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Abstract 

In the real world, many physical problems like heat equation, wave equation, Laplace equation 

and Poisson equation are modeled by partial differential equations (PDEs). A PDE of the form 

                   where x and t are independent variables and u is a dependent variable; is 

a one-dimensional heat equation. This is an example of a prototypical parabolic equation.  The 

heat equation has analytic solution in regular shape domain. If the domain has irregular shape, 

computing analytic solution of such equations is difficult. In this case, we can use numerical 

methods to compute the solution of such PDEs. Finite difference method is one of the 

numerical methods that is used to compute the solutions of PDEs by discretizing the given 

domain into finite number of regions. Here, we derived the Forward Time Central Space 

Scheme (FTCSS) for this heat equation. We also computed its numerical solution by using 

FTCSS. We compared the analytic solution and numerical solution for different homogeneous 

materials (for different values of diffusivity α). There is instantaneous heat transfer and heat 

loss for the materials with higher diffusivity (α) as compared to the materials of lower 

diffusivity. Finally, we compared simulation results of different non-homogeneous materials. 

 

Keywords: Finite Difference Methods; Forward Time Central Space Scheme; Heat conduction 

in non-homogeneous material; Numerical solution; Partial Differential Equations; Thermal 

diffusivity. 

 

 

1. INTRODUCTION 

Heat is an important process of energy transfer in 

the case of temperature difference between two 

different points. In the one hand, the term 'heat' is 

used to describe the energy transferred through the 

heating process. On the other hand, temperature is a 

physical property of substance which describes the 

coldness or hotness of an environment or object [1, 

21]. Heat transfer is a thermal engineering which 

concerns the generation, use, conversion and 

exchange of thermal energy and/or heat between 

physical systems. Heat transfer is generally 

classified into various modes, like heat conduction, 

convection, thermal radiation, and transfer of 

energy by phase change [1, 17]. The conduction 

mechanisms of heat transport occur either because 

of an exchange of energy from one molecule to 

another (without the actual motion of the 

molecules), or because of the motion of the free 

electrons if they are present. So, these modes of 

heat transport depend upon the material properties 

like diffusivity of the medium [1, 17]. 

Differential equation is an equation involving 

derivative of an unknown function of one or more 

variables. Partial differential equations (PDEs) are 

important in many branches of science and 

engineering because there is always more than one 

independent variable involved in real life physical 

problems. There are very few PDEs that we can 

solve, mostly linear equations and some nonlinear 

equations [1, 2, 10, 12]. In Mathematics and 

Physics, the heat equation or diffusion equation is a 

PDE which describes the distribution of heat 

evolution over time in a solid medium [2, 10, 12, 

23]. The heat equation is an important PDE which 

describes the variation in temperature (or 
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distribution of heat) in a given region over time 

[25]. The heat equation is very important in diverse 

scientific fields [2, 8, 10, 11, 12]. 

The diffusion equation is the more general version of 

the heat equation which arises in connection with the 

study of chemical diffusion and other related 

processes. The geothermal gases of constant heat or 

mass flux and the constant wall temperature or 

concentration are electrically conducting [2, 8, 10, 11, 

12]. According to the study of Chamkha and Khaled 

[5], the effect of magnetic field on the coupled heat 

and mass transfer by mixed convection in a linearly 

stratified stagnation flow in the presence of an internal 

heat generation or absorption. The modeling and exact 

analytic solutions for hydromagnetic oscillatory 

rotating flows of an incompressible Burgers fluid 

bounded by a plate [8]. The heat equation was first 

developed by Jean Baptise Joseph Fourier (1768-

1830) and presented as a manuscript to the Institute de 

France in 1807 AD and published in his 

monograph, Analytic Theory of Heat in 1822 AD 

[14]. In the 1600s, scientists appear to have thought 

correctly that heat is related with the motion of 

microscopic constituents of the matter. But it was 

believed, in the 1700s, that heat was a separate 

fluid-like substance [26].  

