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ABSTRACT 

Nonlinear oberbeck convection of a couple stress fluid in a vertical porous channel in the presence of transverse magnetic 

field is investigated in this paper.  Analytical solution is obtained using the perturbation technique for vanishing values of 

the buoyancy parameter.  Numerical solution of the nonlinear governing equations is obtained using the finite difference 

technique to validate the results obtained from the analytical solutions.  The influence of the physical parameters on the 

flow, such as couple stress parameter, Hartmann number, temperature parameter, porous parameter and buoyancy 

parameter are evaluated and presented graphically.  A new approach is used to analyse the flow for strong, weak and 

comparable porosity cases.  It is found that increase in porous parameter, couple stress parameter, Hartmann number and 

temperature parameters decrease the velocity considerably. 
 

Keywords: Couple stress parameter, Vertical porous channel, Magnetic field, Finite difference 

technique, Perturbation technique.  

 
INTRODUCTION 

Natural convection in a vertical channel has been the focus of investigation for a long time because 

of its practical applications such as cooling of electronic equipment, passive heating in solar 

collectors, ventilation of buildings and heat removal in nuclear science applications. Elenbaas [1] 

studied theoretical and experimental analysis of natural convection between two isothermal parallel 

plates. He intends at the optimization of heat transfer rate. Bodoia and Osterle [2] studied 

numerically the development of free convection boundary layer between parallel isothermal vertical 

plates using finite difference method. Their studies concerned with variation in temperature, pressure 

and velocity throughout the flow field. Aung et Al. [3] have conducted experimental and numerical 

studies on the evolution of laminar free convection between vertical plates with asymmetric heating, 

under the thermal boundary conditions of uniform heat flux and uniform wall temperature. Since then 

a number of studies have been reported in the literature with focus concentrated on the problem of 

free convection heat transfer and fluid flow between vertical parallel plates. 

The study of non-Newtonian fluids has attracted many researchers because of their applications in 

engineering and industry, particularly in the extraction of crude oil from petroleum products, 

solidification of liquid crystals, cooling of metallic plate in a bath to name a few. Different models 

have been proposed to explain the behaviour of non-Newtonian fluids (Aero et. al., [4], Eringen, [5], 

Stokes, [6]). Among these couple stress introduced by Stokes [6] has distinct features, such as 
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presence of couple stresses, body couples and non-symmetric stress tensor. Couple stress fluid theory 

presents models for fluids whose microstructure is of mechanical significance. The effect of very 

small micro-structure can be felt if the characteristic geometric dimension of the problem is of the 

same order of magnitude as the size of the microstructure. Thus the main feature of couple stresses is 

to introduce a size dependent effect. 

Umavathi and Malashetty [7] have studied the convection in a couple stress fluid through a porous 

media in a vertical channel. They have concluded that the effect of couple stress parameter is to 

reduce the velocity. Maen Al Rashdan et. al. [8] have studied heat and mass transfer through porous 

media with chemical reaction in a micropolar fluid. They have shown that the micropolar fluid 

parameter suppress the velocity where as it increases the micro-rotation velocity. Tomer et. al., [9] 

have studied the effect of variable viscosity along an inclined plate with an applied magnetic field.  

They have shown that velocity and temperature increase with variable viscosity. Rudraiah and 

Shashikala [10] have studied the effect of electric field in vertical channel filled with poorly 

conducting liquid. They have shown that effect of electric field is to decrease the velocity and 

temperature of the fluid. Later, Srinivasacharya and Kaladhar [11] have studied the hall and ion slip 

effects on fully developed electrically conducting couple stress fluid flow between vertical parallel 

plates in the presence of a temperature dependent heat source. It is concluded that the effect of couple 

stresses in the fluid decreases the velocity and temperature. Recently Rudraiah et. al. [12] have 

studied Oberbeck convection in a chiral fluid through porous media with an external constraint of 

magnetic field. They have concluded that electromagnetic thermal number augments the fluid 

velocity and temperature. 

Most of these studies deal with either Newtonian or non-Newtonian fluid flows in the absence of 

magnetic field.  It is desirable to study the effect of transverse magnetic field on vertical porous layer 

of a couple stress fluid. An attempt is made to analyse a fully developed couple stress fluid in a 

vertical channel in order to know the nature of flow for sparse, comparable and dense porous medium 

with respect to couple stresses in the fluid and an applied magnetic field. 

