Machine learning and machine learned prediction in chest X-ray images
DOI:
https://doi.org/10.3126/jnphyssoc.v11i1.87420Keywords:
Machine learning, Artificial intelligence, Convolutional neural network, DenseNet121, Pneumonia detection, Grad-CAMAbstract
Machine learning and artificial intelligence are fast-growing fields of research in which data is used to train algorithms, learn patterns, and make predictions. This approach helps to solve seemingly intricate problems with significant accuracy without explicit programming by recognizing complex relationships in data. Taking an example of 5824 chest X-ray images, we implement two machine learning algorithms, namely, a baseline convolutional neural network (CNN) and a DenseNet-121, and present our analysis in making machine-learned predictions in predicting patients with ailments. Both baseline CNN and DenseNet-121 perform very well in the binary classification problem presented in this work. Gradient-weighted class activation mapping shows that DenseNet-121 correctly focuses on essential parts of the input chest X-ray images in its decision-making more than the baseline CNN.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
All right reserved. No part of this Journal may be reproduced in any form or by any electronic or mechanical means, including information storage and retrieval system, without permission in writing from the publisher, except by a reviewer who may quote brief passage in a review. The views and interpretation in this journal are those of author(s) and they are not attributable to the NPS.