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ABSTRACT 
The theory of fixed point is a very extensive field, which has various applications. This paper 
is the survey work on some fixed point theorems by altering distances between points in 
metric space. 
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INTRODUCTION 
Theorems concerning the existence and properties of fixed points are known as fixed point 
theorem. The theory of fixed points has become an important tool in non-linear functional 
analysis since 1930. It is used widely in applied mathematics. The existence and types of 
solution always help to give geometrical interpretation, to discuss the behaviour and to check 
stability of the concern system. This is the basis for the modelling of a system. The fixed point 
theorems related to altering distances between points in complete metric space have been obtained 
initially by D. Delbosco in 1967, F. Skof in 1977, M.S. Khan, M. Swaleh and S. Sessa in 1984. The 
paper of Pant et al. [26] deals with the survey work on the history of fixed point theorems.The 
purpose of the present paper is to study the common fixed point theorem by altering distances 
between the points through different types of mappings, like contraction, non-expansive,  
sequence of mappings, Fuzzy mappings. 
DEFINITION 1.1. Let X be a set and T a map from X to X. A fixed point of T is a point 
xX such that Tx = x. In other words, a fixed point of T is a solution of the functional 
equation Tx = x. 

THEOREM 1.1. (Banach Contraction Principle): Let (X, d) be a complete metric space 
and F: X X be a contraction mapping, then F has a unique fixed point. 

DEFINITION 1.2. The control function  is defined as : + → + which is continuous at 
zero, monotonically increasing, (2t) ≤ 2 (t) and (t) = 0 if  and only if t = 0. 

DEFINITION 1.3. Two self mappings A and S of a metric space (X, d) are called -
compatible if limn (d(ASxn, SAxn)) = 0 whenever {xn}  is a sequence such that limn 
Axn = limn Sxn = t for some t in X. 

DEFINITION 1.4. Two self mappings A and S of a metric space (X, d) are said to be 
reciprocally continuous in X if, limn ASxn = At and limn SAxn = St whenever {xn} is a 
sequence such that limn Axn = limn Sxn = t for some t in X. 
DEFINITION 1.5.  Maps A and S are pointwise R-weakly commuting on X given if  xX, 
there exists R > 0 such that d(ASx, SAx)  R d(Ax, Sx). It is noted that weak commutativity 
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of a pair of selfmaps implies their R-weak commutativity and reverse implication is true only 
when R  1 [39]. 
 
DEFINITION 1.6.  Let n  denote the set of all functions  :[0, ∞ )n → [0, ∞ ) such that  
  (i)  is continuous, and  (ii) ( t1, t2 ,…, tn) = 0  if and only if t1 = t2 = … = tn = 0,  
Then, the functions in n are called generalized altering distance function. 
 
2. FIXED POINT THEOREMS BY ALTERING DISTANCES BETWEEN POINTS 

FOR PAIR OF SELF MAPPINGS 
In 1976-1977, D. Delbosco [7] and in 1977, F. Skof [38] have established fixed point 
theorems for self maps of complete metric spaces by altering the distances between the points 
with the use of a function φ: + → + satisfying the following properties: 
 1). φ is continuous and strictly increasing in + ;  (2). φ(t) = 0  if and only if  t = 0 ; 
 3). φ(t) ≥ Mtµ  for every  t > 0 , where M > 0 , µ > 0 are constant. 
 The set of  all such functions φ is denoted  by Φ.  
 In 1977, F. Skof  proved the following theorem with φ  defined above for single self 
mapping. 
 
THEOREM 2.1[38]: Let T be a selfmap of a complete metric space (X, d) and  φ Φ such 
that for every x, y in X,  φ(d(Tx, Ty)) < a.φ(d(x, y)) + b.φ(d(x, Tx)) + c.φ(d(y, Ty)),                  
(2.1) 
where, 0 ≤  a + b + c < 1. Then T has a unique fixed point. 
Also, Delbosco [7] considered functions φ Φ such that φ(t) = t n, for nN and for every t ≥ 
0. 
In 1984, Khan et al. proved the following theorem without assuming the continuity of 
mapping and generalizing the result of Skof. 
 