To achieve the above objective, the required basic equations and boundary conditions are given in 

section 2. Analytical and numerical solutions are derived in section 3. The skin friction, Rate of heat 

transfer and Mass flow rate are given in section 4, results and discussion in section 5 and general 

conclusions are drawn in final section. 

MATHEMATICAL FORMULATION 

We consider the flow of Boussinesq couple stress fluid in a vertical porous channel bounded between 

two infinite walls as shown in Fig.1. It is assumed that the fluid possesses constant properties expect 

for density. We assume that the density variation due to temperature differences is used only to 

express the body force term as buoyancy term. The x- axis is taken along the walls and the y-axis 

perpendicular to it. The walls are placed at a distance 2b apart and maintained at constant 

temperatures 𝑇1 and 𝑇2.  The fluid is free form external couples. Since the boundaries are infinite 

along the x-direction, the physical quantities namely velocity and temperature depend only on the y 

co-ordinate. A uniform transverse magnetic field of strength 𝐵0 is applied in the direction 

perpendicular to the flow. 
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The basic equations for the couple stress flow through a porous media in the presence of external 

constrain of magnetic field for a fully developed flow are  

 

  24 2
0 0

4 2

0

1
0

g T T Bd u d u
u

dy dy K

 

  

  
     

 
, (2.1) 
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0
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c

d T du

dy K dy

   
  

 
,    (2.2) 

 0 0= 1 T T      ,                                                 (2.3) 

subject to boundary conditions  
2

2
0

d u
u at y b

dy
    ,                                          (2.4) 

1T T at y b  ,                                               (2.5) 

 2T T at y b   ,                                           (2.6) 

where η material constant, μ fluid viscosity, β coefficient of thermal expansion, ρ density, ρ0 

reference density, υ kinematic viscosity, σ porous parameter, g acceleration due to gravity, u velocity 

of the fluid along x-direction, Kc thermal conductivity, T temperature, 0K is the permeability of the 

porous medium. 

Boundary conditions on velocity represent the no-slip conditions at the solid boundaries and that of 

the temperature is that the plates are isothermally maintained at different temperatures 𝑇2 and 𝑇1 (

12 TT  ). 

We make the Eqs. (2.1) – (2.6) dimensionless by introducing the non-dimensional variables 

 
* * *0

2

1 0 1 0

, ,
T Ty

y u u
b T T g b T T







  

 
                              (2.7) 

Eqs. (2.1) and (2.6) (after neglecting the asterisk) become 

Figure 1: Physical Configuration 
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2
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d u d u
k u

dy dy
   ,                                                      (2.8) 
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,                                                       (2.9) 

subject to boundary conditions 
2

2
0 1

d u
u at y

dy
    ,                                                (2.10) 

1 1at y   ,                                                   (2.11) 

1 1m at y     ,                                                 (2.12) 

where   

2 2 2M   is a dimensionless group, 

2 2
2 0B b

M



 is the Hartmann number. 

0

b

K
   is the porous parameter, 

2
k

b




 is the couple stress parameter.  

 2 4

0 1 0

c

g b T T
N

K






  is the buoyancy parameter and m the temperature parameter. 

METHOD OF SOLUTION: 

Equations (2.8) and (2.9) constitute a boundary value problem which is coupled non-linear equations 

because of viscous dissipation term and hence it is difficult to get closed form solutions analytically 

in general.  Therefore, we find the analytical solution for the particular case and the numerical 

solution for the general case. 

1. Analytical Solution: 

Coupled non-linear equations are not amenable for analytical solution in general, however for 

vanishing buoyancy parameter, N, Eqs. (2.8) and (2.9) become linear and can be solved exactly. 

Vanishing of N will lead to neglecting viscous dissipation.  The value of N also indicates the state of 

the plates, N<0 corresponds to the absence of convection currents. However, small N suggests the 

use of perturbation technique to solve these coupled nonlinear equations. Accordingly, we write 

.................),(),(),(),( 22

2

1100   uNuNuu   (3.1.1) 

where 0u and 0  are the values of  u and   at N=0 and remaining terms of first and higher order 

give a correction to 0u and 0  which accounts for the dissipative effects. 

