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Abstract. Actual cosmological and galactic data is showing the possible existence of a non-visible gravitational mass. This mass
has been called dark matter, and researchers are looking for an explanation of its physical nature. A new solution to Einstein’s
general relativity equations is introduced here. This new solution assumes that gravity has density and can produce pressure as any
other known field does. Our hypothesis does not create any mathematical contradiction with anything that is known and points to
the conclusion that dark matter is a non-linear manifestation of the gravitational field.
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INTRODUCTION

The solution of the General Relativity (GR) theory for
spherically symmetrical gravitational fields founded by
Schwarzschild [1] has two mathematical inconveniences.
Applying Schwarzschild’s metric to strong gravitational
fields shows imaginary solutions that force any moving
energy or particle to concentrate in the center of symme-
try. Schwarzschild’s metric can also create infinities with
alternative signs. Those mathematical properties are not
expected in physics. If Schwarzschild’s metric is consid-
ered valid for weak and medium gravitational fields, then
the situations mentioned before should not occur.

The GR equations are solved for specific conditions,
such as the space only having a gravitational field.
Schwarzschild [1] found that solution under the assump-
tion that the density and pressure of the gravitational field
are zero. Another condition is that space has matter. Tol-
man [2] founded that solution under the assumption that
the density and pressure of matter are functions of the
physical parameters. This paper examines the possibil-
ity of space having density and pressure different from
zero. Since matter and gravity are different in their na-
ture, it should not be expected that the last two solutions
mentioned would have similar mathematical forms.

This paper will assume the gravitational energy density
and pressure of gravitational fields, both of which will
play key roles at the time of forming all the cosmological
bodies and their relative movements. This idea follows

the recommendation made by Einstein in page 80 [3], by
specifying “It must be remembered that besides the en-
ergy density of the matter, there must also be given an
energy density of the gravitational field, so that there can
be no talk of principles of conservation of energy and mo-
mentum for matter alone.”

A natural description of the world must be described
with math that does not include any exotic properties. If
that result is conducted in this paper, it could be expected
that another paper will mathematically justify the exis-
tence of a universe without flying away galaxies. That
globally static universe with local evolution now looks
possible, according to the cosmological information col-
lected with the actual technology. In summary, the main
motivation of this paper is to show that it is mathemati-
cally possible to describe the cosmos without mentioning
any dark matter or energy.

THE MODEL

Walecka’s approach [4] will be followed in this paper.
There, the reader can check in detail all the steps omit-
ted in this paper for the sake of space. Walecka defined
the square of the differential interval ds as

ds2 = A(r)dr2 + r2dθ
2 + r2sin2

θdφ
2−B(r)(Cdt)2 (1)

where A(r) and B(r) are the functions to be found. Func-
tions A(r) and B(r) will describe the gravitational field



The Special Issue of JNPS, ANPA Conference 2021 General Relativity

properties at the radial and temporal distances, and they
will quantify the strength interaction between the gravi-
tational field and the matter enclosed. Note that the rela-
tivistic invariant speed C was used instead of the speed of
light c under the constraint that c is less than but close to
C. Later, it would be checked out if c and C are identical,
as it was proposed by [5]. In general, Eq. (2) could be
related to a four-by-four matrix with all elements equal to
zero except the diagonals(

grr,gθθ ,gφφ ,g44
)
=
[
A(r),r

2,r2sin2
θ ,−B(r)

]
(2)

The Christopher’s symbols that are different from zero
in all the matrix elements of this metric become,

Γr
rr =

A′
2A Γr

θθ
=− r

A Γr
φφ

=− rsin2θ

A

Γr
44 =

B′
2A Γθ

rθ
= 1

r Γθ
φφ

=−sinθ cosθ

Γ
φ

rφ
= 1

r Γ4
r4 =

B′
2B Γ

φ

θφ
= cosθ

sinθ

(3)

where apostrophe means derivative with respect to the
radius. The Ricci’s tensor for spherical symmetry is,

Rrr =−B′′
2B + B′

4B

(
A′
A + B′

B

)
+ A′

rA

Rθθ = 1− 1
A + r

2A

(
A′
A −

B′
B

)
R44 =

B′′
2A −

B′
4A

(
A′
A + B′

B

)
+ B′

rA

Rφφ = Rθθ Sin2
θ

(4)

The energy and momentum density tensor satisfy

Trr− 1
2 T grr =

1
2

[
ρ(r)C2−P(r)

]
A(r)

Tθθ − 1
2 T gθθ = 1

2

[
ρ(r)C2−P(r)

]
r2

T44− 1
2 T g44 =

1
2

[
ρ(r)C2 +3P(r)

