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ABSTRACT 

The effects of permeability on nonlinear Oberbeck Electro-convection in a poorly conducting fluid saturated porous medium 

in a vertical channel, when the walls are held at different temperatures with temperature difference perpendicular to gravity, is 

studied using the modified Navier stokes equation in the presence of both induced and an applied electric field. Both 

analytical and numerical solutions for the non-linear coupled equations governing the motion are obtained and found that 

analytical solutions agree well with numerical solutions for values of the buoyancy parameter N <1. It is shown that OBEC 

can be controlled by maintaining the temperature difference either in the same direction or opposing the potential difference 

with a suitable value of electric number W. The effect of W on velocity, temperature, rate of heat transfer, skin friction and 

mass flow rate are computed and the results are depicted graphically. We found that the analytical solutions for velocity and 

temperature distributions are in close agreement with those obtained from the numerical method for small values of N. We 

also found that an increase in W accelerates the flow and hence increases linearly the skin friction and mass flow rate. Further, 

the velocity and temperature have the same behavior for different values of porous parameter when the temperature difference 

and the potential difference are in the same or in the opposite directions.  

Keywords: Permeability, Oberbeck electro-convection, Poorly conducting fluid, Electric field, 

Perturbation technique, Skin friction. 

INTRODUCTION 

We note that in biomedical and bioengineering applications like cartilages in synovial joints (SJ) and 

endothelium in coronary arteries diseases (CA) involve porous layer saturated with poorly conducting 

fluid. At present artificial cartilages, and other organs are manufactured using metals. These organs 

manufactured by metals will have either rough or smooth surfaces and both of them are very dangerous 

due to a force resulting from these stresses. This force drives erythrocytes (i.e. RBC) in an artery to a 

particular region. The accumulation of RBCs in that region will be punctured resulting in the release of 

hemoglobin’s. This leads to a disease called” Haemolysis”. The objective of this paper is to propose a 

mechanism of overcoming this side effect by incorporating the porosity of the organs and using an 

electric field, assuming the body fluid in these organs as poorly conducing fluid saturated porous media.  

We note that (See Turnbull 1968, 1969) fluids of very low electrical conductivity like Nickle-Titanium 
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 i iN T , Aluminum-Nickle  iNAl  alloys, and so on in the presence of electric field, known as electro 

hydrodynamics (EHD), permit EHD boundary layer flow separation (See Rudraiah et. al. 2003, 2006, 

2007). Considerable interest has been evinced in the design of products and their use in modern 

technologies such as communication and information technology, transportation, production 

engineering, environmental and nuclear sciences, aerospace and defense, microelectronics, biology and 

so on. Each of these sectors needs material which minimizes the weight and vibrations and maximizes 

the efficiency. It is believed that such materials are smart materials of nanostructure. Nanoscience is the 

study and manufacture of structures and devices with dimensions about the size of few atoms or 

molecules. New materials like alloys having the functions of sensing and actuation properties are called 

smart materials. Usually sensing component of a smart structure is designed according to the nature of 

the event to be sensed. For example, thermal, mechanical or chemical as well as according to nature of 

output required such as thermal, electrical or mechanical. The sensors are used to duplicate the action of 

conventional strain gauges. Like sensing, the actuating component of smart material is also designed 

according to the nature of required actuation either thermal, mechanical or chemical as well as according 

to the nature of driving energy such as thermal, electrical and chemical. At present, as stated earlier, such 

materials are manufactured using piezoelectric materials. These piezoelectric materials are known to be 

ideal for ultrasonic applications due to their high frequency response. However, they may not be of much 

use for biomedical and bioengineering applications because they involve poorly electrically conducting 

fluids. Further, for high specific strength the piezoelectric materials exhibit anisotropy and in 

homogeneity leading to mathematical complications. These complications can be overcome by using the 

new smart materials made up of poorly conducting alloys proposed in this paper as an alternate to 

piezoelectric smart materials. The important process in the manufacture of this new smart material of 

nanostructure is the solidification of poorly conducting alloys like Nickel-Titanium (Ni-Ti), Aluminum-