Substituting Eq. (3.1.1) in to Eqs. (2.8) and (2.9) and equating the like powers of N to zero, we get 

Zeroth order equations: 
2

0

2
0

d

dy


       (3.1.2) 
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d u d u
k u
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        (3.1.3) 

First order equations: 
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01
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dud

dy dy

  
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 
          (3.1.4) 

4 2
21 1

1 14 2

d u d u
k u

dy dy
        (3.1.5) 

The corresponding boundary conditions are 
2

0
0 2

0 1
d u

u at y
dy

         (3.1.6) 

0 1 1at y              (3.1.7) 

0 1 1m at y                    (3.1.8) 

2

1
1 2

0 1
d u

u at y
dy

         (3.1.9) 

1 0 1at y            (3.1.10) 

Equations (3.1.2) – (3.1.5) are solved analytically for three possible cases namely sparsely packed, 

densely packed and thickly packed porous media depending on the sign of the discriminant of the 

auxiliary equation of the differential equation (3.1.3).  Practically these results are of immense use as 

they will highlight mathematically the relationship between permeability, magnetic field and couple 

stress parameter. Stokes [6] has shown that the effect of couple stresses is quite large for small values 

of k
b

 where b is a typical dimension of the flow geometry and  is the material constant.  

If  is a function of the molecular dimension of the liquid, then it will vary greatly for different 

liquids. Hence, this analysis is also helpful to choose the appropriate liquid depending on the nature 

of the porous material. 

 

The solution of the Eq. (3.1.2) on using Eqs. (3.1.7) - (3.1.8) is 

 y
m

 1
2

10       (3.1.11) 

The solution of Eqs. (3.1.3) to (3.1.5) on using Eqs. (3.1.6), (3.1.9), (3.1.10) and (3.1.11) are given in 

the following section for sparse porosity, comparable porosity and dense porosity cases. 

Case (i): Sparse porosity (i.e. 24 1k  ) 

  
0 1 1 2 1 3 2 4 2 2 2

11
u cosh sinh cosh sinh

2

m y
A p y A p y A p y A p y


      ,        (3.1.12) 
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where
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 
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 
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columns 1 to 4 are replaced respectively by R in ∆ to get ∆i for i=1 to 4. 

𝜃1 = 𝑎1𝐶𝑜𝑠ℎ2𝑝1𝑦 + 𝑎2𝑆𝑖𝑛ℎ2𝑝1𝑦 + 𝑎3𝐶𝑜𝑠ℎ2𝑝2𝑦 + 𝑎4𝑆𝑖𝑛ℎ2𝑝2𝑦 + 𝑎5𝑆𝑖𝑛ℎ𝑝2𝑦 + 𝑎6𝐶𝑜𝑠ℎ𝑝2𝑦
+ 𝑎7𝑆𝑖𝑛ℎ𝑝1𝑦 + 𝑎8𝐶𝑜𝑠ℎ𝑝1𝑦 + 𝑎9𝐶𝑜𝑠ℎ(𝑝1+𝑝2)𝑦 + 𝑎10𝐶𝑜𝑠ℎ(𝑝1 − 𝑝2)𝑦
+ 𝑎11𝑆𝑖𝑛ℎ(𝑝1 + 𝑝2)𝑦 + 𝑎12𝑆𝑖𝑛ℎ(𝑝1 − 𝑝2)𝑦 + 𝑎13𝑦2 + 𝐸1𝑦 + 𝐸2 

(3.1.13) 

𝑢1 = 𝐴1𝐶𝑜𝑠ℎ2𝑝1𝑦 + 𝐴2𝑆𝑖𝑛ℎ2𝑝1𝑦 + 𝐴3𝐶𝑜𝑠ℎ2𝑝2𝑦 + 𝐴4𝑆𝑖𝑛ℎ2𝑝2𝑦 + 𝐴5𝑆𝑖𝑛ℎ𝑝2𝑦 + 𝐴6𝐶𝑜𝑠ℎ𝑝2𝑦 +
𝐴7𝑆𝑖𝑛ℎ𝑝1𝑦 + 𝐴8𝐶𝑜𝑠ℎ𝑝1𝑦 + 𝐴9𝐶𝑜𝑠ℎ(𝑝1+𝑝2)𝑦 + 𝐴10𝐶𝑜𝑠ℎ(𝑝1 − 𝑝2)𝑦+𝐴11𝑆𝑖𝑛ℎ(𝑝1 + 𝑝2)𝑦 +
𝐴12𝑆𝑖𝑛ℎ(𝑝1 − 𝑝2)𝑦 + 𝐴13𝑦2 + 𝐴14𝑦 + 𝐴15       

(3.1.14) 

where 𝐴𝑖′s are constants for i=1 to 15 shown in the Appendix.     

