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Abstract. The big data deluge has presented us with a unique opportunity to observe the environment. These sensors employ the
basic physics principles in sensing the environment. These include but are not limited to, remote sensing of air quality, temperature,
or other biophysical variables. Although a great effort has been placed into collecting the data, a greater effort must be placed into
their societal applications. Machine Learning tools can provide easy access to build such applications. Continuous monitoring and
alerting the interested parties can prevent some undesirable outcomes. For example, a weather forecast is widely used to predict
the temperature/precipitation a few days in advance. Similarly, new applications can be developed to practice intelligent decision-
making that affects public health. Recent progress in air quality studies is promising to develop such environmental intelligence.
In this review article, we illustrate the use of Machine Learning in making predictions and discuss some of the applications of the
relevant data sets for Environmental Intelligence.
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INTRODUCTION

At the heart of environmental sensing lies the basic prin-
ciples of physics. This could be done using in-situ ob-
servation of air pollution, temperature, other physical and
meteorological variables, etc. Instrumentation used to
be expensive – up to the extent that some of the in-situ
measurements were cost prohibitive. However, recent ad-
vances in low-cost sensor technology, embedded devices
connected to the internet, and development in modern
remote sensing instruments have enabled a deluge in
data produced through these sensors. This presents us
with a unique opportunity to gather information about the
environment. However, the enormous volume, variety,
velocity, and veracity of the data can present challenges
in getting useful insight. This paper briefly reviews the
opportunities and challenges in the intelligence of envi-
ronmental data-set using various tools such as machine
learning applications. We will briefly discuss the impor-
tance of Earth observation and the basic idea of machine
learning and Environment Intelligence with potential ap-
plications.

EARTH OBSERVATION

The scientific method involves the process of hypothe-
sis formulation, experimental design, data collection, and
analysis of the parameters defining the hypothesis. This
can ultimately lead to a more refined set of hypotheses or
a new set of model parameter values. One of the exciting
pieces of information that can be extracted from such a
process is an insight into the interconnection between the
relevant variables in a system. With the same view, we
can consider our planet Earth to be a system of significant
interconnected variables. In an attempt to understand the
variables’ interconnection, we can imagine a vast model
that can be constructed to replicate the general circulation
and regulation of other physical variables that can be ob-
served. However, the best model of the Earth is the Earth
itself. The universe is a laboratory where the observation
data can provide clues to the interactions of the variables.

A simple model illustrating energy flow is represented
as shown in Fig. 1 (a), where the energy is transferred
from high to low potential through a resistor (R). Sup-
pose we represent the problem as a circuit, with the po-
tential difference represented as a battery and the resis-
tor as a light-emitting diode (LED) (Fig. 1(b)). In that
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FIGURE 1. (a) As an example of a simple model, a source is connected to the sink through a resistor, which could be illustrated
by using a circuit diagram (b) where the interaction gives rise to the illumination of the LED. (c) The radiation energy balance on
Earth can illustrate a zeroth-order energy balance model for Earth.

case, the relationship between the resistance (R), current
(I), and potential difference (V ) can be represented using
Ohm’s law V = IR. Similarly, a zeroth order energy bal-
ance model for Earth can be illustrated by the radiation
energy balance on the earth in Fig. 1(c). A simple cal-
culation using Stefan-Boltzmann law and the zeroth order
energy balance model shows that the surface temperature
of the Earth would be

Ts =

(
S(1−α)

σ

)0.25

(1)

where S denotes the solar constant, α represents the av-
erage albedo of the earth’s surface, and σ is the Stefan-
Boltzmann constant. A simple physical calculation shows
the earth’s temperature would have been -18◦C. However,
our observations do not agree with it. This requires up-
dating our simple model based on physical reality- the
Greenhouse gases provide a warm blanket to make the
planet habitable. The updated model incorporates the dif-
ference between incoming and outgoing radiative fluxes
R ↓ −R ↑, equated to the heat energy mc∆T :

(R ↓ −R ↑)a∆t = mc∆T, (2)

where R ↓ and R ↑ represent the incoming and outgoing
energy terms. The first two terms on the left-hand side
have the unit of energy density, W/m2, which has been
multiplied by the surface area a of the earth and time (∆t)
to convert it into the dimensions of energy; ∆T represents
the temperature, m the mass and c is the specific heat ca-
pacity of the system. This can be rearranged to write the
temperature evolution equation as:

{0.25(1−α)S− εσT 4}= c
∆T
∆t

, (3)

where 0 < ε < 1 represents the emissivity of the sur-
face. With S = 1170W/m2, α = 0.3, ε = 0.6 and σ =
5.67×10−8W/m2/K4, the surface temperature is approx-
imately 14◦C. This value comes to close agreement with
the global average temperature. This model can further

be developed to incorporate many other complex param-
eters. Next, we focus on atmospheric components and
their observation as they will play a critical role in the
Earth’s energy balance.