If           then the partial differential equation 

of the form [2] 

                                            

BCs:                                          

IC:                                           

where   ,    are boundary temperatures,      is 

initial amount of heat given at the length   of the 

rod and    is thermal diffusivity, is called one 

dimensional heat equation or one-dimensional 

diffusion equation [4]. 

Comparing the above equation (1.1) with the 

second order linear PDE 

                             

 (1.2) 

We get,     and      . 

           

 

 
Fig. 1: Heat flow in a rod. 

So, it is an example of a prototypical parabolic 

partial differential equation [1]. The Heat 

equation has analytic solution in regular shape 

domain whereas if the domain has irregular 

shape, computing analytic solution of such 

equations is very difficult [13]. To overcome 

such difficulty, we use numerical methods to 

compute the solution of the modeled partial 

differential equations. Finite difference method is 

one of the numerical methods that is applied to 

compute the solutions of partial differential 

equations by discretizing the domain into finite 

number of regions. The solutions are computed at 

the grid points of the domain [13]. 

Heat equation (Diffusion equation) is widely 

used in particle diffusion, Brownian motion, 

Schrödinger equation for a free particle and 

thermal diffusivity in polymers. It is also used to 

    maintain the temperature on the outer surface 

of rockets, which prevents the rocket from fire 

     construction of railway tracks and bridges, 

which prevents the bending of tracks and bridges 

from expansion       calculate the diffusion rate 

of diseases through air. Moreover, it is used in 

refrigerators, image analysis, cancer model and 

spatial ecological model [15]. 

The approach of our work is mainly focused on 

the numerical solution of one dimensional 

parabolic partial differential equation. The 

second section comprises formulation of 

numerical methods. The third section depicts the 

simulation results and comparison of solutions of 

materials of different diffusivity. The fourth 

section culminates the conclusion and finding of 

the work. 

 

2. NUMERICAL METHODS 

Various approximate methods have been 

investigated to solve the time dependent partial 

differential equations. In numerical analysis the 

analysis of these methods in terms of convergence, 

stability and order of accuracy is a main objective 

[21]. One way to solve time–dependent partial 

differential equations numerically is to discretize in 

space but leave time variable [9, 11, 16, 18, 21]. 

Here, we consider the Forward Time Central Space 

Scheme (FTCSS) and employed it to find the 

numerical solution. 

The forward difference in time is given by [20], 
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After re-arrangement and dividing by   , we get 

                

  
 
       

  
                              

 

Also, central difference in space is given by [20], 

                   
       

  
 
     

  

        

   
 
     

  

        

   
    

                   
       

  
 
     

  

        

   
 
     

  

        

   
    

 

Adding and re-arranging, we get, 

                           

     
 
        

   
                               

 

Substituting the value of (2.1) and (2.2) in equation (1.1), we get 

 

                

  
    

                           

     
              

 

Re-arranging we obtain, 

                     
  

     
                                         

 
Fig. 2: Grid points of space-time plane [17]. 

 

We subdivide the spatial interval       into     

equally spaced sample points             
 . The time interval       is subdivided into     

equal time levels               [3, 20]. At 

each of these space-time points we introduce 

approximations             
    

Now, equation (2.3) reduces to, 

  
      

         
     

      
             

where,      
  

     
   

 

  
 

which is our required Forward Time Central Space 

scheme for (1.1) [18, 19, 20].  

The numerical solution of the heat equation (1.1) 

can be found by using the initial and boundary 

conditions to the scheme (2.4). The Forward Time 

Central Space scheme (2.4) is consistent with the 

order of accuracy (1, 2) and is stable if and only if 
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  [18, 20]. Thus, in order to use FTCSS, we 

must have the value of   
 

  
 , which is defined 

above must be less than or equal to    . We can 

maintain this condition by resizing the lengths of 

time and space intervals. To find the more accurate 

approximation we have to increase the number of 

space and time partitions.  

 

3. SIMULATION RESULTS AND 

DISCUSSION 

3.1 Comparison Between Analytic and 

Numerical Solution 

Let us consider an example of heat equation as 

follows: [7] 

                                        

   (3.1) 

BCs                         and  

IC:                          

 

3.1.1. Analytic Solution 

By using the separation of variables method, the 

solution of 1D heat equation (3.1) is given by [7], 

                                
     

where, the constants  ,   and separation constant 

    are given by initial and boundary conditions 

[2, 11, 13]. 