      

Case (ii): Comparable porosity (i.e. 24 1k  ) 
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columns 1 to 4 are replaced respectively by R in ∆1 to get ∆1j for j=1 to 4. 

 

𝜃1 = 𝑍17   𝑦
2   𝐶𝑜𝑠ℎ2𝑝3𝑦 + 𝑍18    𝑦

2𝑆𝑖𝑛ℎ2𝑝3𝑦 + 𝑍19   𝑦 𝐶𝑜𝑠ℎ2𝑝3𝑦 +
𝑍20    𝑦 𝑆𝑖𝑛ℎ2𝑝3𝑦+𝑍21 𝐶𝑜𝑠ℎ2𝑝3𝑦 + 𝑍22    𝑆𝑖𝑛ℎ2𝑝3𝑦  + 𝑍23   𝑦 𝐶𝑜𝑠ℎ𝑝3𝑦 + 𝑍24    𝑦 𝑆𝑖𝑛ℎ𝑝3𝑦 +

𝑍25  𝐶𝑜𝑠ℎ𝑝3𝑦 + 𝑍26    𝑆𝑖𝑛ℎ𝑝3𝑦 +
𝑍10

2
𝑦2 +

𝑍8

6
𝑦3 +

𝑍3

12
𝑦4 + 𝑙3𝑦 + 𝑙4.     

                           (3.1.16) 

Where 𝑍𝑖′s are constants for i=1 to 26 shown in the Appendix. 

 

Case (iii): Dense porosity (i.e. 24 1k  ) 
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the coefficients in Eq. (3.1.17) are computed using Cramer’s rule i.e., 
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columns 1 to 4 are replaced respectively by R in ∆2 to get ∆2i for i=1 to 4. 

 

𝜃1 = 𝑎1𝐶𝑜𝑠ℎ2𝑝4𝑦 + 𝑎2𝑆𝑖𝑛ℎ2𝑝4𝑦 + 𝑎3𝐶𝑜𝑠ℎ2𝑝5𝑦 + 𝑎4𝑆𝑖𝑛ℎ2𝑝5𝑦 + 𝑎5𝑆𝑖𝑛ℎ𝑝5𝑦 + 𝑎6𝐶𝑜𝑠ℎ𝑝5𝑦
+ 𝑎7𝑆𝑖𝑛ℎ𝑝4𝑦 + 𝑎8𝐶𝑜𝑠ℎ𝑝4𝑦 + 𝑎9𝐶𝑜𝑠ℎ(𝑝4+𝑝5)𝑦 + 𝑎10𝐶𝑜𝑠ℎ(𝑝4 − 𝑝5)𝑦
+ 𝑎11𝑆𝑖𝑛ℎ(𝑝4 + 𝑝5)𝑦 + 𝑎12𝑆𝑖𝑛ℎ(𝑝4 − 𝑝5)𝑦 + 𝑎13𝑦2 + 𝐸1𝑦 + 𝐸2 

(3.1.18) 

 

𝑢1 = 𝐴1𝐶𝑜𝑠ℎ2𝑝4𝑦 + 𝐴2𝑆𝑖𝑛ℎ2𝑝4𝑦 + 𝐴3𝐶𝑜𝑠ℎ2𝑝5𝑦 + 𝐴4𝑆𝑖𝑛ℎ2𝑝5𝑦 + 𝐴5𝑆𝑖𝑛ℎ𝑝5𝑦 + 𝐴6𝐶𝑜𝑠ℎ𝑝5𝑦 +
𝐴7𝑆𝑖𝑛ℎ𝑝4𝑦 + 𝐴8𝐶𝑜𝑠ℎ𝑝4𝑦 + 𝐴9𝐶𝑜𝑠ℎ(𝑝4+𝑝5)𝑦 + 𝐴10𝐶𝑜𝑠ℎ(𝑝4 − 𝑝5)𝑦+𝐴11𝑆𝑖𝑛ℎ(𝑝4 + 𝑝5)𝑦 +
𝐴12𝑆𝑖𝑛ℎ(𝑝4 − 𝑝5)𝑦 + 𝐴13𝑦2 + 𝐴14𝑦 + 𝐴15       

(3.1.19) 

where 𝐴𝑖′s are constants for i=1 to 15 shown in the Appendix. 