THEOREM 2.2 [19]: Let (X, d) be a complete metric space, T a selfmap of X, and φ: +→ 
+ an increasing, continuous function satisfying property (2) of Theorem 2.1. Furthermore, 
let a, b, c be three decreasing functions from + \ {0} into [0, 1]  such that  
       a(t) + 2b(t) + c(t) < 1 for every t > 0. Suppose that T satisfies the following condition: 
 φ(d(Tx, Ty)) ≤ a(d(x, y)). φ ((d(x, y) + b(d(x, y)).{φ(d(x, Tx)) + φ(d(y, Ty)))  
                     + c(d(x, y)).min{φ(d (x, Ty)), φ(d(y, Tx))},    
 (2.2) 
where x, y X and x ≠ y. Then T has a unique fixed point. 
It is noted that in Theorem 2.2, φ is not necessarily a metric: For example, consider φ =  t 2.  
Also, by the symmetry of metric d, we may assume b = c in Theorem 2.1. Moreover, if we 
assume c = 0 in Theorem 2.2 and take a, b as constants, we obtain the result of Skof. Again, 
in Theorem 2.2, if we assume c = 0 and  φ (t) = t for every t ≥ 0 , we obtain the following 
condition  
  d(Tx,Ty) ≤ a(d(x, y)).d(x, y) + b(d(x, y)).{d(x, Tx) + d(y, Ty)}.             
 (2.3) 

If we assume b = c = a in Theorem 2.2, we get the following result. 
 
 
THEOREM 2.3: Let (X, d) be a complete metric space, T a selfmap of X and  φ : +→+ 
be an increasing, continuous function for which property (2) of Theorem 2.1 holds. Let a be a 
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decreasing function from + \ {0} into [0, l] such that   φ (d(Tx, Ty)) ≤ a(d(x, y)). φ(d(x, y)),  
  (2.4) 
where x, y X and x ≠ y. Then T has a unique fixed point. 
In 1976,  B. Fisher established the following theorem in compact metric space. 
 
THEOREM 2.4 [8]: Let T be a continuous selfmap of a compact metric space (X, d) such 
that for all x, y in X,  d(Tx, Ty) < [d(x, Tx) + d(y, Ty)]/2. Then T has a unique fixed point. 
In 1984, Khan et al. generalized  the above Theorem 2.4 as follows: 
 
THEOREM 2.5 [19]: Let T be a continuous selfmap of a metric space (X, d) such that for 
some x  X the sequence {Tnxo} has a cluster point z  X. Let there exists a continuous 
function φ : + →+  satisfying property (2) of Theorem 2.1. Furthermore, for all distinct x, y 
in X the inequality 
 φ(d(Tx, Ty)) < c φ(d(x, y)) + (1 - c) [ φ(d(x, Tx) + φ(d(y, Ty))]/2       (2.5) 
holds, where 0 ≤ c ≤ 1. Then z is the unique fixed point of T. 
Let  (X, d) denotes the metric space, + the set of all non-negative real numbers,  the set of 
all natural numbers and  the set of all continuous self mappings  of + satisfying (t) = 0 if 
and only if t = 0. With this notation, in Sastry et al. in 1999 established the following theorem 
on the orbit. 
 
THEOREM 2.6 [36]: Let T be a selfmap on a metric space (X, d). Suppose there exists a 
point x0 in X such that the orbit O(x0)= (Tn x0: n = 0, 1, 2, …) has a cluster point z in X. If T is 
arbitrally continuous at z and Tz and there exists a  such that  (d(Tx, Ty)) < (d(x, y))   
 (2.6) 
for each x, y = Tx  )( 0xO ; x  y then z is a fixed point of T. 
 
THEOREM 2.7[36] : Let  T be a continuous selfmaps of a metric space (X, d) such that for 
some x0 in X, the sequence {Tnx0} has a cluster point in X; and there exists    such that                                         
 (d(Tx, Ty)) < max {(d(x, y)), (d (x, Tz), (d(y, Ty))}           
 (2.7) 
for all distinct x, y in X. Then z (of  Theorem 2.5) is the unique fixed point of T. 
In 2001, G.V.R. Babu and S. Ismail proved the following theorem in complete metric space.  
 