Nickel (Al-Ni) alloys and so on by cooling from below and heating from above. In these poorly 

conducting alloys, the electrical conductivity, , is a function of temperature which increases with an 

increase in temperature. The physical process involved in this solidification process is as follows. The 

variation of electrical conductivity with temperature releases free charges leading to distribution of 

charge density, e , resulting in induced electric field known as thermal electric field. In addition, there 

may be an applied electric field due to embedded electrodes at the boundaries. The total electric field, E


, 

namely the sum of induced and applied electric fields, produces not only the current, J


, which acts as a 

sensor and also an electric force, Ee


 , which acts as actuator. These two properties, sensing and 

actuating, are required a material to be a smart material. This electric force like buoyancy force produces 

a convective instability in a poorly conducting fluid while cooling from below and heating from above in 

the presence of electric field known as electro-convection (EC). A considerable amount of research has 

been devoted to the control of flow separation in ordinary or electrically conducting fluids (Rajgopal et. 

al. 1996) and in EHD because it is considered as an undesirable feature, but much attention has not been 

given to flow separation in EHD considering poorly conducting fluid saturated porous layer. This is 

considered in this paper. We know that ordinary techniques like suction or injection, blowing and wall 

movements are used for the control of separation, where as in EHD through porous layer considered in 

this paper an electric field is used to control flow separation. There has been a considerable practical 

interest in the study of convection in a vertical channel in the presence of electric field in a porous 
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medium. However, convection in a poorly conducting fluid saturated porous medium in the presence of 

an applied electric with porous medium considering the dissipations has not been given much attention 

in spite of their applications. The study of it is the main objective of this paper.  

1. MATHEMATICAL FORMULATION:  

The physical configuration considered in this problem is shown in fig 1. It consists of an infinite vertical 

porous channel bounded on both sides by the rigid isothermal plates embedded with electrodes located at 

y b  with x-axis in the axial direction and y-axis perpendicular to the plates. In addition to EHD and 

Oberbeck-Boussinesq approximations, we assume the porous layer is sparsely packed; the flow is fully 

developed and unidirectional in the x-direction, so that the velocity and temperature will be function of y 

only. The EHD assumptions enabled us to use the creeping flow approximations. The assumptions of 

Stokes and lubrication approximation make the above stated basic equations reduce to, conservation of 

mass 

. 0q  ,   00 1 TTT            (2.1 a, b) 

Since the porous layer is sparsely packed the conservation of momentum is the modified Darcy-

Brinkman equations, modified in the sense of addition of electric force e E  in the momentum equation 

and obtain 

 
2

2

0

0e xEd u
g T u

dy k


 


                     (2.2) 

The energy equation with the addition of Ohmic, Darcy and viscous dissipations. 

 2 2 22
2

2
0

x yE Ed T du
u

dy K dy K Kk

  
    

 
         (2.3) 

together with the conservation of charges      

 . 0E               (2.4) 

and the Maxwell equations for a poorly conducting fluid                                                  

0

. , ,eE E J E


 


     ,  0 01 b T T                      (2.5 a, b, c, d) 
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2. METHOD OF SOLUTION, VELOCITY AND TEMPERATURE DISTRIBUTION: 

Under these approximations, (2.2) to (2.5), after making them dimensionless using the scales  

 
 

* * * * * *0

2 2

1 0 0 0

, , , , , ,
/ / /

e
e

T Tu E x y
u E x y

g b T T T V b V b b b

 
  

   


      

 
 

(3.1) 

take the form 

2
2

2
0e e xW Ed u

u
dy




 
             (3.2)    

 
22

2 2 2 2

2
0p e x y

d du
N N u T E E

dy dy


  
 

     
 

                      (3.3) 

 2 0.                         (3.4)            

1   , b T ,                (3.5)     

where 2 3

0 0/eW V g Tb      is the electric number,  2 2 4

0 1 0 /N g T T b K      the buoyancy 

parameter,  2

0 /eT V K T    the thermal electric number.
2 2 /p    ,

2 2 /p b k   the porous 

parameter, /    is the ratio of effective viscosity to viscosity of fluid. The required boundary 

conditions, shown in fig 1, after making them dimensionless, are 

 0 1, 1 1, 1 1u at y at y at y                (3.6 a, b, c) 

The solutions of these equations are determined in the subsequent sections both analytically and 

numerically, using these boundary conditions.  