 

2. Numerical Solution: 

Analytical solution of Eqs. (2.8) – (2.9) using perturbation technique is valid only for the small 

values of the buoyancy parameter N.  To know the validity of these solutions we solve them 

numerically using finite difference technique.  All the derivatives are replaced by their central 

difference approximations of second order accuracy by dividing the region of interest into 80 mesh 

points of equal width of 0.025.  The discretised form of Eqs. (2.8) and (2.9) are 

iiiiii
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       (3.2.1) 

  0
4

2
2

11112   iiiii uu
N

     (3.2.2) 

Equations (3.2.1) and (3.2.2) are valid over the each grid point of the region and they give two 

implicit equations for iu and i , in-turn, they separately generate the system of algebraic equations 

for 2iu  , 1iu  , iu , 1iu  , 2iu  and 1i  , i , 1i   resulting in a penta-diagonal coefficient matrix for u and 

a tri-diagonal coefficient matrix for  .  These equations are solved using the method of successive 

over relaxation (SOR) technique simultaneously at each mesh point till the required order of accuracy 
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of 10-8.  Analytical and numerical solutions of equations governing velocity are plotted graphically 

for sparse porosity, comparable porosity and dense porosity in Figs. 2 to 12, temperature profiles are 

plotted in Figs.13 to 15 and the results are discussed in section 5. 

 

3. Skin Friction, Rate of Heat Transfer and Mass Flow Rate: 

In many practical applications involving separation of flow it is advantage us to know the skin 

friction and the rate of heat transfer at the boundaries. These can be determined once we know the 

velocity and temperature distributions. The skin friction  at the walls in the dimensionless form is 

  
0 1

1 1 1y y y

du dudu
N

dy dy dy


  

     
       
     

.    (4.1) 

Similarly, the rate of heat transfer between the fluid and the plate in the dimensionless form is,  

0 1

1 1 1y y y

d dd
q N

dy dy dy

 

  

     
       
     

 .                                (4.2) 

Here du

dy
 and d

dy

  are computed numerically using Newton’s interpolation formula for derivatives.   

 

If fM denotes the mass flow rate per unit channel width in the presence of dissipation, then  

1

1

fM u dy


  .      (4.3) 

Mass flow rate given by Eq. (4.3) is computed numerically Simpson’s rule for numerical integration.  

Results obtained from Eqs. (4.1) - (4.3) are depicted graphically in Figs. (16) to (24) respectively for 

different parameters and the conclusions are drawn in the section 5. 

 

RESULTS AND DISCUSSIONS 

The theory of couple stress fluid due to Stokes is used to formulate a set of boundary layer equations 

for the flow of an incompressible, couple stress fluid in the presence of a uniform transverse 

magnetic field in a vertical porous channel.  In the preceding section analytical and numerical 

solutions are obtained.  

Effect of magnetic field on the flow is depicted in Fig.2 for the case of sparse porosity, in Fig.3 for 

the case of comparable porosity and in Fig.4 for dense porosity by keeping other parameters 

constant.  It is observed that as the Hartmann number M is increases the velocity decreases in all the 

three cases.  However, for comparable porosity case the magnetic field is operative even for large 

values of M.  M=0 represent the case of absence of magnetic field. 



 

Siddalinga & Shashikala, Vol. 12, No. I, June, 2016, pp 49-62. 

57 

 

-1.0 -0.5 0.0 0.5 1.0
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

M = 3

M = 4

M = 2

M = 1

M = 0
If  4kl

2
<1

k=0.01,  = 2,

N=0.1, m=2

  Analytical

 Numerical

u

y

Figure 2: Velocity Profiles for 

different values of M for sparse 

porosity 
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Figure 3: Velocity Profiles for 

different values of M for comparable 

porosity 
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Figure 4: Velocity Profiles for 

different values of M for dense 

porosity 

Effect of temperature parameter m on flow is depicted in Fig.5 for sparse porosity, in Fig.6 for 

comparable porosity and in Fig.7 for dense porosity.  m=0 implies that the plates are maintained at 

constant temperature, m=1,2 represent the heating of plate at y=-1, hence the velocity increases with 

increase in m due to the increase in convection.  When m = -1, -2 indicate still the heating is present 

and hence there will be flow reversal and separation occurs at y = 0. 
 