]
B(r)

Tφφ − 1
2 T gφφ = 1

2

[
ρ(r)C2−P(r)

]
r2Sin2

θ

where the gravitational energy density and pressure are
ρ(r) and P(r). The Einstein’s field equation [4] expressed
as,

Rµν =
8πG
C4

(
Tµν −

1
2

T gµν

)
(5)

yield the Einstein’s field equations for rr, θθ , 44 and φφ

r :− B′′
2Br

+ B′
4Br

(
A′
Ar

+ B′
Br

)
+ A′

rAr
= 4πG

C4 (ρrC2−Pr)Ar

θθ : 1− 1
Ar

+ r
2Ar

(
A′
Ar
− B′

Br

)
= 4πG

C4 (ρrC2−Pr)r2

44 : B′′
2Ar
− B′

4Ar

(
A′
Ar

+ B′
Br

)
+ B′

rAr
= 4πG

C4 (ρrC2 +3Pr)Br

φφ : {Rθθ sin2
θ = 8πG

C4

(
Tφφ − 1

2 T gφφ

)
sin2θ

(6)

The pressure can be eliminated from the above set of
equations by doing rr

2A + θθ

r2 + 44
2B . The algebraically out-

put become,

d
dr

[
r

A(r)

]
= 1− 8πG

C4 ρ(r)C
2r2 (7)

The solution of Eq. (7) cannot be founded analytically
at this stage because the gravitational energy density func-
tion ρ(r) is unknown. The solution of Eq. (7) should hold
the solution for intermediate (Schwarzschild’s) and weak
(Newtonian’s) gravitational fields. The exponential func-
tion can help because expx ≈ 1+ x+ 0.5x2 ≈ 1

1−x . That
is, by imposing this physical constriction, the function Ar
will satisfy,

Ar = exp
[

2G(MR +mr)

C2r

]
(8)

where MR is any gravitational seed mass of radius R and
mr is the mass of the gravitational field from the radius
R to the radius r. At this time, it could be useful to clar-
ify that the gravitational field will not be counted twice
in Eq. (8) because the approximate calculation of Eq. (8)
will give us twice the Schwarzschild’s potentials if the
gravitational field were counting twice, which is not the
case.

The density of the field in Eq. (7) will be forced to pre-
serve the math. Then, by plugging Eq. (8) into Eq. (7),
the density of the field must be,

ρ(r) =

1−
1+ 2G(MR+mr)

C2r

exp
[

2G(MR+mr)
C2r

]
 C2

8πGr2 (9)

The mass of the gravitational field at a distance r from
the center [4] can be calculated numerically with

dm(r) = ρ(r)

√
Ar4πr2dr (10)

and inserting Eq. (9) into the above definition, it is
founded the equation to calculate numerically the in-
crement of gravitational mass with the radius,

dm(r)=

exp
[

G(MR +mr)

C2r

]
−

1+ 2G(MR+mr)
C2r

exp
[

G(MR+mr)
C2r

]
 C2

2G
dr

(11)
At this point, the reader can check out that the functions

for the density and the increment of mass have zero values
when the exponential functions are close to one.

The missing function B(r) can be founded by doing
rr
2A + 44

2B ,

B(r) =
e

8πG
C4

r∫
Rc

A(r)[ρ(r)C2+P(r)]rdr

A(r)
≈ 1

A(r)
(12)
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The pressure, according to 44
2B −

rr
2A , satisfies

P(r) =
C4

8πG

[
B′′(r)

2
+

B′(r)
r

]
(13)

and it can by calculated numerically with

P(r) =
G
{

(MR+mr)
2

r2 +
[
m′r− 2(MR+mr)

r

]
m′r
}

4πr2 exp
[

2G(MR+mr)
C2r

] − rC2m′′r
2G

(14)
The covariant derivative of the energy-momentum ten-

sor, Equation 10.43, page 192 [4], is

T µν
;ν =


1√
−g

∂

∂qν

[√
−g
(
ρr,tC2 +3Pr,t

) uµ uν

C2

]
gµν ∂Pr,t

∂qν ++Γ
µ

λν

(
ρr,tC2 +3Pr,t

) uλ uν

C2

= 0

(15)
where each adding term is

gµν ∂Pr,t

∂qν
= grr ∂Pr,t

∂ r
+gθθ ∂Pr,t

∂θ
+gφφ ∂Pr,t

∂φ
+g44 ∂Pr,t

∂ t
(16)

it is

gµν ∂Pr,t

∂qν

∣∣∣∣
order zero

≈ grr ∂Pr,t

∂ r
+g44 ∂Pr,t

∂ t
(17)

(The Eq. (17) is called order zero or normal mode because
it was assumed Pθ = Pφ = 0, where the Greek symbol
means derivative respect to the corresponding variable.)

