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Abstract. We assess the continuous-time quantum Monte Carlo (CT-QMC) technique with hybridization expansion for solving

the electronic structure of the strongly correlated system LaxSr1−xVO3 . The impurity solver method implemented here shows the

fair agreement with the other available Monte Carlo techniques. From the study, it is found that the CT-QMC technique clearly

distinguishes metallic phase, quasiparticle phase and insulating phases of the system depending upon the strength of the correlation.

In case of La0.33Sr0.67VO3 system the metal-insulator transition is found to be at U = 4.5 eV for β = 6(eV )−1 . The value of U

depends with the value of β , and also the value of Hund’s coupling (J) and bandwidth (W). This technique allows the particle to

exchange with the reservoir of the particles and the impurity sites, which is accounted numerically to treat the temporal fluctuation

of the fermionic systems termed as dynamical mean field theory (DMFT). This theory is used to explain the phenomena of Mott-

Hubbard metal insulator transition of the materials which are applicable for designing the Mottronics, Neuromorphic computing,

Quantum computing and resistive memory devices.

Received: 14 August 2021; Revised: 30 October 2021; Accepted: 15 November 2021

Keywords: CT-QMC, DFT, DMFT, MIT, Neuromorphic Computing.

INTRODUCTION

The strongly correlated systems, having Mott-Hubbard

metal-insulator transition (MIT), are of great interest be-

cause of their application in Mottronics, Neuromorphic

computing, Quantum computing and volume resistive

memory devices [1]. The properties of such materials

are depending on tunable parameters like Coulomb inter-

action (U), thermodynamic parameter (β ), Hund’s cou-

pling (J), and bandwidth (W) [2]. In particular the MIT

phenomena is explained through dynamical mean-field

theory in addition to the density functional theory (DFT),

which accounts the temporal fluctuations in many-body

system at which spatial fluctuation is negligible [3]. Here,

we describe CT-QMC technique with hybridization ex-

pansion as the impurity solver of DMFT equation to study

MIT for strongly correlated system, LaxSr1−xVO3. The

strongly correlated systems have incoherent electronic

property, which is mainly due to the electron-electron in-

teraction on the lattice sites. MIT mainly causes due to

charge and spin degree of freedom, and orbital orderings.

These are the parameters, which also explain the nature of

Anderson localization, Jahn-Teller distortion and the un-

predictable incoherent metallic behaviours near the Mott

metal-insulator phase transition. The orbital degree of

freedom essentially important to understand the nature of

d-orbital ordering associated to behavior of MIT [2, 3,

4]. Controlling the parameters U, J and β through filling

control, bandwidth control and dimensionality control

can tune these properties. For this, one can adopt the

DFT plus the DMFT approach as well as experimental

approach [5]. Kim, M. et al. used DMFT combining

with ab initio density functional methods with the gen-

eralized gradient approximation (GGA) to account the

itinerancy and localization of electrons [6]. Streltsov et

al. also used the DMFT to predict the Hubbard satellite,

which splits the conduction band of a metal and hence

explain the Mott insulator [7]. Rubtsov et al. devel-

oped CT-QMC algorithm to study the interactions and

superexchange of fermions, which is successfully imple-

mented in multi-band model on non-local spin-flip terms
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[8]. Dirks et al. implemented the CT-QMC to obtain

the precise and unbiased imaginary time data and the

corresponding physical observables are obtained through

analytic continuation using Maximum entropy model [9].