3. SOLUTION FOR  :  

The solution for , according to (3.4) depends on σ which in turn depends on the temperature θ as in 

(3.5). In a poorly conducting fluid (i.e., σ<<1), to find  ,we assume the dissipations in (3.3) are 

negligible and hence σ will depend on the conduction temperature, B  ,satisfying   

 
2

2
0Bd

dy


           (4.1) 

The solution of this satisfying the boundary conditions  

1 1 1 1B Bat y and at y         (4.2)     is  B y     (4.3) 
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Then (3.5) becomes   1 yy e     1        (4.4) 

Eqn (3.4) using (4.4) becomes    
2 2

2 2
0

x y y

  
  

  

  
      (4.5) 

To find the solution of (4.5), we consider the following two cases: 

Case 1: The Potential Difference Applied Opposite to the Temperature Difference 

In this case the boundary conditions as shown in fig.1, making them dimensionless, are 

01 1x at y and x x at y            (4.6) 

The solution of (4.5), satisfying (4.6), is  0

2

yx
x e e

Sinh

   


   (4.7) 

From (2.5, a, b, c, d), after making dimensionless using the quantities defined earlier and using (4.7), we 

get    
2

2 0. ,
2

y

e

x e
E

Sinh



    


 


1xE   , 0

2

y

y

x e
E

Sinh





     (4.8) 

Also   
2

0

2

y

e x

x e
E

Sinh









,
2 2 2

2 2 0

2
1

4

y

x y

x e
E E

Sinh



  



     (4.9) 

Case 2: The Potential Difference Applied in the Same Direction of Temperature Difference 

In this case the boundary conditions on  , in dimensionless form, are opposite to those specified in (4.6) 

and they are   01 1x at y and x x at y           (4.10) 

In this case the solution of (4.5), satisfying (4.10), is    0

2

yx
x e e

Sinh

    


  (4.11) 

In this case e ,
yE  and e xE  are opposite to those obtained in case 1, whereas xE  and 

2 2

x yE E   remain 

the same as in case 1. Equations (3.2) and (3.3) are coupled nonlinear equations because of dissipation 

terms, which are solved both analytically and numerically in the next section. 

4. ANALYTICAL SOLUTIONS:  

Analytical solutions for velocity and temperature are obtained using a regular perturbation technique, 

with the buoyancy parameter N as the perturbation parameter, which is very small. We look for the 

solutions of (3.2) and (3.3) in the form           
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 𝑢 = 𝑢0+𝑁𝑢1 + 𝑁2𝑢2 +⋯ , 𝜃 = 𝜃0 + 𝑁𝜃1 + 𝑁2𝜃2 +⋯ ,      (5.1 a, b)                           

Here the subscript 0 refers to the solutions for the case in which N=0, which represents physically the 

solutions in the absence of viscous dissipation and 1 2 1 2, ....., , ......,u u   , are the perturbation quantities 

which are assumed to be small compared to
0 0u and . Equations (3.2) and (3.3), using (4.11) and (5.1a, 

b) and equating the coefficients of the like powers of N to zero, we get the following set of equations:  

Zeroth order equations:  For case 1:     
2

20 0
0 12

0yd u
u W e

dy






         (5.2) 

       For case 2:    
2

20 0
0 22

0yd u
u W e

dy






             (5.3)  

                       
2

0
32

0y y

e

d
T e W e

dy

              (5.4)                                   

First order equations: 

                       
2

21 1
12

0
d u

u
dy





             (5.5)                

22
2 201

02
0p

dud
u

dydy


 
 

   
 

        (5.6)  

where
2

0
1

2

eW x
W

Sinh



 
 for case1,

2

0
2

2

eW x
W

Sinh



 
   and 

2 2

0
3 24

eT x
W

Sinh




  are constants.  