Earth system observations can be made using in-situ or
remote sensing observation. Remote sensing data from
Earth observation provide a continuous set of data col-
lected from space. Establishing and maintaining ground-
station data at every point on earth is tedious and cost-
prohibitive. The resolution of the desired model can dic-
tate such placements. If we want high-resolution sensor
networks, it can be cost-prohibitive. On the other hand,
remote sensing sensors are spaceborne sensors pointed to-
ward the earth that can cover a larger area providing a con-
tinuous stream of data. Analysis of such a volume of data
can be conveniently considered Big Data. For example,
Moderate Resolution Spectroradiometer (MODIS) instru-
ments onboard the NASA Terra and Aqua satellite plat-
forms measure various parameters such as aerosols, ocean
color, atmospheric water vapor, cloud properties, surface
and temperature, different atmospheric parameters, etc.
These parameters are observed as remote sensing images
and encoded as profiles on about 250 m to 1 km pixel res-
olutions. These suites of sensors have been traversing the
surface continuously since their launch in 1999 (Terra)
and 2002 (Aqua), respectively. Currently, more than two
dozen satellites operated by NASA constantly observe the
Earth’s parameters.

These Earth observation data mount upwards of 100s
petabytes of data in the archival system. Therefore, we
can safely say that these Earth observation data serve as
big data. A proper analysis presents both the challenge
and opportunity for curious minds. The deluge comes
with challenges and opportunities at the same time. While
the appropriate analysis and inference of the data can be
regarded as a daunting task, it also provides a chance to
understand the interrelation between the variables.
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MACHINE LEARNING

Machine Learning (ML) is an emerging field that has
proven its usefulness in a wide variety of applications
in science, healthcare, business insights, and engineer-
ing. ML involves data-based learning. These applications
are helpful, especially when the model may not be fully
parameterized. I do agree with the sentiment that a first-
principal theory and approach, as illustrated above, for
the energy balance model would be much appreciated.
However, in the complex world of interconnected vari-
ables, some of these relations could be non-linear, and
some of the variables could be hidden as well. Therefore,
non-parametric, non-linear methods such as ML deserves
careful consideration.

The ML technique follows the basic scientific process:
formulating hypotheses, testing, and refining hypotheses.
Developing a hypothesis with a defined set of variables
can be tricky, especially if you miss the relevant variables
in the formulation. For example, applying the equations
of type y =mx+b, where the variables y,m,x and b repre-
sent the Force, mass, acceleration and a constant additive,
respectively. This linear equation may work well for an
ideal case, but may not work well for a problem if you
needed to include the extra factors such as the effect of
friction. However, suppose there could be an objective set
of tools for automating the discovery of such variables. In
that case, one could possibly model the observation data
sets without a defined set of fixed parameters.

Depending on the process involved, the ML techniques
can be divided into three primary types : Supervised, Un-
supervised, and Reinforcement learning methods. The
Supervised ML techniques are routinely used for regres-
sion and classification problems. The regression meth-
ods are used in estimating and predicting the relationship
between variables, especially when the dependent vari-
ables are continuous, while classification is used to build
a model with discrete or categorical variables. Examples
of regression may include interpolation and extrapolation
of data points, while classification of leaf-types are exam-
ples discrete supervised techniques based on the sample
data. On the other hand, Unsupervised ML techniques
are used when the output is not known for the available
input samples. Unsupervised ML techniques provide an
insightful tools to explore the patterns in data. Exam-
ples could include clustering of images, based on their
statistical features. Meanwhile, the Reinforcement learn-
ing is a feedback-based ML techniques, where the algo-
rithm is assigned with a cost function and is rewarded
for iteratively learning from the environment. Examples
could include These ML techniques are data-based: es-
sentially, ML algorithms work by searching through a
large space of candidate hypotheses to optimize the learn-
ing outcomes defined by the performance metric.

The ML process is also regarded as a data-intensive

method. In the past, big data presented an obstacle in pro-
cessing the training datasets. However, recent progress
in low-cost computational machines and cheaper storage
has driven rapid progress in ML applications because data
processing has become relatively more affordable. Next,
we will present a simple connected problem that may re-
semble some physical systems.

A Circuit Example

We present a simple circuit model as an example of how
we could use ML programs to explore the relationship be-
tween variables. This example is intended to be presented
as a toy model. So, the readers are advised to consider it
carefully.

FIGURE 2. An example circuit. In this example, we simulate
the circuit to estimate the currents using training data only using
Machine Learning. The circuit is constructed using the PhetSim
software for demonstration.

Let us consider a mesh network as shown in Fig. 2,
where arrows indicate the currents on the circuit. If one
were to solve for the circuit, Kirchhoff’s law could be ap-
plied to solve for the three currents (I1, I2, I3) given the
voltages and resistance. This is possible using Ohm’s law
and concepts in the conservation of charge and energy.
The circuit current values can be found by using a for-
ward problem:I1

I2
I3

=
1

(R1R2 +R2R3 +R1R3)

R3V1+ R3V2+ R2V1
R3V1+ R1V2+ R3V2
R1V2− R2V1


(4)

However, in this example, we want to solve the same
problem without using Equation (4). A challenge is to
predict the observation of circuit current values (I1, I2, I3)
given the circuit potential (V1,V2), and resistor combina-
tions (R1,R2,R3) while assuming nothing else. Kirch-
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hoff’s laws are an example of establishing a model with-
out knowing physics.