Chatterjee et al. explain how amplitudes of Friedel oscil-

lations and the screening charge decrease with increasing

the interaction, which is finally ceases in the Mott insu-

lator regime with finite residual screening charges using

CT-QMC [10]. Similarly, this technique used to study the

realistic calculation of strongly correlated materials hav-

ing d- and f- electrons by using a set of SU(2)-symmetric

Kanamori Hamiltonian by Parragh et al. [11]. Kowal-

ski et al. developed CT-QMC hybridization algorithm to

study the splitting of d-orbitals and local Coulomb in-

teractions, which is extremely useful to explain the Mott

insulating behavior [12]. Experimentally, the angle re-

solved photoemission spectroscopy (ARPES) was used to

probe the presence of Hubbard bands [13]. Here, in this

communication we review the theoretical background of

the solution of DMFT equation implementing CT-QMC

technique with hybridization expansion to explain the

phenomena of Mott-Hubbard kinetics in superstructure

of strongly correlated systems LaxSr1−xVO3 [14, 15, 16,

17, 18, 19]. The process of implementation of recon-

structing data from CT-QMC through maximum entropy

model, which is useful to predict Mott phase transition

of TMOs, has been discussed [20, 21, 22, 23, 24, 25,

26, 27]. We believe present study helps to understand

the properties of field driven MIT which is applicable

for designing the Mottronics, Neuromorphic computing,

Quantum computing, other resistive memory devices [28,

29, 30, 31, 32, 33, 34].

METHODOLOGY AND

COMPUTATIONAL DETAILS

We discuss the theoretical background of Monte Carlo

technique, the kernel of the CT-QMC through which

computer generates a series of pseudo random num-

bers. These pseudo random numbers are then used to

either simulate naturally random processes, such as elec-

tronic fluctuation in lattice sites [35, 36]. The explana-

tions of theory related to CT-QMC for estimating Mott-

Hubbard MIT phase and implementation of technique to

the LaxSr1−xVO3 has been discussed. Further compu-

tational detail and codes used for the generation of data

were also be discussed. The Mott-Hubbard MIT in a

solid, in fact arise due to quasi-particles behaviours of

electrons, which can be characterized by (a) the pres-

ence or absence of spontaneously broken symmetry (b)

the gapped or gapless low energy neutral particle exci-

tations (c) the presence or absence of topological phase

transitions [37]. The Mott transition problem of strongly

correlated electronic system is directly addressed by the

DMFT framework for such materials [38]. The single

site Hubbard Hamiltonian for representing an interacting

system is,

H =−t ∑
ij,σ

c
†
iσ cjσ +U∑

i

ni↑ni↓, (1)

The non-local part of interaction is,

Hnon−local =−t ∑
ij,σ

(

c
†
iσ cjσ + c

†
jσ ciσ

)

(2)

And the local part of interaction on site i is

Hlocal = U∑
i

c
†
i↑ci↑c

†
i↓ci↓ (3)

Considering the fermionic cases on site i, we must real-

ize that the hopping term does not conserve the particles

number at the site. The single-site lattice model (Hubbard

model) is then mapped onto a self-consistent quantum

impurity model (Anderson impurity model) representing

the interaction on real crystal lattice site i as in Fig. 1.

The impurity Hamiltonian is the basis of DMFT in which

the various kinds of impurity solvers including CT-QMC

method are implemented [39].

FIGURE 1. (Color online) The local field interaction for a fcc

lattice. In the limit of infinite dimension d → ∞ or Z → ∞ , the

local field hi surrounding a single atom can be described by an

effective field hMF with no spatial but only the fluctuations of the

electronic system [40]

The Anderson impurity model:

The Anderson impurity Hamiltonian representing the

many-body system is,

H = ∑σ=↑,↓ ε0(k) a
†
σ aσ +Una↑na↓

+∑k,σ [Vk,σ (k)c
†
k,σ cσ +h.c.]

+∑k,σ εk,σ (k)c
†
k,σ ck,σ (4)

15 R. K. Rai et al.
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Where, ε0(k) is the energy level of the impurity, a
†
σ

(corr. aσ ) is the creation (corr. annihilation) operator

for an electron with spin σ on the impurity, εk,σ (k) is

the energy spectrum of the bath c
†
σ (corr. cσ ) is the cre-

ation (corr. annihilation) operator for an electron with

spin σ and momentum k in the bath and Vk,σ (k) is the

hybridization parameter(coupling constant) [41]. The

partition function associated with the impurity and its

fermionic bath is,

Z = Tr[exp−βH ] (5)

A very successful way to analyze the system using the

numerical technique with the imaginary time formalism,

the partition function is the path integral over Grassman

variables [42] a
†
σ and aσ expressed as,

Z=

∫

D
[

a†
σ ,aσ

]

exp(−Seff) (6)

Where, Seff is the effective action associated with the

lattice Hubbard model Hamiltonian, which is solved by

mapping onto a single-site impurity Anderson model

Hamiltonian Eq. (4).