These equations are solved, using the boundary conditions, in dimensionless form,  

0 0

0 1 1

1 1, 1 1

0 1

at y at y

u u at y

     

    

 


        (5.7)    

Solutions of (5.2) to (5.6), satisfying the conditions (5.7), are   

  2 2

0 2

y y

e
y T Cosh e ySinh W Cosh e ySinh             ( ) ( ) /      (5.8)    
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 

 

0 2 2 2

1

2 2

2
12

2 2 2

2

2 2 2

2

1

y

e

y

T e Sinh Sinh Cosh Cosh y Sinh Cosh Sinh y
u

Sinh

a e Sinh Sinh Cosh Sinh y Sinh Cosh Cosh y

Sinh

c Cosh y Sinh y
c y

Cosh Sinh





      

   

      

 

 

   



  
  

  

  
 

  

   
     

   

                (5.9) 

4
1 33 25 26 27 282

2 2

4 1 3 1 2 211 12
29 30 4 4 2 2

2 2

1 1 1

2 2 4 2 2 2

2
2

4

2 2

4 4

2 2

( )

y y y y

p p y y

e p py

a Sinh y
a Cosh y a e Cosh y a e Sinh y a e Cosh y a e Sinh y

c c ySinh y c c yCosh y a a
a Cosh y a Sinh y e e

T c a c
ye

   

 




     



   
 

     

 

      

 



     

     

 


   

2

1 2 3

31 322 2 2 4 2

2 2

1 2 1 2 14 224

4 2

( ) 3

12 2 2 2

py y y

p

c c
ye a e a e y

c p p p pa
y y y

  


   



 

   


  
   

 

   (5.10)             

   

     

4 3 3 4 33 4
1 2 4

2 2

1 4 1 32 2

34 355 2 5 2

2 211 12
36 37 382 2 2 2 2 2

2 2
2 2 3 12

2 2

4 (4 ) 4 (4 )

p p

y yy y

p p p p a aSinh y Cosh y
u Cosh y Sinh y

Sinh Cosh

c c c c
y Cosh y y Sinh y a yCosh y a ySinh y

a a
e e a e a e a e

      

 
 

     

 
   

   

     

   

 
   

   

    
 

 
2 2

1 1 1

37 402 3 4 2 2 2 2 2 2 2 2 2

2 2 2

1 1 24 3 2

41 42 43 446 3 6 3

2 2

( ) ( )

12 3

y

y e p py y y

p py

T c a c
a e ye ye a e

c c c
a e y y a y a y a

    



 

         

 

   

  



   
 

     

          (5.11)    

The velocity (u) and temperature (θ), can be obtained respectively using (5.1a, b) and (5.2) to (.5.6). We 

note that  1a  , given in the appendix, involve 1W  for case 1 and 2W  for case2. These u and θ are 

computed for the cases1 and 2 and the results are depicted in figs (4.2) to (4.6). 

5. NUMERICAL SOLUTIONS: 

We obtain numerical solution, using a finite difference technique. The velocity and energy equations are 

solved using the central difference method. The use of central difference scheme replaces the derivatives 

with corresponding central difference approximations leading to set of linear algebraic equations. The 

solution of reduced algebraic equations is obtained by the method of Successive Over Relaxation (SOR). 