1√
−g

∂

C∂ t

[√
−g
(
ρr,tC2 +3Pr,t

) u4u4

C2

]
≈ 1

B
∂

C∂ t

(
ρr,tC2 +3Pr,t

) (18)

and

Γ
µ

λν

(
ρrC2 +3Pr

) uλ uν

C2 = 0i
λ4 +Γ4

44
(
ρrC2 +3Pr

) u4u4

C2

Γ
µ

λν

(
ρrC2 +3Pr

) uλ uν

C2 = B′
2A

(
ρrC2 +3Pr

) 1
B

(19)
After some algebra,

2e
4G(MR+mr)

C2r
∂(2Pr,t+ρr,tC2)

C∂ t +2 ∂Pr,t
∂ r +[(

8πG
C4 Pr,tr+ 1

r

)
e

2G(MR+mr)
C2r − 1

r

](
3Pr,t +ρr,tC2

)
= 0

(20)
The full solution of the above equation should ex-

clude any division by zero and should include the known

FIGURE 1. The experimental star velocities shown here are
only related to the periapsis position of the stars. Error bars were
not included because they would not lead to any useful visual
information. The blue curve is the representation of Eq. (29),
and the red dashed curve is from the accepted Schwarzschild’s
solution.

physics for extremely weak gravitational fields. The so-
lutions are:

Pr,t = Pr− [PSin(ωt + kr)] r̂↔− [PCos(ωt + kr)] r̂l

ρr,t = ρr +[ρSin(ωt + kr)] r̂↔+[ρCos(ωt + kr)] r̂l

where k = 2π

λ
and ω = 2π f

(21)
The hat r symbols are unitary vectors, and the double

arrow shows the direction in which that solution is valid.
The horizontal double arrows are valid only in the radial
direction, while the vertical double arrows are valid only
in any direction perpendicular to the radial direction. To
clarify, they are vectors with orthogonal conditions that
avoid division by zero. It is interesting that the coherence
of light has comparable properties.

Applying the solutions for density and pressure into the
earlier differential equation, using the classical GR pres-
sure condition,

∂Pr

∂ r
+

1
2

(
eSw

8πG
C4 Prr−

1
r
+

eSw

r

)(
ρrC2 +3Pr

)
= 0,

(22)
the orthogonality condition, and the definitions vg = ω

k

and Sw = 2G(MR+mr)
C2r ; yield

vg

C
=

1

e
4G(MR+mr)

C2r

(
ρ↔C2

P↔
−2
) =

1

e
4G(MR+mr)

C2r

(
ρlC2

Pl
−2
)

(23)
It is known that electromagnetic radiation has a ratio of

three between its energetic density and its pressure. As-
suming the same ratio for the the gravitational radiation,
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both solutions will travel according to

vg

C
= exp

[
−4G(MR +mr)

C2r

]
(24)

Equation (24) shows that the speed of the radiation
will increase after abandoning the source, regardless of
the negative sign because the radius is on the denominator
side of the fraction. Also, according to Eq. (24), any ra-
diation will never reach the limit speed because space al-
ways contains gravitational mass. For example, the exis-
tence of a proton per meter cube in the intergalactic space
outputs a speed ratio of vg

C = 1 – 6×10−54 in complete
agreement with all previous knowledge.

The last fraction is in complete agreement with the
energetic photon hypothesis [6, 7]. In other words,
Maxwell’s classical equations were deduced assuming
empty space, which is not a realistic assumption accord-
ing to the hypothesis introduced in this paper.

DISCUSSION

In this paper, it is assumed that the density and pressure
of the gravitational field have values different from zero.
They hold an invariant relativistic status without having
singularities, and all of this points to a possible reinter-
pretation of the correlated experimental data. Let’s see
some examples.

Neutron stars

Any time that the mass of a star reaches 3.18 MSun
in a radius of 12 km, the star density will exceed the
5.7× 1017 kg m−3 neutron maximum density, according
to our hypothesis. Then, the neutrons will be forced to
dissolve into the surrounding gravitational soup. Accord-
ing to Eq. (11), now at 20,000 km is a total enclosed
mass near to five MSun. This result matches well with the
known minimum of five MSun that is seen in almost the
totality of the known so-called “Black Holes” [8, 9]. In
our theoretical result, with no matter available to radiate
energy, the star will disappear from observation but is far
away from being a “hole.” It is the other way around; it
will now be a ball full of gravitational energy with no
density restriction, and that allows the mass to become
colossal.