Seff =−∑σ

∫ β
0 dτdτ ′a†

σ (τ)G
−1
0σ (τ − τ ′)aσ (τ

′)

+
∫ β

0 dτUna↑(τ)na↓(τ) (7)

The non-interacting (U = 0) Green’s function

G
−1
0σ (iων) = iων − ε0 −∆σ (iων) (8)

According to Matsubara, the hybridization part of inter-

action is,

∆σ (iων) = ∑
k

|Vkσ(k)|2

iων − εkσ (k)
(9)

Which describes the transition between the bath and the

various orbitals [43].

Evaluating the partition function with

Monte Carlo sampling:

The varieties of quantum Monte Carlo (QMC) methods

are the most useful tools for the numerical study of many-

body systems with strong correlated fermionic system

[44]. Here, we are focusing our discussion on the CT-

QMC algorithm for fermions. This algorithm is a family

of stochastic process for solving the Anderson impurity

model at finite temperature. These methods consist of a

Hamiltonian involving a finite number of states and hy-

bridization process, which allows particle exchange with

the fermionic bath of these particles. They are important

both in their own right and as a crucial ingredient in the

dynamical mean field method of approximating the prop-

erties of interacting fermions on an infinite dimensional

lattice sites [45]. The principle behind all of these algo-

rithms is the same, which is stemming from earlier work

on diagrammatic Monte Carlo [46]. In all cases, we need

to implement the Monte Carlo Integration, in which the

integral of a function can be converted to a discrete sum

of the form,

∫ b

a
f(x)dx =

b− a

N

N

∑
i=1

f

(

a+ i
b− a

N

)

+O

(

1

N

)

(10)

There are other higher order numerical integrators such

as Trapezoidal rule, Simpson rule etc. The Monte Carlo

technique constitutes the sampling, errors, Markov chains

and Metropolis-Hastings arguments for obtaining the re-

sult [47]. In fact, the Monte Carlo is a method computes

the sums for a probability distribution, p(x) for a sampling

function f(x) of the given configuration space C [40].

∑
x

p(x)f(x),

where, p(x) > 0,

∑
x

p(x) = 1 (11)

The variable, x = (τ,σ , ...) represents the set of vari-

ables under study.

Continuous time Partition Function

Expansions in Configuration Space:

The continuous-time partition function expansions for

Monte-Carlo sampling with a typical infinite series on

imaginary time parameters is,

Z =
∞

∑
n=0

∫∫∫ β

0
dτ1..dτnp(τ1,τ2, ...,τn) (12)

This is the partition function representing the sum of

the expansion orders from zero to infinity over n slices of

imaginary time steps τ1, ...τn, which is integrated over the

probability densities, p(τ1, ...τn) from τ = 0 to β , imagi-

nary time intervals [48]. We need to sample terms with

the weight, which is associated with the infinite configu-

rations C (moves in the phase space) of this integral, con-

tributing to the partition function. As for examples, let us

start to write down some of the lowest orders of the inte-

gral explicitly. The first order calculation of the partition

function of single parameter is,

16 R. K. Rai et al.
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Z1 =
∫ β

0
dτ1p(τ1) (13)

The integrand is described uniquely by a set of imag-

inary time {(τ1)}, so that we can sample Eq. (12) up to

first order using Monte Carlo technique [49], which gen-

erates a uniformly distributed random numbers of imagi-

nary time, τ1 in the interval (0, β ), we may write,

Z1 = limN→∞

1

N

β

∑
0

p(τj) (14)

Using analogy, the second order calculation is obtained

by the another set of imaginary time {(τ1,τ2)} and gen-

erating uniformly distributed value pairs (τ1,τ2) in the in-

terval (0, β ), we may write,

Z1 = limN→∞

1

N

β

∑
0

p(τj,τ2) (15)

We need to sample the integral up to some finite or-

der n max (say) and then truncate it. For sampling, the

various terms, we employ Metropolis’ algorithm [50] to

accept or reject the possible transitions. The number of

Monte Carlo samples may have only the Monte Carlo er-

ror, which scales as 1√
N

with the samples [51]].