-1.0 -0.5 0.0 0.5 1.0
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

  Analytical

 Numerical

If  4kl
2
<1

k=0.01,  = 2,

N=0.1 M=2

m = -1

m= -2

m = 0

m = 1

m = 2

u

y

Figure 5: Velocity Profiles for different 

values of m for sparse porosity 
 

 

-1.0 -0.5 0.0 0.5 1.0
-0.05

0.00

0.05

0.10

0.15

0.20

0.25

m = - 2

m = -1

m = 0

m = 1

m = 2 ,  M = 2

4kl
2
=1

----    Numerical

___ Analytical

u

y

 

Figure 6: Velocity Profiles for 

different values of m for comparable 

porosity 
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Figure 7: Velocity Profiles for 

different values of m for dense 

porosity 

Effect of porous parameter on flow is depicted in Fig.8 for sparse porosity, in Fig.9 for comparable 

porosity and in Fig. 10 for dense porosity.  As  increases, the velocity decreases because of 

dampening effect of Darcy force.  For small values of  the velocity is high in the sparse porosity 

case, whereas for the case of large values of  the velocities are all in the same range. 
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Figure 8: Velocity Profiles for different 

values of σ for sparse porosity 
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Figure 9: Velocity Profiles for 

different values of σ for comparable 

porosity 
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Figure 10: Velocity Profiles for 

different values of σ for dense 

porosity 
 

Figures 11 and 12 represent the variation of velocity for varying couple stress parameter k for sparse 

and dense porosity cases respectively.  The case of comparable porosity is not discussed, since to 

make 14 2 k we have taken k as the parameter.  As, k increases the velocity decreases in both the 

cases.  In the case of sparse porosity k is operative in a very narrow region, whereas, for dense 

porosity it is operative for large value of k.  Figs.2 – 12 clearly show that the analytical and 

numerical solutions agree well. 
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Figure 11: Velocity Profiles for different values of k for 

sparse porosity 
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Figure 12: Velocity Profiles for different values of k for 

dense porosity 

 

Variations of temperature for the case of sparse porosity are depicted in Figs. 13 – 14.  In Fig.13 we 

notice that as the porous parameter increases the temperature decreases very narrowly, implying that 

Darcy velocity has minimum influence on temperature distribution.  Figure 14 represents the 

variation of temperature parameter.  It is observed that as the temperature parameter m increases 

temperature also increases.  Analogous results are observed for comparable and dense porosity cases; 

hence they are omitted.  

Results reported above are valid for small values of buoyancy parameter N.  The numerical solution 

for temperature distribution for wide range of values of N is presented in Fig. 15.  From this figure it 

is clear that as N increases temperature also increases as expected. 
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Figure 13: Temperature Profiles for 

different values of σ 
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Figure 14: Temperature Profiles for 

different values of m 
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Figure 15: Temperature Profiles for 

different values of N 

It is known from the literature that Skin friction , Rate of heat transfer q and Mass flow rate Mf 

increase with increase in buoyancy parameter N due to transfer of more heat.  Hence, in this paper an 

attention is given to other parameters namely couple stress parameter k, heat transfer coefficient m 

and Hartmann number M on ,q and Mf. 

The plot of Skin friction  at the cold plate versus the porous parameter  for different values of k, 

m and M are shown in Figs.16 – 18.  From the graphs it is clear that as the parameters are increased 

the skin friction decreases considerably.  
 

 
Figure 16: Skin friction profiles for 

different values of k 

 

 
Figure 17: Skin friction profiles for 

different values of m 

 

 
Figure 18: Skin friction profiles 

for different values of M 

Figures 19-21 represent the graph of rate of heat transfer q versus the porous parameter  for 

varying k, m and M respectively.  It is observed that as we increase the parameters k, q and m, the 

rate of heat transfer, q decreases.  Thus increase in parameter decreases the rate of heat transfer.  
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Figure 19: Rate of heat transfer 

profiles for different values of k 

 

 

 
Figure 20: Rate of heat transfer 

profiles for different values of m 

 

 
Figure 21: Rate of heat transfer 

profiles for different values of M 

Mass flow rate Mf versus the porous parameter  are plotted in Figs.22-24, the effect of increasing 

k,m and M decrease the mass flow rate.  
 