Now, using the boundary conditions and 

superposition principle we get, 

                       
           

 

   

 

Again, after using the initial conditions [6], we get  

                      
                 

Now, we are interested to find the temperature 

distribution of rod at distance         from the 

initial point of rod at time          . That is, we 

are interested to find the value of             

From above solution (3.2), we get  

                  

 

3.1.2. Numerical Solution by Using FDM 

The FTCS scheme of the above heat equation (3.1) 

is [20] 

  
      

        
     

      
   

 

with   
    

      
            and   

      

  
. Let the length of time and space intervals be 

      and       respectively. Then, 

 

  
         

    
      

 

We know that, the FTCS scheme is stable iff 

      , so our FTCS is stable for the above 

problem [20]. We have   
          , so 

 

  
       

              
              

             
              

    

For     and    , we get 

      
    

          
       

    
   

   
                                         

Similarly, we have 

  
           

                
                

                
                

    

  
           

                
                

                
                

    

  
           

                
                

                
                

    

  
           

                
                

                
                

    

  
           

                
                

                
                

    

  
           

                
                

                
                

    

 

Now, we find the error at         and   
      . From analytic solution we get        
                 . 

Form FTCSS approximate solution at (0.8, 0.8) 

          
        . 

Thus, Error =                           and 

 Error  
      

      
             

The 3D-plots of analytic and numerical solutions of 

equation (3.1) generated by computational software 

is shown in the Figure 3 below [22]. 
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 (i) (ii) 

 

Fig. 3: (i) Analytic solution, (ii) Numerical solution of 1D heat equation (3.1). 
 

 

3.2. Homogeneous Materials 

In this section, we compare the analytic and 

numerical solution of heat equation in the case of 

rod of the three different homogeneous materials 

namely Nylon                   Glass 

                 and Quartz     
            [24].   

In top panels (Fig. 4I), we clearly observed that it 

takes more time to distribute heat on the rod where 

as in middle panel (Fig. 4II) duration is lower 

moreover in the bottom of the panel (Fig. 4III) 

duration is substantially lower. Thus, we conclude 

that lower diffusivity means slower heat 

distribution in the rod and hence the duration of 

time taken to cool down the material is longer in 

case of low diffusivity material as compared to the 

higher diffusivity materials. Hence, there is 

instantaneous heat transfer and heat loss for the 

materials with higher diffusivity      

Also, we observed that temperature of the 

substance is increasing faster in the middle panels 

of Fig. 4II as compared to the top panels of Fig. 4I 

and temperature of the substance is also increasing 

more quickly in the top panels of Fig. 4III as 

compared to middle panels of Fig. 4II. So, we 

conclude that in the substance having higher 

diffusivity the temperature of the substance quickly 

rises as compared to the substance having lower 

diffusivity. Hence, the temperature distribution of 

the rod        is directly proportional to the 

diffusivity of the materials. 

 

Table 1: Comparison of analytic and numerical solution at          and         . 

Substances Diffusivity 

        

Analytic 

Solution 

Numerical 

Solution 

Error   

Error 

1. Nylon 0.09 0.0995 0.0998 0.003       

2. Glass 0.34                                          

3. Quartz 1.4                                           
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Fig. 4: Analytic and numerical solution (with        and         ) of heat equation (1.1) with        , 

              for different values of  . 

(III) Quartz               
 

(II) Glass                

(I) Nylon                



J. Kafle, L. P. Bagale, D. J. K. C. 

63 

From table 1, percentage error in the case of 

substances Nylon, Glass and Quartz are 

            and       respectively. 

So, we also conclude that materials having higher 

diffusivity has more error in numerical solution as 

compared to the exact solution. So numerical 

solution is much more appropriate in case of 

substance having lower diffusivity. We conclude 

that FTCS scheme gives the better approximation 

for the substances with smaller value of diffusivity 

as compared to the substances of higher diffusivity.  