Let us define all the possible orders of configuration

space C as,

C ={ {..} ,{τ1},{τ1,τ2}, ...,{τ1, ...,τn} }

Which is the set of continuous imaginary time variables

τ j. We should consider that the configurations are time-

ordered, i.e.τ1 < τ2 < ... < τn Each configuration con-

tributes some value to the whole partition function. To

avoid the sign problems, the expansion coefficients above

are taken to be positive [52] otherwise sampling will be

difficult.

Markov Chain Transition (move):

We use the Markov chain Monte Carlo method for sam-

pling the configurations C that contributes to the value of

the partition function Z. Assuming, x0 be the initial con-

figuration (or zeroth order configuration), we need to pro-

ceed with random walk from a present configuration, x to

a new one y(x j) in phase space as,

x0 → x1 → x2 → ...→ xn+1.... (16)

We have implemented the diagrammatic Monte Carlo

codes by raising of the order for updating the transition,

xn → xn+1 i.e. the insertion of an additional vertex (τ j)

(adding link), or, lowering of the order, i.e. removal of an

additional vertex (τ1 ) (removal of link), or a local change

on the same site with the same order (τ j → τ ′j), like a spin-

flip or the change of a τ [53] as in Fig. 2. For summing

up all the probabilities, the Markov chain must reach a

stationary distribution. We must make sure that the sys-

tem be thermalized as well as the successive points in the

Markov chain are clearly correlated. The autocorrelation

effects must be taken into account while computing the

Monte Carlo statistical errors [45]. To create a Markov

chain of diagrams (moves) by assuming any two "moves",

we can purpose the following moves: (i) Insertion of a

link (anti-link): we choose a random imaginary time and

insert a vertex with a spin randomly up or down with the

imaginary time step, τi. (ii) Removal of a link: choosing

a random vertex of imaginary time step τi and remove it.

FIGURE 2. (Color online) Insertion and removal of vertices

(interactions) update are illustrated in the above diagrams. The

sampling process samples configurations according to their con-

tribution to the partition function [54]

Starting from an arbitrary distribution of Markov chain

process will converge exponentially to a stationary distri-

bution p(x) if two the following two conditions are satis-

fied: (i) Ergodicity: any configuration x is reachable from

any other configuration y in a finite number of Markov

steps. That is to say,

∀xy∃n : (Wn)xy 6= 0

(ii) Detailed balance: The probability Wxy of transi-

tioning from configuration x with probability density p(x)

to configuration y with weight p(y) satisfies the detailed

balance condition,

∫

c
Wxyp(x) = p(y) (17)

This probability needs to fulfill the detailed balance

condition to perform our updates using the Metropo-

lis algorithm. Assuming that we have a configuration

x = {(τ1), ...,(τn)} and try to insert a time vertex (τn+1)
to obtain a configuration y = {(τ1), ...,(τn),(τn+1)}, we

have to guarantee the detailed balance condition. The

17 R. K. Rai et al.
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transition probability density Wx,y of going from state x

to state y is,

Wx,y = Wprop(x → y)Aacc(x → y) (18)

Where, Wprop(x → y) is the proposal probability den-

sity and Aacc(x → y) is the acceptance probability density

of moving from x to y respectively.

Similarly, the transition probability Wy,x of going from

state y to x is,

Wy,x = Wprop(y → x)Aacc(y → x) (19)

Furthermore, the proposal probability density Wprop(x→
y) of inserting a time vertex (τn+1) is given by the proba-

bility of picking the imaginary time location τn+1:

Wprop(x → y) =
dτ

β
(20)

On the other hand, the proposal probability of remov-

ing a time vertex is just the one of selecting that particular

vertex out of the n+1 available vertices:

Wprop(y → x) =
1

n+1
(21)

Choosing the acceptance probabilities Aacc(x → y) and

Aacc(y → x) such that

Wx,y

Wy,x
=

dτ

β

n+1

1

Aacc(x → y)

Aacc(y → x)

=
p(y)

p(x)

