, all from the Department of Paediatrics, Nihon University Hospital,Tokyo, Japan.

Address for correspondence
Dr. Arun Kumar Singh
E-mail: arunsinghnepal@gmail.com

How to cite

doi: http://dx.doi.org/10.3126/jnps.v37i3.18765

This work is licensed under a Creative Commons Attribution 3.0 License.
At one year of age left ventricular hypertrophy was detected and diagnosed with mitochondrial cardiomyopathy. Bilateral sensory deafness was identified at the age of sixteen. Growth developmental history was normal.

Her mother is now 43 years old and is diabetes patient with hypoglycaemic agent. At 33 years of age her mother was diagnosed with 3243 mutation and her father is not diabetic. She has one sister who was also diagnosed as 3243 mutation at age of 13 years.

During her stay in the hospital her laboratory findings recorded were, HbA1c: 10.3%, Lactate: 28.8mg/dL, Pyruvic acid: 1.45mg/dL, Lactate/Pyruvic acid ratio: 19.9, TSH: 0.41μIU/mL, T3: 2.36 pg/mL, T4: 0.98 ng/dL, GAD antibody :< 5.0 U/mL, IA-2 antibody: <0.4U/mL, Peripheral nerve conduction velocity; Median nerve: 31.4 m/s, peroneal nerve: 14.9m/s.

Discussion

Patient was diagnosed and confirmed mitochondrial diabetes by gene analysis mutation DNA 3243 (A-G) Metformin should be avoided in Mitochondrial diabetes because risk of severe lactic acidosis in presence of mitochondrial dysfunction. So on should need to properly investigate and diagnose diabetes patients for better treatment and management in developing country. Other form of insulin dependent DM associated with mitochondrial mutation is WPW syndrome. For the resolution of MDM symptoms free at least one month of CQ10 should be prescribed.

Fig 1: CT scan showing bilateral cortical sulci and ventricular systems are mildly prominent- suggestive of mild cerebral atrophy, bilateral cerebral hemisphere are normal. No calcification. No extra axial collection.

Fig 2: Shows bilateral cortical sulci, ventricular system and CSF spaces in posterior fossa are prominent-suggestive of diffuse brain atrophy. Bilateral cerebral hemisphere are normal in signal intensity.
Conclusion

Beside CQ10 multiple daily insulin injections started, so it was difficult to understand which of the two resulted in resolution of the symptoms; however, insulin secretion improved and HbA1c level and lactic acid was decreased. CQ10 was considered effective for MDM. In this regard, further evaluation needed to elucidate the effect of CQ10 and Metformin should be avoided in mitochondrial diabetes.

References