THEOREM 2.8[1]: Let (X, d) be a complete metric space, and T a selfmap of X. Assume 
that T satisfies the following inequality: There is a k  [0, 1) and  such that 
       (d(Tx, Ty)  <  k max{(d(x, y)), (d(x, Tx)), (d(y, Ty)), [(d(x, Ty) + (d(y, Tx)]/2} 
For all x, y  X. For any x0 in X, define xn = Tnxo, n = 1, 2, … Then, 

1}{ nnx  is Cauchy, lim n 

 xn exists, say z is the unique fixed point of T in X.  
In 2000, Sastry et al. proved the following theorem in complete metric space.  
 
THEOREM 2.9[37]: Let (X, d) be a complete metric space, T a selfmap of X. Assume that 
T satisfies the following inequality: there is a k  (0, 1) and  φ in Φ such that   
 φ(d(Tx, Ty)) ≤ k max { φ(d(x, y)), φ(d(x, Tx)), φ(d(y, Ty))}, for all x, y in X.  
Then T has a unique fixed point in X.  
In 1999, K.P.R. Sasty and  G.V.R. Babu  proved the following theorems in a metric space.  
THEOREM 2.10.[35]: Let S and T be selfmaps of a metric space (X, d). For x0  X, define 
the sequence {xn} by x2n+2 = Sx2n, x2n+2 = Tx2n+1. Suppose either (A) {x2n} has a cluster point z 
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in X; and S, ST are continuous at z or (B){x2n+1} has a cluster point z in X; and T, ST are 
continuous at z. 
Assume that there exists a  such that (d(Sx, Ty)) < (d(x, y))       
 (2.8) 
for each distinct x, y { nx } satisfying either x = Ty or y = Sx. Then, (1) either S or T has a 
fixed point in {xn} or (2)  z is a common fixed point of S and T.  
 
THEOREM 2.11. [35]: Let (X, d) be a bounded complete metric space and S and T be 
selfmaps of X such that ST = TS. Further, assume that S and T satisfy the following 
inequality: 
 there exists k(0, 1) and φΦ such that φ ((Sx, Ty)) ≤ k.max{φ(d(x, y)), φ(d(x, Sx)), φ(d(y, 
Ty))}, 
for all x, y in X. Then one of S and T (and hence both) have a unique common fixed point in 
X. 
 
3. FIXED POINT THEOREMS BY ALTERING DISTANCES FOR 

PAIRS OF SELF MAPPINGS 
The most general common fixed theorems for four mappings, say A, B, S and T of a metric 
space  
(X, d) use either Banach type  contractive condition of the form  
         d(Ax, By)  h m(x, y),    0   h < 1 where                      
 (3.1) 
         m(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty), [d(Sx, By) + d(Ax, Ty)]/2 }, 
or, a Meir-Keeler type (ε , δ) contractive condition [20] of the form: given   0 , there exists  
  0  such that       m(x, y)  ε + δ  d(Ax, By) < ,                              
 (3.2) 
or, a  contractive condition [2] of the form:  d(Ax, By)   (m(x, y)),       
 (3.3)                                                     
involving a contractive gauge function  : R+ R+ is such that (t) < t for each   t > 0.  
The weak form of the contractive condition (3.2) is of the form  
  < m(x, y)  ε + δ  d(Ax, By)    .                                       
 (3.4) 
Clearly, condition (3.1) is  a special case of both conditions (3.2) and (3.3).  
A -contractive condition does not guarantee the existence of a fixed point unless some 
additional condition is assumed. Therefore, to ensure the existence of common fixed point 
under the contractive condition (3.3), the following condition on  have been used by various 
authors. 

(I) (t) is non decreasing  and t / (t - f(t)) is non drecreasing (Carbone et.al.[6]) 
(II) (t) is non decreasing  and limn n(t) = 0 for each t > 0. (Jachymski [12]) 
(III)  is upper  semi continuous (Boyd and Wong[2], Jachymski [12], Maiti and Pal 

[21], Pant[ 24] ) or equivalently, 
(IV)  is non decreasing  and continuous from right (Park and Rhoades [30]) 