Aacc(x → y)

Aacc(y → x)
=

p(y)

p(x)

1/(n+1)

dτ/β
(22)

Applying Metropolis’ algorithm to fulfill detailed balance

we obtain the acceptance ratio as,

Aacc = min
[

1,
p(y)Wprop(y→x)
p(x)Wprop(x→y)

]

= min
[

1, 1
n+1

β
dτ

p(y)
p(x)

]

(23)

The configuration probability densities ratio p(y)/p(x)

is infinitesimally small, the transition rate from configu-

ration x to y remains finite [55]. The partition function is

computed through the CT-QMC hybridization algorithm

for various configuration with weight ω(C) . From which,

we compute the Green’s function of imaginary time or

frequency.

Hybridization-expansion CT-QMC:

For this calculation, we have to focus on the simplest An-

derson impurity model that can easily be generalized as

the generic multi-orbital problems. To derive an expan-

sion around the atomic limit, which could be understood

as the expansion in the hybridization technique [56]. The

effective action as the sum of an "atomic" term having all

the local terms and a term with the hybridization to the

bath as given by,

Seff = Sloc +∑σ

∫ β
0 dτdτ

′
c

†
σ (τ)∆σ (τ − τ

′
)dσ (τ

′
)

= Sloc +∑σ Sσ
hyb (24)

From Eq.(6), we get,

Z=
∫

D
[

a
†
σ ,aσ

]

exp(−Sloc +∑σ Sσ
hyb)

=
∫

D
[

a
†
σ ,aσ

]

exp(−Sloc)
[

podσ
(−1)n

σ
nσ !

(

Sσ
hyb

)n]

(25)

Using the idea of path integral QMC with stochastic

series expansion [58], we may write,

Z = ∑
∞
n↑,n↓=0

〈

Tr∏σ
(−1)n

σ
nσ !

(

Sσ
hyb

)n〉

loc
(26)

Z = ∑
∞
n↑,n↓=0

∫ β
0 dτσ

1 ...dτ
′σ
n↑

∫ β
0 dτσ ′

1 ...dτ
′σ ′
n↓

∏σ
(−1)n

σ
nσ !

∏
nσ
i=1 ∆σ

(

τσ
i − τ

′σ
i

)

×Tr

[

e−βHlocTr
n↑
∏
i=1

c
†
↑ (τ

σ
i )c↑

(

τ
′σ
i

) nσ ′

∏
i=1

c
†
↓

(

τσ ′
i

)

c
†
↓

(

τ
′σ ′
i

)

]

(27)

Which is the sum over many continuous variables and the

product of hybridization functions times the trace involv-

ing spin up and spins down operators.

∴ Z =
∫

C
ω(C)≈ ΣMC

C sign(ωC) (28)

Where ω(C) is the weights of configurations C in the

limit N → ∞ gives the probability,

p(C) =
1

Z
ω(C) (29)

∴ Z =
1

Z

∫

C
ω(C)f(C)∼ 1

Z
ΣMC

C f(C)sign(ω(C)) (30)

The weight of the configuration is computed as,

18 R. K. Rai et al.
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ω(C) = Tr× e−βHlocTr∏
n↑
i=1 a

†
↑
(

τσ
i

)

a↑
(

τ
′σ
i

)

∏
n↓
i=1 a

†
↓

(

τσ ′
i

)

a↓
(

τ
′σ ′
i

)

×∏
σ

(−1)n
σ

nσ !

nσ

∏
i=1

∆σ (τσ
i − τσ

i ) (31)

Unfortunately, these calculations have alternating signs

problems (-ve sign problem) For evaluating the partition

function, we start from a imaginary time step diagram and

sum of the possible permutations of the fluctuations.

