External Quality Assessment Practices in Clinical Biochemistry Laboratory: What is the need?
Niraula A,1 Bataju M2

1Department of Biochemistry,
BP Koirala Institute of Health Sciences,
Dharan, Nepal.
2Department of Biochemistry,
KIST Medical College and Teaching Hospital,
Lalitpur, Nepal.

Corresponding Author
Apeksha Niraula,
Department of Biochemistry,
BP Koirala Institute of Health Sciences,
Dharan, Nepal.
E-mail: apeksha.niraula@bpkihs.edu

ABSTRACT
Health Care services is considered as an amalgamation between the doctor undergoing the examination and laboratory personnel behind the proper diagnosis of the patient. It has evolved to a large extent from a simple process of examination to handling the prescription to the patient. During this evolution, there has been a remarkable development in the field of laboratory diagnosis. A good laboratory is abided by the rule of quality services including quality control; both internal and external. External quality assessment program contributes to the long term accuracy of the analytical method used by the laboratory. It determines the number of quality element of the practicing laboratory and helps in the upliftment of the status of the laboratory to laboratory accreditation and certification. This review article is intended to review the importance of the external quality assessment program over internal quality control, its need in the laboratory and the current practices in external quality assessment. Medline search was done for the articles published in English language from 1945 to 2018. Keywords employed to search the articles were external quality assessment, EQA programs, quality assurance, and quality control in clinical biochemistry, respectively. We searched for any articles with the details of external quality assessment tools that were original articles, review, editorial and the official website of the EQAS program. The unavailable articles were searched through research gate and the authors were requested for full text. A total of 5 full text original research article were found and rest of the articles like review article, editorial, national policy were studied in detail. Standard textbooks for clinical chemistry and chapters for EQA under quality assurance was reread in detail. Studies and policy makers have depicted that External Quality Assessment scheme (EQAS) as an integral component for the efficient and high quality laboratory operation. The western countries have their own laboratory accreditation body which conducts the EQAS program and offers participation to other clinical laboratories. Countries in South East Asia have shown to be burgeoning in the field of EQA with establishment of their own laboratory accreditation bodies and incorporating the non-accredited laboratories in EQA programs.

KEY WORDS
External quality assessment programs, Quality assurance, Quality control in clinical biochemistry, Quality Improvement
INTRODUCTION

Though, a clinical biochemist have the knowledge regarding the quality control in clinical chemistry laboratory, but it is the most under discussed and overshadowed topic in terms of the practical application of quality control i.e. Internal and External quality control in the clinical biochemistry laboratory.

Transformation in External Quality assessment scheme (EQAS) from 20th Century:

The evolution of External Quality assessment (EQA) began from late 1940s pioneered by Belk and Sunderman. We have come a long way, where in today’s era EQA constitutes an integral component for the laboratory total quality management system. In addition, it is a fundamental element for laboratory accreditation in many countries around the world. It is the responsibility of the personnel associated with EQA to verify on a recurring basis that laboratory results conform to expectations for the quality required for patient care.

In general, quality management system (QMS) is the set of coordinated activities conceded out on a set of elements to achieve the quality of the products or services offered to the users. It plans, controls and improves the elements that impact on the achievement of the desired results by the laboratory and on the satisfaction of the customers or users. Specifically in context to medical laboratories, QMS is directed towards the accuracy, reliability, and timeliness of the analytical results of the laboratory. Thus, the quality of the laboratory results is directly dependent on the aspects of the analytical operations which must be under stringent control. ISO 9001:2015 precisely define QMS individually as.

Quality

Degree comprising of a set of essential characteristics of an object (product, service, process, person, resource, etc.) which meet the requirements (established need or expectation, generally implicit or mandatory)

Management

Coordinated activities to direct and control an organization

System

A set of interrelated elements.

What is External Quality Assessment: Current Practice?

External Quality Assessment (EQA) is a continuous process for quality improvement in which the participating laboratory uses an outside unbiased source to verify the quality of patient’s results. Participating in an EQA program permits a laboratory to confirm that its results are consistent with those of other laboratories using the same or similar methods for an analyte and thus to confirm it is using a method correctly. EQA is an imperative aspect for any laboratory operation to maintain the good quality laboratory practice and smooth operation. It offers the means of for the assessment of the analytical performance of the particular laboratory which is directly compared to the other participating laboratory (also called as peer groups) employing the similar method and instrument for the measurement of the analyte. EQA measures blind samples i.e. the sample with unknown value and treated as patient samples unlike the control sample used in internal quality control where the value is known. The results is subsequently returned to the EQA provider for the statistical analysis comparing it with the peer laboratory group. The participating laboratories obtain the report comparing the individual laboratory performance with the other participant laboratory in the EQA programme. Few benefits of participating in EQA programme.