3.3. Non-Homogeneous Materials 

In nature the materials found are generally non-

homogeneous. Here, we consider heat flow in a 

one-dimensional rod composed of two different 

materials. We compare the simulation results in the 

case of heat flow from low diffusivity material to 

high diffusivity and high diffusivity material to low 

diffusivity whereas total length of a rod is kept 

constant        with homogeneous radius and 

composed of two substances of equal length (i.e., 

each substance having length      ).  

 

 
Fig. 5: Non-homogeneous rod composed of two 

different substances. 

The corresponding PDE of this problem is 

        
         for             
        for            

     (3.3) 

where,    and    are diffusivity of substances 1 

and 2 respectively. Also consider,  

BCs:                        for         

IC:                        for            

 

First, we consider substance 1 be Nylon and 

substance 2 be Quartz. After that we consider 

substance 1 be Quartz ad substance 2 be Nylon. 

The diffusivity of Nylon is            and 

Quartz is          . In Fig. 6a, we consider 

substance 1 be Nylon                   and 

substance 2 be Quartz                  [24]. 

So, heat flow from low diffusivity substance to 

high diffusivity substance. In this case, due to low 

diffusivity of left part of the material (substance 1) 

the heat flows forward slowly and hence 

temperature is slowly increased and the due to 

high diffusivity of right part of the material 

(substance 2) the heat flow is faster and hence 

temperature is quickly increased. But in Fig. 7b, 

we augmented substance 1 be Quartz      
            and substance 2 be Nylon      
           ) [24]. In this case heat flow from 

high diffusivity substance to low diffusivity 

substance. 

 

 

    
 

Fig. 6: Temperature distribution with (a) Nylon at left and Quartz at right  
(b) Quartz at left and Nylon at right [22]. 
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Figure 7 is the plot of temperature distribution 

(   versus   at different time levels   
              and    with (a) Nylon at left and 

Quartz at right (b) Quartz at left and Nylon at right. 

In each time, maximum of temperature distribution 

    are around        and         in Fig. 7a 

and Fig. 7b respectively. This is because of quickly 

heat flow in left half part of Fig. 7a (low diffusivity 

materials in left part) and slowly heat flow in left 

half part of Fig. 7b (high diffusivity materials in left 

part). In time       , maximum value of   higher 

in Fig. 7a         as compare to Fig. 7b         
due to slowly distributed temperature in case left 

help part of Fig. 7a (low diffusivity materials in left 

part). We conclude that heat flow is quicker in the 

part consisting of material of higher diffusivity and 

heat flow is slower in the part consisting of material 

of lower diffusivity. This computational technique 

can be applicable and extended to the non-

homogeneous materials found in nature. 

 

 
 

Fig. 7: Plot of temperature     versus   at different time levels                and    with (a) Nylon at left and 
Quartz at right (b) Quartz at left and Nylon at right. 

 

4. CONCLUSION  

Here, at first one dimensional heat equation was 

introduced along with a bit of its history and its 

analytic solution was found by using separation of 

variable method. Then we derived Forward Time 

Central Space Scheme (FTCSS) for    heat 

equation, discussed their stability, consistency and 

numerical solution was found by using FTCSS. 

And then by taking an example we compared the 

analytic and numerical solutions along with their 

corresponding plots. After this, we studied heat 

transfer on the homogeneous materials having 

different diffusivity and we conclude in the 

homogeneous substance having higher the 

diffusivity the temperature rises quickly as 

compared to the substance having lower diffusivity. 

There is instantaneous heat transfer and heat loss 

for the materials with higher diffusivity      Our 

numerical solution in case of homogeneous 

materials show that material having higher 

diffusivity have more error in numerical solution as 

compared to the exact solution. So, FTCS scheme 

gives the better approximation for the substances 

with smaller value of diffusivity. In case of non-

homogeneous materials, temperature quickly 

increases in part of the rod of the materials having 

higher diffusivity whereas temperature slowly 

increases in part of the rod of the materials having 

lower diffusivity. Our computational technique of 

can be applicable and extended to the non-

homogeneous materials found in nature. 
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