Computing Green’s Function from Partition

Function:

The impurity Green’s function could also be regarded as

8the logarithmic derivative of Z w. r. to the hybridization,

∆(τ) as given by,

Gσ (τ) =− 1

β

δ logZ

δ∆σ (−τ)

[

∵ G(τ) =−δ logZ

δ∆(τ)

]

(32)

G↑(τ) =− 1

Zβ

∫

C

δdet∆↑C

δ∆↑(−τ)
× (−1)n↑+n↓det∆↓CTrC

(33)

Each configuration give contributions for a discrete set

of imaginary times:

Gσ (τ)∼− 1
Zβ ∑

MC
C ∑k,l δ (τσ

k − τ
′σ
l + τ)×

[

∆−1
σC

]

k,l

× sign(ω(C)) (34)

In fact, these contributions can be computed by con-

sidering a very fine imaginary time slices. This creates a

high frequency noise in Matsubara frequencies. To com-

pute single particle Green’s function in Legendre repre-

sentation, we consider the single-particle imaginary time

Green’s function G(τ) defined on the interval [0, β ] [57,

58]. Expanding G(τ) in terms of the Legendre polynomi-

als Pl(x) , Fig.3 (left) which are considered to be the basis

for expressing the function defined over an interval [-1, 1]

to calculate the imaginary-time Green’s function as,

G(τ) = ∑
l≥0

√
2l+1

β
Pł[x(τ)]Gl (35)

Where, x(τ) = 2τ
β
− 1 and Gl is the Legendre coeffi-

cients that decays very quickly, which may be defined as,

Gl =
√

2l+1

∫ β

0
dτG(τ)Pl[x(τ)] (36)

The number of Legendre coefficients considered to be

important for the accurate representation of a given ob-

servable under consideration and is difficult to infer from

looking at the coefficients themselves. Recently, it has

been proposed to improve this method by employing the

Kernel polynomial method with model independent ba-

sis, what is termed as intermediate representation (IR)

basis [59]. Truncating the Legendre coefficients that are

zero within their error bars can reduce the Matsubara fre-

quency noise. The imaginary part of Green’s function of

Matsubara frequency vs. Matsubara frequency is shown

in Fig.3 (right), which is one of the typical outcomes of

this method of calculation.

Green’s Functions, Self-Energy and Spectral

Function:

The dynamical equation of motion (Dyson equation):

G−1
σ (iων) = G

−1
0 (iων)−Σσ (iων)

= iων +µ − εk −Σσ (iων) (37)

Where, Σσ (iων) self-energy of Matsubara frequency

and ων =
[

(2ν+1)π
β

]

is the Matsubara frequency [60].

In the DMFT limit, the self-energy Σσ becomes a lo-

cal quantity and the lattice Green’s function retains its

momentum-dependence via the non-interacting lattice

dispersion εk.

The momentum dependent lattice Green’s function in

the DMFT limit is,

Gσ (k, iων) =
1

iων +µ − εk −Σσ (iων)
(38)

Which leads to the equation for the effective Weiss

field,

G
−1
0 (iων) = Σσ (iων)+G−1

σ (iων)

= Σσ (iων)+
[

∫ D(ε)
iων+µ−εk−Σσ (iων )

]−1

(39)

Where, D(ε) is the non-interacting density of states of the

original lattice. And the imaginary time (thermal) Green

function,

Gij,σ (τ) =−〈Tciσ (τ)c
†
jσ ′(0)〉 → Σσ (iων) (40)

Where T is the time-ordering operator w.r.to t or τ and

ciσ = exp(iHτ)cilexp(−iHτ) in both cases [61, 62]. The

Fourier transform G(iων) of Gij,σ (τ) and the Matsubara

self-energy are computed as,

Σσ (iων) = G
−1
0 (iων)−G−1

σ (iων) (41)

This is the most expensive part of the calculation,

which actually provides the new Green’s function, G0
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FIGURE 3. (Color online) First five orders of Legendre’s polynomials of x (left). A typical outcome of calculation of Green’s

function of Matsubara frequency (right).

for the next iteration of self-consistency calculation [63,

64]. In the non-interacting system, the spectral function

at a given momentum is a Dirac δ -function at ω = εk,

A(k,ω) = δ (ω − εk) (42)

The possible excitation of the system is encoded in the

interacting Green’s function on the real axis as given by,

GR(k,ω) =
1

ω +µ − ε(k)+ΣR(k,ω)
(43)

with the corresponding spectral function is,

A(k,ω) =− 1

π
Im

[

GR(k,ω)
]