• Crucial for maintaining the long-term accuracy of the analytical methods
• Validation of analytical method
• Comparison of the results with other laboratories
• Identification of problem related to tests
• Mandatory requirement for laboratory accreditation

The purpose of implementing EQA programme in the clinical biochemistry laboratory is to:

• Evaluation of laboratory performance for specific tests and its continuous monitoring
• Identification of inter-laboratory differences
• Evaluation of method/diagnostic system performances
• Degree of comparability between methods/diagnostic systems
• Monitoring of the success of harmonization/standardization efforts for improving results comparability

One of the major component to be looked for in an EQA programme is a process of harmonization is in order to make participation in EQA effective and to guarantee the congruity of EQA information provided by different providers.

Methodology in EQA

There are basically four different stages in an EQA programme starting from sending the quality control material (QC) to the participating laboratory to the interpretation of the EQA results. The phases can be depicted as follows.

1. Providing and sending quality control (qc) material to participating laboratory
2. Measuring analyte(s) and reporting result(s) by participating laboratory
3. Data analysis and sending evaluation report(s) to participating laboratory
4. Interpretation of evaluation report(s) and taking corrective action for unacceptable result(s) in participating laboratory
The EQA process can be summarized in a cyclical manner which can also be called as an EQA cycle.34-36

Proficiency testing is used for evaluation of laboratory performance for regulatory purposes.47 Laboratories participating in the proficiency testing provided by the EQA provider states the quality of the clinical laboratory over the month and year and can also suggest the corrective action wherever needed.48

External Quality Assessment Schemes (EQAS) is the process used for laboratory performance and method evaluation. The purpose is usually educational.49

External Quality Assessment Programmes (EQAP) is the scheme where inter-laboratory comparisons designed and operated to assure one or more of the following:47-49

- Participant performance-analytical, interpretive, clinical advice
- Method performance evaluation
- In vitro diagnostic device vigilance
- Education
- Training and help

What are the points to be looked for in an EQA program?

EQA programme is a certified programme which can only be started by an accredited laboratory to undertake other laboratories for proficiency testing.47 Firstly, the EQA program should be chosen on the basis of convenience and reliability by the particular laboratory. Few points can be enlisted to be beheld for in an EQA:10

- Sample design and frequency
- Analytical goals
- Easy to read reports
- Scientific validity and reliability
- Education
- Scientific support

Interpretation of EQA Results49:

1. Standard Deviation Index (SDI) Chart: The standard deviation index is a measurement of bias. It determines that how close is your laboratory value to the target value. It is calculated as $SDI = (\text{Laboratory Mean} - \text{Group Mean}) / \text{Group Standard Deviation}$

Interpretation

<table>
<thead>
<tr>
<th>SDI Value</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>Perfect Comparison with the consensus group</td>
</tr>
<tr>
<td>≤ 1.25</td>
<td>Acceptable</td>
</tr>
<tr>
<td>1.25-1.49</td>
<td>Acceptable to marginal performance. Some investigation of the test system may be required</td>
</tr>
<tr>
<td>1.5-1.99</td>
<td>Marginal Performance. Investigation of the test system is recommended</td>
</tr>
<tr>
<td>≥ 2.0</td>
<td>Unacceptable Performance. Remedial action usually required</td>
</tr>
</tbody>
</table>

Need of EQA in clinical laboratories

In today’s era, quality is trending in every aspect of human life.4,7,8 The impact of quality in terms of laboratory results have acquired a new aspect. Most of the clinical laboratories are concerned with their results in terms of its accuracy, precision and timeliness.37,38 Clinical biochemistry laboratories are aware of undertaking internal quality control daily or on their sample load to maintain their precision and short term accuracy of the laboratory results. Inspite of the cognizance regarding the EQA in clinical laboratory, number of them have not incorporated in their practice.39-41 There is a definite question that arises regarding the usefulness of EQA in addition to internal quality control in clinical biochemistry. There are certain advantages of EQA which enables it to be a pre-requisite for good quality practice in the laboratory.7

Internal quality control is the means of maintaining the daily precision and accuracy of the particular analytical method.38 While, EQA is crucial important for maintaining the long term accuracy of the analytical methods. Also, it is imperious for validation of analytical method and comparison of the results with other laboratories.42-44 EQA is a mandatory requirement for laboratory accreditation and certification of the authorized body.12,45,46

Proficiency testing or EQA: Is there any difference?