FIGURE 2. The points represent the measured velocities of 35
stars in the Milky Way [13] versus their distance to the center
of the galaxy. The two theoretical functions were calculated as-
suming that a radius of 0.3 AU encloses 6.74 million MSun. The
dashed red curve comes from Schwarzschild’s metric, and the
continuous one from Eq. (29). The inclusion of the mass of the
enclosed stars in the corresponding radius helps to overlap our
theoretical function with the experimental data [13]. The orange
spot stands for the position of the Sun in the Milky Way. Now
the quantity of dark matter necessary to fill up the gap between
Schwarzschild’s solution and the experimental data is too much,
and, according to our hypothesis, something that is not neces-
sary.

Milky Way

The Lagrangian of a moving star with mass m [4] is

L =−mC2

√
B(r)−

1
C2

[
A(r)ṙ2 + r2θ̇ 2 + r2sin2

θφ̇ 2
]
(25)

where dot means derivative with respect to time. dφ

dt is
zero because the star stays always in the same plane. A
null value for dr

dt can be used by looking at the two solu-
tions where the variation of the length of the radius r is
reversed. Those two points are known as periapsis, the
nearer point to the focus of rotation, and apoapsis, the far-
ther one to the same focus. Then, the velocity at both
points will satisfy

rθ̇ =C

√
1
2

B(r)r
B′
(r)

B(r)
(26)

Doing rr
2A + θθ

r2 + 44
2B comes out

A′(r)
A2
(r)

=
8πGρ(r)r

C2 +
1

A(r)r
− 1

r
(27)

Then using Eq. (27) in rr
2A + 44

2B comes out

B′(r)
B(r)

=
8πG
C4 A(r)P(r)r+

A(r)−1
r

≈
A(r)−1

r
(28)
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The first adding term in Eq. (28) was disregarded
because the gravitational pressure decreases extremely
fast, far from the gravitational center. Finally, plugging
Eq. (28), and Eq. (12) into Eq. (26) comes out,

rp,aθ̇ =C

√
1
2

{
1− exp

[
−2G(MR +mr)

C2r

]}
(29)

It has been proposed to include some invisible mass in
the study of the speed of the stars in galaxies because the
GR standard solution does not overlap with the experi-
mental points. Eq. (29) can describe the speed of stars in
the Milky Way [10, 11, 12, 13] if it is assumed that a ra-
dius of 11 km encloses 8 MSun. It is possible to conclude
that the mass of so-called dark matter could be the mass
of the gravitational field because it does not emit elec-
tromagnetic radiation. Figure 1 shows the almost Keple-
rian velocity of eight stars versus their distances to a com-
mon invisible center. The accepted opinion that the center
holds a black hole with two variables to be adjusted, its
mass and radius, could not be correlated enough to over-
lap the experimental data. The proposed solution was to
assume the contribution of a small quantity of dark mat-
ter. Our model does a better job connecting theory with
data, making it unnecessary to mention another gravita-
tional influence.

Currently, it is important to mention a new theoret-
ical result. We are accustomed to the spatial-temporal
relativistic effect when bodies are moving at velocities
close to the speed of light, when strong gravitational fields
are present in the region of attention, or in a combina-
tion of both situations. Here, a new gravitational con-
sequence appears even where the gravitational potential
is Newtonian. The value of Schwarzschild’s function is
7.64×10−11 at the Sun’s position, which, although small,
is still producing a big gravitational difference according
to our model from Newton’s theory because of the accu-
mulation of mass from the gravitational field. Figure 2
is like Figure 1, but now the difference between the ac-
cepted theory and our hypothesis is huge. The red-dashed
line that represents the accepted theory is so close to the
horizontal axis that it is hard to see. Our function, rep-
resented as a blue continuous line, is close enough to the
experimental data. The mass of the stars within the en-
closed sphere can cover the gap, as explained in [13]. The
accepted theory proposes to include a correction from an
invisible source that plays a bigger numerical role than
the observed matter. That is an inconvenient situation in
science.

CONCLUSION

The hypothesis introduced in this paper, following Ein-
stein’s 1922 [3] recommendation to include gravitational

density and pressure into the equations of general relativ-
ity, can lead to three useful consequences: (1) the expla-
nation of star velocities around the center of their galaxies
without including the so-called dark matter. (2) The pos-
sible existence of a new invariant gravitational radiation.
(3) and the existence of black balls (called black holes in
literature) without singularities. All three consequences
make it possible for general relativity and quantum me-
chanics to become theoretically closer soon.
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