It is now known (e.g. Jachymski [12], Pant et.al. [23] ) that if any of the conditions (I), (II), 
(III), or (IV) is assumed on  , then a  - contractive condition (3.3) implies an analogous (ε, 
δ)- contractive condition (3.2) and both the contractive conditions hold simultaneously. In 
1998, R.P. Pant established the following fixed point theorem for compatible pair of 
reciprocally continuous maps. 
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THEOREM 3.1. [22]: Let (A, S) and (B, T) be  point wise R-weakly commuting pairs of self 
mappings of a complete metric space (X, d) such that  
(i) AX  TX, BX  SX,   (ii) d (Ax, By)  < h M(x, y) , 0 ≤ h < 1 , for  x, y   X where 
M(x, y) = max{d(Sx, Ty), d(Ax, Sx), d(By, Ty), [d(Ax, Ty) + d(By, Sx)]/ 2}.  
Suppose that (A, S) or (B, T) is compatible pair of reciprocally continuous mappings. Then 
A, B, S  and T have a unique common fixed point. 
 In 2000, Sastry et al. established the following fixed point theorems for -compatible pair of 
self mapping extending above Theorem 3.1. 
 
THEOREM 3.2. [37]: Let (A, S) and (B, T) be weakly commuting pairs of self maps of a 
complete metric space (X, d) and   be as in definition (1.2)  satisfying (i) AX  TX, BX  
SX and  
(ii) there exists h in [0, 1) such that (d(Ax, By)) ≤ h M (x,  y), where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)), [(d(Sx, By)) + (d(Ax, Ty))]/2 }, 
for all  x, y in X. Suppose that (A, S) or (B, T) is a -compatible of reciprocally continuous 
mappings. Then, A, B, S and T have a unique common fixed point. 
 
THEOREM 3.3. [37]: Let (A, S) and (B, T) be weakly commuting pairs of self maps of a 
complete metric space (X, d) and   be as in as in definition (1.2) satisfying (i) AX  TX, 
BX  SX and 
(ii)  there exists h  in [0, 1) such that  (d(Ax, By)) ≤ h M (x, y), where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)),  [(d(Sx, By)) +  (d(Ax, Ty))]/2 
}, for all  x, y in X. Suppose that A and S are -compatible and S is continuous. Then, A, B, 
S and T have a unique common fixed point. 
In 2003, Pant et al. established the following fixed point theorems for -compatible pair of 
reciprocally continuous self mappings. 
 
THEOREM 3.4.[27]: Let (A, S) and (B, T) be weakly commuting pairs of self maps of a 
complete metric space (X, d) and   be as in definition (1.2)  satisfying (i) AX  TX, BX  
SX and  
(ii) (d(Ax, By)) < (M (x, y)), for all x, y in X whenever M (x, y) > 0, where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)),  [(d(Sx, By)) + (d(Ax, Ty))]/2 
},  
and :+→+  be an upper semi continuous function such that  (t) < t for each t > 0.  
Suppose that (A, S) and (B, T) is -compatible pairs of reciprocally continuous mappings. 
Then, A, B, S and T have a unique common fixed point.  
 
THEOREM 3.5.[27]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of a 
complete metric space (X, d)  and   be as in definition (1.2) satisfying  (i) AX  TX, BX  
SX and (ii) (d(Ax, By)) <  (M (x, y)), for all x, y in X whenever M (x, y) > 0,where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)),  [(d(Sx, By)) + (d(Ax, Ty))]/2 },  
and  : + →+  be an upper semi continuous function such that  (t) < t for each t > 0. 
Suppose that A and S are -compatible and A is continuous mapping. Then, A, B, S and T 
have a unique common fixed point. 
In 2003, Pant et al. established the following fixed point theorems for -compatible pair of 
self mappings. 
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THEOREM 3.6.[28]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of 
a complete metric space (X, d) and function  be as in definition (1.2) satisfying: (i) AX   
TX,  
BX  SX and (ii) there exists h in [0, 1) such that (d(Ax, By)) < h M (x, y), where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)),  [(d(Sx, By)) + (d(Ax, Ty))]/2 
}, for all x, y in X.  Suppose that A and S are -compatible and A is continuous. Then A, B, S 
and T have a unique common fixed point. 
Pant et al. (2003) established the following fixed point theorems for -compatible pair of self 
mapping. 
 
THEOREM 3.7.[29]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of 
a complete metric space (X, d) and function  be as in definition (1.2) satisfying (i) AX  
TX,  
BX  SX and (ii) there exists h in [0, 1) such that (d(Ax, By)) ≤ h M (x, y), where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)),  [(d(Sx, By)) + (d(Ax, Ty))]/2 
},  for all x, y in X. Then the continuity of one of the mappings in -compatible pair (A, S) on 
X implies their reciprocal continuity. 
 