Proficiency testing or EQA has been used synonymously most of the time by the experts.47 Closely observed these two terms are slightly different in terms of their applicability.48 Though, the idea behind proficiency testing and an EQA is to maintain the good quality practice in the medical laboratory, but the practical aspects are distinct.10
2. Variance Index Score (VIS): Calculated as

\[
\%\text{VARIATION} = \frac{\text{Difference between participant's result and Group mean} \times 100}{\text{Group mean}}
\]

\[
\text{VARIANCE INDEX SCORE(VIS)} = \%\text{VARIATION} \times \frac{10}{\text{Desired CV}}
\]

Interpretation

<table>
<thead>
<tr>
<th>%</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td><100</td>
<td>Very Good</td>
</tr>
<tr>
<td>100-150</td>
<td>Good</td>
</tr>
<tr>
<td>150-200</td>
<td>Satisfactory</td>
</tr>
<tr>
<td>>200</td>
<td>Not Acceptable</td>
</tr>
<tr>
<td>≥ 2.0</td>
<td>Unacceptable Performance. Remedial action usually required.</td>
</tr>
</tbody>
</table>

- VIS values for each parameter for every month and similarly overall mean of VIS (OMVIS) must be calculated on monthly basis. OMVIS < 100 indicates that results are very close to the target value and is very good. OMVIS in the range of 150-200 indicates need to take care of those parameters for which the reported values are very different from the target value for that particular method. OMVIS > 250 indicates reporting many wrong results and urgent steps to locate the problem must be taken followed by suitable corrective measures.

3. Precision Index (PI)

\[
\text{PI} = \frac{\text{Standard deviation of laboratory}}{\text{Standard deviation of peer group}}
\]

The control limits of PI are < 2; chart is similar to SDI chart.

The combined SDI/CVR chart has the ability to evaluate the total analyte's performance (precision and accuracy).

4. Coefficient of Variation Ratio (CVR) = CV of laboratory month/CV of peer group month

- The combined SDI/CVR chart has the ability to evaluate the total analyte's performance (precision and accuracy).

Youden Plot

Youden plot is a rectangular chart of which the four angles correspond to the control limits of the two control levels (-4SD - +4SD). EQAS schemes use two control samples of different levels in order to check the performance of the analytical method in different concentration/activities, and preferably close to the decision limits. The chart consist of 3 distinct parts, namely the acceptable part, the grey-zone and the rejected part which is denoted by different colors. Each dot represents a different laboratory and therefore Youden plot describes the whole EQAS scheme. There are dots which represents individual laboratory participating in the EQA programme. Dots (laboratories) that lie across the diagonal of the rectangular, at 45°, but are far for the center correspond to laboratories with proportional analytical error. The greater the distance from the center, the greater the proportional error. Dots restricted in the central rectangular, correspond to laboratories of which the performance is considered acceptable for this specific analyte as depicted in fig. 2.

Yundt Chart

It is a statistical chart useful for the determination of the performance of an analytical method across all its measuring range. For the plotting of a Yundt chart, at least three control levels needs to be plotted. If the line
across the dots of the three levels is a straight one then the laboratory has a very good linearity. If not, there may be several issues with the linearity of the method. Yundt chart has been described in fig. 3.

EQA programs in Nepal

The tertiary care centres and the clinical laboratories in Nepal with higher sample load are associated with the EQA programs provided by Nepal, India, Australia, etc. The most commonly employed EQA program is with Nepal Public Health laboratory (NPHL) Teku and Christian Medical College Vellore, India. Other EQA program is offered by Asian Network for Clinical Laboratory Standardization and Harmonization, Asian Quality Assurance Survey Program and from commercial companies like Bio-Rad and RANDOX. Till date, there is not any accrediting body in Nepal which accredits its own clinical laboratories and conduct EQA program independently.

EQA program plays a vital role in the improvement of the efficiency of a laboratory service. It helps in optimizing the overall quality of a health care system in terms of performance evaluation, patient care and safety issues, and overall quality of laboratory practices. It ensures that the participating labs in order to obtain quality test results and to get confidence in generating a reliable report should have best performance of instrument, updated and qualified staffs, use only good quality kits and store suitably. We have to establish our own accrediting body in Nepal and independently start our EQA program without relying for international bodies.

List of few EQA centre for EQA participation in South East Asia

India
- The National Accreditation Board for Testing and Calibration Laboratories (NABL)
- Christian Medical College (Vellore)

Indonesia
- The National Accreditation Committee (KAN)

Thailand
- The Bureau of Laboratory Quality and Standards (BLQS)
- International Laboratory Accreditation Cooperation (ILAC)
- Asia Pacific Laboratory Accreditation Cooperation (APLAC)

REFERENCES

47. Clinical and Laboratory Standards Institute (CLSI). Assessment of laboratory tests when proficiency testing is not available. Approved Guideline, 2nd ed. GP29-A2. 2008