(44)

In the infinite coordination limit, the momentum de-

pendence of the self-energy Σ(k,ω)≃ Σ(ω) .The solution

of a quantum many body systems may be obtained as the

solution of a quantum impurity model subject to an ap-

propriately defined self-consistency condition. Thus, the

spectral function simply be expressed as,

A(ω) =− 1

π
Im

[

GR(ω)
]

(45)

The usual bandstructure (spaghetti plot) is replaced by

a plot of the above spectral function, which can be com-

pared with the experimental results of angular-resolved

photoemission spectroscopy (ARPES) [13, 65]. Turn-

ing on correlations, the spectral function has a Lorentzian

profile as,

A(k,ω) =

− 1
π

ImΣR(k,ω)

[ω+µ−ε(k)+ReΣR(k,ω)]
2
+[ΣR(k,ω)]

2 (46)

The imaginary part of the self-energy introduces a

broadening of the original Delta-function like excitation,

whereas the real part is responsible for a shift of exci-

tation energies. The program can treat data that can be

expressed as the periodic imaginary time Green’s function

as,

G(iων)=
∫ ∞

−∞
eiων G(τ)dτ =

∫ ∞

−∞

dω

2π

(

A(ω)

iωn −ω

)

(47)

Or,

G(τ) =
∫ ∞

−∞

dω

2π

(

e−ωτ A(ω)

1± e−βω

)

, (48)

Where ων is the Matsubara frequency. The Green’s

function G(τ) or G(ω) as QMC data, we further apply

analytic continuation method to obtain the real-frequency

data, A(ω) using Maximum entropy model. The Maxi-

mum entropy model algorithm [66, 67, 68] is based on

the Bayes theorem as given by,

P(A|G) =
P(G|A)P(A)

P(G)
∝ e

(

− χ2

2 −αS

)

, (49)

Where,

χ2 = ∑
i

(Gi − Ḡi)
2

σ2
i

. (50)

with Ḡ = KA And the differential entropy of informa-

tion is,

S =−
∫

dω

2π
A(ω) ln

A(ω)

D(ω)
(51)

Where D(ω), is called the default model. For maximizing

the posterior probability, we need to choose the optimal
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value of α using the Bayesian inference [24, 68] as,

P(α|G) ∝
P(α)

ZS
α

∫

DA eαS− χ2

2 , (52)

The value of α is then taken as the most probable one. To

find the maximum, one needs a guess for the prior P(α).

FIGURE 4. (Color online) The maximum a posteriory ΘMAP is

obtained through the Bayesian statistical inferences [24]

The maximum posterior probability is regarded as the

realistic representation of data for the real materials. It

is estimated through Bayesian theorem out of the given

conditional probabilities by maximizing the entropy of

information as shown in Fig.4. We have used density

functional theory to calculate the density of states (DOS),

which is the input data for DMFT calculation. DMFT

generates the Green’s function data in imaginary time or

Matsubara frequency through CT-QMC algorithm with

hybridization expansion, which is considered to be a

rough data. The real frequency data (spectral density)

are computed from the Green’s function data using Max-

imum Entropy model, which is equivalent to the experi-

mental observation. By analyzing spectral density, MIT

is predicted with the adjustment parameters U, β and J

values.

RESULTS AND DISCUSSION

The electronic structure of LaxSr1−xVO3 (0 < x <1) sys-

tem has been studied through the conventional DFT along

with the DMFT. This system is the typical examples of the

extended transition metal oxide system with a 3d1 elec-

tronic configuration. The supercell of SrVO3 is recon-

structed within the frameworks of 1× 1× 2 for the ab-

initio calculation. With the k-mesh grid, the Monk-horst

pack of 11×11×5, the convergence criteria are chosen to

be 10−3e, 10−5 eV and 0.05 eV/ 0A respectively [69, 70,

71]. The optimized lattice parameter 4.12 0A and crystal

structure for the sample is in Fig. 5. The conventional

DFT results for DOS and Band structure of LaxSr1−xVO3

show the sample is metallic as in Fig.6, which is in agree-

ment with others works [72]. The outcomes of the nu-

merical simulation are discussed here as the followings:

FIGURE 5. (Color online)(a) Lattice parameter optimization

curve with crystal structure of LaxSr1−xVO3
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FIGURE 6. (Color online) The electronic structure (DOS and

Bandstructure) of LaxSr1−xVO3

The characteristic QMC data, such as G(τ) or G(ω) are

obtained through CT-QMC with hybridization techniques

as shown in Fig. 7-10 for LaxSr1−xVO3 system. These

data are used for analyzing Mott-Hubbard metal insula-

tor transition at first hand. In general, the QMC data are

noisy, incomplete and over-sampled one, so we need to

use analytic continuation (reconstruction of data) to ob-

tain the real frequency data for comparing the experimen-

tal results. We have used Maximum Entropy model based

upon the Bayesian statistical inferences for the analytic

continuation [73, 74]. In fact, it gives the spectral func-

tion A(ω) along with the error estimation of calculation.

The real frequency spectral function A(ω) is com-

puted using the QMC data through Maximum entropy

model (MEM), which works on the Bayesian statistical
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FIGURE 7. (Color online) The Green’s Function vs. imaginary

time (τ) of La0.67Sr0.33VO3 with various U values
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of La0.67Sr0.33VO3 is the Fourier transform of G(τ)

inferences [75, 76]. The metal insulator transition for

FIGURE 9. (Color online) The self-energy vs. frequency (ω)

for U = 3.5 eV and various β values

La0.33Sr0.67VO3 system is computed for U = 4.5 eV, and

as in Fig. 11 which may vary with other parameters such

as Hund’s coupling (J) and bandwidth (W) as well.

The optimal value of hyperparameter or adjustable pa-

rameter (α) is crucial to represent the real data of the ma-

terials. For choosing the optimal value of α we use the

logistic regression method for the reconstruction of data
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FIGURE 10. (Color online) The spectral function vs. frequency

(ω) for U = 3.5 eV and various β values of La0.33Sr0.67VO3

system.
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A(ω) with U values for the optimal value of α
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FIGURE 12. (Color online) The distribution of spectral func-

tion A(ω) with the various values of J.

A(ω) from the QMC data G(τ). The lower part of the

information-fitting region as in Fig. 13 are chosen to be
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FIGURE 13. (Color online) The logistic regression curve for

choosing the optimal value of for better representation of data

obtained through MEM
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α .

optimal value of α , which is determined by the maximum

value of the curvature of log10χ2 vs. γlog10α curve [77].

We may also use sample frequencies for predicting the

optimal values of α as in Fig. 14. The statistical error
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FIGURE 15. (Color online) The normalized deviation (ND) of

real part of ∆G for the data computed with MEM

FIGURE 16. (Color online) The autocorrelation (AC) of real

part of ∆G for the data computed with MEM.

FIGURE 17. (Color online) The normalized deviation (ND) of

imaginary part of ∆G for the data computed with MEM.

FIGURE 18. (Color online) The autocorrelation (AC) of imag-

inary part of ∆G for the data computed with MEM.

such as the normalized deviation of real and imaginary

parts of the uncertainty of Green’s function of frequency

∆G and its auto correlation are computed within the per-

missible standard error bar Fig. 15-18 [78, 79, 80, 81, 82,

83].
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CONCLUSIONS

We review the theoretical concept of DFT +DMFT ap-

proximation to calculate the electronic properties of strongly

correlated system through CT-QMC algorithm as an im-

purity solver. Implementation of Maximum Entropy

model for the real frequency data (spectral function)

to investigate the Mott-Hubbard MIT is also discussed.

From the calculation, the lattice parameters of optimized

LaxSr1−xVO3 are a = 4.12 0A, b = 4.12 0A and c =

7.930A. The electronic band structure from conventional

DFT shows metallic behavior of the sample. However,

after the application of DMFT with CT-QMC hybridiza-

tion expansion it turns out to be a Mott insulator at U =

4.5 eV, and β = 6(eV)−1. The optimal value of adjustable

parameter α is obtained through logistic regression. Sta-

tistical error confirms that present calculation are within

the permissible error bar limit.
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