 

 
Figure 22: Mass flow rate profiles 

for different values of    k 

 

 

 

 
Figure 23: Mass flow rate profiles for 

different values of m 

 

 

 
Figure 24: Mass flow rate profiles 

for different values of M 

Thus ,q and Mf decrease as the parameters k, m and M increase. 

CONCLUSIONS 

We consider the fully developed convective flow of a couple stress fluid through porous media in a 

vertical channel with an external constraint of applied magnetic field.  Governing equations are 

expressed in non-dimensional form and then solved analytically by perturbation technique and 

numerically by finite difference technique.  Features of the flow characteristics are analysed by 

plotting graphs with detailed discussion.  Summary of main finding are as follows: 

i. Fluid velocity is a function of Hartmann number, temperature parameter, porous parameter and 

couple stress parameter.  Fluid velocity varies directly with temperature parameter and 

inversely with the other parameters. 

ii. Fluid temperature is a function of a porous parameter, temperature parameter and buoyancy 

parameter.  Temperature of the fluid varies inversely with the porous parameter and directly 

with the other parameters. 
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iii. The flow characteristics namely Skin friction, Rate of heat transfer and Mass flow rate are 

functions of the parameters couple stress parameter, temperature parameter and Hartmann 

number.  All the flow characteristics vary inversely with the parameters. 

Hence with the proper choice of the parameters it is possible to control the fluid velocity, temperature 

and other flow characteristics. 
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Appendix:  

Case 1: 

 𝐴1 =
𝑎1

16𝐾𝑝1 
4 −4𝑝1

2+𝑙2
,𝐴2 =

𝑎2

16𝐾𝑝1 
4 −4𝑝1

2+𝑙2
,𝐴3 =

𝑎3

16𝐾𝑝1 
4 −4𝑝1

2+𝑙2
, 

𝐴4 =
𝑎4

16𝐾𝑝1 
4 −4𝑝1

2+𝑙2,𝐴5 =
𝑎5

𝐾𝑝2 
4 −𝑝2

2+𝑙2,𝐴6 =
𝑎6

𝐾𝑝2 
4 −𝑝2

2+𝑙2,𝐴7 =
𝑎7

𝐾𝑝1 
4 −𝑝1

2+𝑙2,𝐴8 =
𝑎8

𝐾𝑝1 
4 −𝑝1

2+𝑙2,𝐴9 =
𝑎9

𝐾(𝑝1+𝑝2)4−(𝑝1+𝑝2)
2+𝑙2,𝐴10 =

𝑎10

𝐾(𝑝1−𝑝2)4−(𝑝1−𝑝2)
2+𝑙2, 

𝐴11 =
𝑎11

𝐾(𝑝1+𝑝2)4−(𝑝1+𝑝2)
2+𝑙2,𝐴12 =

𝑎12

𝐾(𝑝1−𝑝2)4−(𝑝1−𝑝2)
2+𝑙2,𝐴13 =

𝑎13

𝑙2 ,𝐴14 =
𝐸1

𝑙2  

𝐴15 =
2𝑎13

𝑙4 +
𝐸2

𝑙2 , 

Case 2: 

 Z1 = −B1p3 − B4,Z2 = −B3p3 − B2,  Z3 = −B2p3,   Z4 = −B4p3, l 2 = −
m

2l2,    Z5 =

Z1 
2+Z2 

2

2
,    Z6 =

Z3 
2+Z4 

2

2
, Z7=  Z1Z3 + Z2Z4,   Z8  = Z1Z3 − Z2Z4,   

Z9  =
Z3

2+Z4
2

2
,   Z10  =

Z1
2−Z2

2+2l2
2

2
, 

  
Z11  

=
Z7

2p3
−

2Z3Z4

4p3
2 ,  

  
Z12  

= −
2Z6

4p3
2 +

Z1Z4

2p3
+

Z2Z3

2p3
, 

  
Z13  

=
2Z6

8p3
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2p3
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−
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−
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