THEOREM 3.8.[29]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of 
a complete metric space (X, d) and function  be as in definition (1.2) satisfying (i) AX  
TX,  
BX  SX and (ii) there exists h in [0, 1) such that (d(Ax, By)) ≤ h M (x, y), where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)), [(d(Sx, By)) + (d(Ax, Ty))]/2 },  
for all x, y in X. Let (A, S) and (B, T) be -compatible. If S or T is continuous Then A, B, S 
and T have a unique common fixed point. 
In 2004, K. Jha and R.P. Pant established the following fixed point theorems for -
compatible pair of reciprocally continuous self mappings. 
 
THEOREM 3.9[15]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of a 
complete metric space (X, d) and  be as in definition (1.2) satisfying (i) AX  TX, BX  
SX and  
(ii) (d(Ax, By)) <  (M (x, y)), for all x, y in x whenever M (x, y) > 0 , where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)), [(d(Sx, By)) + (d(Ax, Ty))]/2 }, 
and  
 : + →+  be an upper semi continuous function such that (t) < t for each t > 0. Suppose 
that  
(A, S) and (B, T) are -compatible pairs of reciprocally continuous mappings. Then, A, B, S 
and T have a unique fixed point. 
 
THEOREM 3.10.[15]:  Let (A, S) and (B, T) be weakly commuting pairs of self mappings 
of a complete metric space (X, d) and function  be as in definition (1.2) satisfying. (i) AX  
TX,  
BX  SX and (ii) (d(Ax, By)) <  (M (x, y)), for all x, y in X whenever M (x, y) > 0, 
where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)), [(d(Sx, By)) + (d(Ax, Ty))]/2 }, 
and  : + →+  be an upper semi continuous function such that (t) < t for each t > 0.  
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Suppose that A and S  are -compatible and A is continuous mapping. Then, A, B, S and T 
have a unique fixed point. The proof is similar when the pair (A, S) is assumed -compatible 
and S is continuous. Moreover, we can get the same result when the  (B, T) is assumed -
compatible and either T or B is assumed continuous. 
 
EXAMPLE 3.3. Let X = [0, 1] with the Euclidean metric d. Define A = B and S = T : X → 
X by the rule A0 = ½, Ax = x/4 for 0 < x ≤ 1 and S0 =1, Sx = x/2 for  0 < x ≤ 1. Then A and S 
are weakly commuting mappings and hence they are -compatible, with  being an identity 
mapping. Also, A and S are not continuous and they do not have common fixed point. 
In 2006, Jha et al. established the following fixed point theorems for -compatible pair of 
reciprocally continuous self mappings. 
 
THEOREM 3.11.[16]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of 
a complete metric space (X, d) and  be as in definition (1.2) satisfying : (i) AX  TX, 
BX  SX and  
(ii) (d(Ax, By)) < (M (x, y)), for all x, y in X whenever M (x, y) > 0, where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty))}, and  : + →+  be a non 
decreasing function such that (t) < t for each t > 0 and lim n

n (t) = 0,  n (t) being 
composition of (t) with itself n-times. Suppose that (A, S) is -compatible pair and A is 
continuous mapping. Then A, B, S and T have a unique common fixed point. 
 
THEOREM 3.12.[16]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of 
a complete metric space (X, d) and  be as in definition (1.2) satisfying: (i) AX  TX, 
BX  SX and  
(ii) (d(Ax, By)) < (M (x, y)), for all x, y in X, whenever M (x, y) > 0 , where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty))}, and  : +→+ be a non 
decreasing function such that (t) < t for each t > 0 and  lim n

n (t) = 0,  n (t) being the 
composition of (t) with itself n-times. Suppose that (A, S) and (B, T) are -compatible pairs 
of reciprocally continuous mappings. Then, A, B, S and T have a unique common fixed point. 
In 2007, Rao et al.  established the following fixed point theorems for -compatible pair of 
self mappings using continuity condition on self maps. 
 