FIGURE 3. Neural Network set up with five input variables
(Resistors and Potential difference in Fig. 2 used to predict the
three currents in the circuit.

To prepare the training dataset, an array of 4000x5 ran-
dom values {V1,V2,R1,R2,R3} were selected as input to
simulate the output currents {I1, I2, I3} using Eq. 4. The
resistor values were selected from the range of 0 : 200Ω,
while the potential differences were set to range from 0
to 5 volts. An artificial neural network was created with
five input variables, 100 hidden layers, and three outputs
(Fig 3, and trained for 1000 epochs. The data were di-
vided into random sets of training (60%), testing (30%),
and validation (10%) during the training using Bayesian
Regularization, and the performance of the algorithm was
monitored using the Mean Squared Error metric. When
the training was completed, we then used the neural net-
work model to predict a thousand sets of unseen voltage
and resistor combinations {V1,V2,R1,R2,R3} to predict
the output currents. Since this was a simulation experi-
ment, we could calculate the estimated currents to verify
that our results agreed with the simulated outputs. This
serves as the benchmark test dataset to check the efficacy
of our model.

To test the efficacy of the model, we tested 1000 ran-
dom circuits with the potential and resistor combinations,
and predicted the currents. Figure 4 shows the residue
(Predicted - True values) on these 1000 test observation
datasets. The low difference between the predicted and
observed data shows that the model performance is ac-
curate within the milli-Amperes range. An example of
Kirchhoff’s law has now been presented without telling
the machine the fundamental physics of current, voltage,
and resistors. Although it is a simple example, the pos-
sible power of data-based methods in exploring the inter-
connected world is illustrated.

CONNECTING DOTS

In the previous two sections, an overview of Machine
Learning and climate feedback system was introduced.

FIGURE 4. The residue between known current values and
estimated current values shows that the difference is in the milli
Amperes range.

Next, I would like to draw a connection between these
two independent topics.

FIGURE 5. Map of global surface wind shows stalled air pol-
lution due to air vortex in the Indian Ocean during November
2019. The extent of air pollution is from blue (low) to red
(higher pollution). Data courtesy of @EarthWindMap.

ENVIRONMENTAL INTELLIGENCE

Physicists are known for training in extracting hidden pat-
terns based on observation and data sets. The movement
for gradual model development, testing, and validation
help extract insights from big data sets. As discussed in
the previous sections, some relationships could be com-
plex, non-linear, and guided by "hidden" processes. Envi-
ronmental data sets are derived from a live system where
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FIGURE 6. PM 2.5 daily dataset. Data courtesy of BerkeleyEarth.

all the variables tightly interact. Getting insights from
these datasets is not a simple task. The first step towards
intelligence is to be able to ask the most relevant ques-
tions and seek out the relevant variables. Then, one can
look for patterns or trends and be able to predict the vari-
able’s behavior.

Air pollution can be an example challenge that could
benefit from Environmental Intelligence. Fig. 5 shows
the persistent wind pattern that dictated the distribution
of pollutants. The question to ponder is whether we can
we set up an intelligence system with the model and ob-
servation to predict its occurrence.

Figure 6 shows Indian subcontinent’s average daily
PM2.5 data set from January 2018 through July 2022.
Although, a noisy dataset, due to daily variation in the
air quality, it is easy to extract the information about the
yearly cycles with a distinct repetition. As shown in the
figure, the color codes represent the PM2.5 air pollution
concentration as it implies that sensitive groups could
have an adverse impact on their health. The average air
pollution during the winter seasons reaches 100 µg/cm3–
a harmful level with severe health consequences. How-
ever, if we want an automated detection of the yearly
patterns that human eyes can easily track from the data
sets like these need a machine learning system. Since
the air pollution level exceeds the safe level for human
exposure, automated discovery of such patterns may help
develop policies for minimizing human exposure. More
importantly, the impacts on climate variability due to air
pollution present another unique opportunity for the issue
of Environmental Intelligence.

CONCLUSIONS AND DISCUSSIONS

Recent advances in Artificial Intelligence and Machine
Learning technologies have given us a unique opportunity
to combine the skill-sets of physics, statistical data anal-
ysis, and remote sensing with improving life quality. The
big data deluge invites us to explore our world with a new
vision. The ML tools can provide new ways of explor-
ing the inter-relationship between the variables that may

not be linked yet using the first principles. This can ben-
efit many areas of science. Especially informed decision-
making and data-based policy development seem poised
to take advantage of these advances.

EDITORS’ NOTE

This manuscript was submitted to the Association of
Nepali Physicists in America (ANPA) Conference 2022
for publication in the special issue of the Journal of Nepal
Physical Society.
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