The relaxation parameter ω is fixed by comparing the numerical results with those obtained by analytical 

method. The convergence criterion is based on the step size and the previous iterations for the iterative 

difference to the order 610 . 
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The finite difference equations equivalent to (3.2) and (3.3) with 21 mesh point with the step size 0.1 are 

 

1 1 2

12

2
0jyj j j j

j

u u u
u W e

y






  
   


 

Solving for ju
,    

 
 

2

2

1 1 122

1

2

j
j y

j j j

y
u u u W e y

y








 

 
     
    

  (6.1) 

 

2

1 1 1 1 2 2

22

2
0

2

j jy yj j j j j

p j e

u u
N N u T e W e

yy

   
 

      
     

  
  

Solving for j  

     

 

2 2 22 2

1 1 1 1

2

2

1
4

2

j

j

y

j j j j p j e

j
y

N
u u N y u T y e

W y e






  


   



 
       


 
   

            (6.2) 

Applying SOR, we obtain from (4.6.1) and (4.6.2), 

 
  

       
  

   
2

2

122
1 1 1

2
j

I J y
U J U J U J W y Exp y UI J

y


 



 
          

    
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(6.4) 

In (6.3) and (6.4), ω is the relaxation parameter. The value of ω is fixed at 1.645 after checking the 

closeness with analytical solutions. These solutions (6.1) and (6.2) are computed for different values of 

the parameters. We find the skin friction, rate of heat transfer and mass flow rate and the results are 

depicted in figs (4.4) to (4.6). 
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RESULTS AND DISCUSSIONS 

The effects of electric field and porous parameter on the velocity (u), temperature (), Skin friction, Rate 

of heat transfer (Nu) are obtained analytically, using a regular perturbation technique valid for small 

values of buoyancy parameter N. The velocity given by (5.1a), is computed for different values of the 

electric number We, Porous parameter
p  and the ratio of viscosities  and the results are depicted in figs 

(4.2 a, b, c), when the potential and temperature differences are either in the same direction or opposing 

each other. From these figures we conclude the following: 

1. The velocity profile is still parabolic even in electro hydrodynamics through porous media as in 

hydrodynamics with the exception that it increases with an increase in electric number We. This increase 

is more when the temperature difference opposes the potential difference compared to that when the 

temperature difference is in the same direction of potential difference.   

2. An increase in the porous parameter p
decreases the   velocity, as expected on physical grounds 

namely p
 dampens the velocity. 

3. An increase in the ratio of viscosities,  , decreases the velocity, because of the resistance offered to 

the flow. From the above results we conclude that an electric field, porous parameter and the ratio of 

viscosities can be effectively used to control OBEC.  Similarly, the temperature, given by (5.1b), is 

computed for different values of Te, We, p
  and the results are depicted in fig (4.3) and tabulated in the 

above tables1 and 2 respectively. From this figure (4.3), we conclude that an increase in Te also increases 

the temperature and the rate of increase is slightly greater when the temperature difference and the 

potential difference are in the same directions compared to those in the opposite directions. In particular, 

we note that for different values of We, the temperature profile depicts the nature of parabolic implying 

temperature tends to dominate conduction than convection. Physically this implies that the effect of We 

is to suppress convection. The skin friction is computed for different values of   We and N, and the 

results are depicted in figs (4.4a, b). Fig (4.4a), revels that an increase in We increases the skin friction, 

whose   increase is more in case 2 than that in case1.Fig (4.4b), revels that, an increase in N decreases 

the skin friction, as expected on physical grounds. But the rate of decrease is more in case2 compared to 

that in case1.In figs (4.5a) and (4.5b), the rate of heat transfer is depicted. Fig (4.5a) is a plot of the rate 

of heat transfer or local Nusselt number Nu verses We. It reveals that Nu decreases with an increase in 

We and tends to a constant value. But the rate of decrease is more in case2 compared to case1. Fig 

(4.5b), represents the rate of heat transfer Nu plotted verses σp and its effect is to increase Nu with an 

increase in σp.  We note that this rate of increase is more in case2 compared to that in case1. Fig (4.6), 

represents the mass flow rate vs electric number for different values of N. Here we observe that the mass 

flow rate decreases with an increase in N. Finally, we conclude that with a proper choice of an external 

constraint of electric field, permeability and ratio of viscosities, it is possible to control OBEC, which is 

useful in the manufacture of novel materials like smart materials free from impurities. 
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Fig4.1: Physical configuration 
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