THEOREM 3.13.[33]: Let P, Q, S and T be self mapping of a complete metric space (X, d) 
satisfying: 
(i) 1(d(Px, Qy)) < 1(d(Sx, Ty), d(Sx, Px), d(Ty, Qy), [d(Sx, Qy) + d(Ty, Px)]/2) 
   - 2 (d(Sx, Ty), d(Sx, Px), d(Ty, Qy), [d(Sx, Qy) + d(Ty, Px)]/2)       
(3.5) 
for all x, y  X, where 1, 2  4 and 1 (x) = 1(x, x, x, x) for all x  [0, ),  
(ii) either S and T or P and T or Q and S are continuous, (iii) (P, S) and (Q, T) are compatible 
pairs of type (B),  (iv) PT(X)  Q S(X)  T(X) and ST = TS. Then, P, Q, S and T have a 
unique common fixed point in X.  
In 2007, Jha et al. established the following fixed point theorems for -compatible pair of 
self mappings using Meir-Keeler type contractive condition. 
THEOREM 3.14.[17]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of 
a complete metric space (X, d) and  be as in definition (1.2) satisfying: (i) AX  TX, 
BX   SX and  (ii) given  > 0, there exists a number  > 0 such that for all x, y in X 
   < M (x, y) <  +   (d(Ax, By)) < ,  and (iii) (d(Ax, By)) <  (M (x, y)), 
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for all x and y in X whenever M (x, y) > 0, where 
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)), [(d(Sx, By)) +  (d(Ax, Ty))]/2 
},  and  : + →+  is such that  is non decreasing and (t) < t for each t > 0. Suppose that 
(A, S) and  
(B, T) are -compatible pairs of reciprocally continuous mappings. Then, A, B, S and T have 
a unique common fixed points. 
EXAMPLE 3.5 [17]: Let X = [2, 20] with the usual metric d on X. Define A, B, S, T : X  
X 
 by  Ax = 2 for each x;   Bx = 2 if x = 2 or x > 3,   Bx = 8 - x if 2 < x ≤ 3; Sx = x if x ≤ 6 if x > 
6;  
Tx = 2 if x = 2 or x > 3, Tx = 8+ x if 2 < x ≤ 3. Then,  AX  TX, BX  SX, (A, S) and (B, T) 
are weakly commuting compatible pairs of reciprocally continuous mapping. The mappings 
A, B, S, T have a unique common fixed point x = 2. 
In 2007, Jha et al. established the following fixed point theorems for -compatible pair of 
self mappings using  Meir-Keeler type contractive condition. 
 
THEOREM 3.15.[17]: Let (A, S) and (B, T) be weakly commuting pairs of self mappings of 
a complete metric space (X, d) and   be as in definition (1.2) satisfying: (i) AX TX, 
BX   SX and  
(ii) given  > 0, there exists  > 0 such that   < M (x, y) <  +    (d(Ax, By)) < ,   
(iii) (d(Ax, By)) <  ((M (x, y)), for all x and y in X, whenever M (x, y) > 0,where  
M (x, y) = max {(d(Sx, Ty)), (d(Ax, Sx)), (d(By, Ty)), [(d(Sx, By)) + (d(Ax, Ty))]/2},  
and : + →+  is such that  is non decreasing and (t) < t for each t > 0. Suppose that A, 
and S  are -compatible and S is  continuous mappings. Then, A, B, S and T have a unique 
common fixed points. 
In 2008, Rao et al. established the following fixed point theorems for -compatible pair of 
self mappings using continuity condition, generalizing the result of B. Chaudhary [3]. 
 
THEOREM 3.16.[34]: Let (X, d) be a complete metric space and f, g, S, T : X  X be such 
that 
(i) 1(d(fx, gy)) < 1(d(Sx, Ty), d(Sx, fy), d(Ty, gy) , [d(Sx, gy) + d(Ty, fx)]/2), 
                         - 2 (d(Sx,Ty), d(Sx, fx), d(Ty, gy) , [d(Sx, gy) + d(Ty, 
fx)]/2) 
for all x, y X, where 1, 2  4 and 1 (x) = 1(x, x, x, x) for all x  [0, ), and  
(ii) One of mappings f, g, S and T is continuous, (iii) (f, S) and (g, T) are semi compatible 
pairs, and (iv) f(X)  T(X), g(X)  S(X). Then f, g, S and T have a unique common fixed 
point in X. 
 
4. FIXED POINT THEOREMS BY ALTERING DISTANCES BETWEEN 

POINTS FOR SEQUENCE OF MAPPINGS 
In 1974, Iseki established the following fixed point theorems for sequence of  self maps in 
complete metric space. 
THEOREM 4.3.[11]: Let (X, d) be a complete metric space, and 

1}{ nnT   be  a sequence of 
selfmap of X.  Suppose there are non-negative real numbers  , β and γ such that for any x, y 
in X and i, j  ,       d(Tix, Tjy) ≤ {d(x, Tix) + d(y, Tjy)} + β {d(x, Tjy) + d(y, Tix)} + γ d(x, 
y),   (4.1)                                                             
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where 2 +2 β + γ < 1 .Then 
1}{ nnT  has a unique fixed point. 

In 1999, Sastry  et al. established the following fixed point theorems for sequence of  self 
maps. 
 
THEOREM 4.1.[36] Let (X, d) be a bounded complete metric space and S and T be self 
maps of X such that ST = TS. Further, assume that S and T satisfy the following inequality: 
there exists  
k(0, 1) and φΦ such that  φ((Sx, Ty)) ≤ k max {φ(d(x, y)), φ(d(x, Sx)), φ(d(y, Ty))}            
(4.2) 
for all x, y in X. Then one of S and T (and hence both) have a unique fixed point in X. 
 
THEOREM 4.2.[36]: Let (X, d) be a bounded complete metric space. Suppose 

1}{ iiT is a  
sequence of selfmaps of X such that TiTj = TjTi,  for all i, j = 1, 2, 3… and satisfies the 
inequality :  
there exists k(0, 1) and φΦ such that φ(d(Tix, Tjy)) ≤ k max {φ(d(x, y)), φ(d(x, Tix)), 
φ(d(y, Tjy)} 
for all x, y in X. Then, the sequence  

1}{ iiT  has a unique common fixed point in X.            
In 2001, Babu and Ismail established the following fixed point theorems for  single self maps. 
 
THEOREM 4.4.[1]: Let (X, d) be a complete metric space, and T a selfmap of X. Assume 
that T satisfies the following inequality: there is a k  [0, 1) and   such that 
(d(Tx, Ty)) < k max{(d(x, y) ),  (d(x, Tx) ), (d(y, Ty) ), [(d(x, Ty)) + (d(y, Tx))]/2 }, 
  for all x, y  X. For any x0  X, define xn = Tnxo, n = 1, 2, … Then 

1}{ nnx  is Cauchy, 
lim n xn exists, say z and z is the unique fixed point of T in X.  
 The Theorem 4.4   has been extended to the sequence of selfmap as follows. 
  
THEOREM 4.5.[1]: Let (X, d) be a complete metric space, and 

1}{ nnT   be  a sequence of 
selfmap of X.  Suppose there is a    satisfying the following inequality: there exists k  
[0, 1)  such that 
(d(T1x, Tjy)) < k max{(d(x, y)), (d(x, T1x)), (d(y, Tjy)), [(d(x, Tjy)) + (d(y, T1x))]/2}, 
for             
all x, yX and for all j . Then, the mappings 

1}{ nnT  have a  unique common fixed point  
in X.  
In 2002, K. Jha and R.P. Pant established the following fixed point theorems for sequence of 
self maps using reciprocally continuity. 
 
THEOREM 4.6[14]: Let {Ai}, i = 1, 2, 3, …, S and T are self mappings on a complete 
metric space (X, d) for some i > 1 and  is a control function as in (1.2) satisfying: (i) A1X  
TX, A2X  SX,   (ii) (d(A1x, A2y)) < h

1
M (x, y), 0 < h < 1 , and  (iii) (d(A1x, Aiy)) < 

1
M

(x, y), whenever 
1

M (x, y) > 0. Suppose that (A1, S) and (A2, T) be -compatible pair of 
reciprocally continuous mappings. Then, all the Ai, S and T have a unique common fixed 
point. In 2005, Choudhari and Dutta established the following fixed point theorems for fuzzy 
mappings in complete metric space using generalized altering distance function. 
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THEOREM 4.7.[4]: Let (X, d) be a complete metric linear space and S, T : X  W(X) be 
two fuzzy mappings such that the following holds: For all x, y  X,  
 1(d(Sx, Ty)) < 1(d(x, y), D1(x, Sx), D1(y, Ty)) - 2(d (x, y), D1(x, Sx), D1(y, Ty)), 
where, 1 and 2 are generalized altering distance functions and 1(x) = 1 (x, x, x).        (4.3) 
Then S and T have a unique common fixed point.  
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