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ABSTRACT 
A common fixed point theorem involving two pairs of weakly compatible mappings is proved 
under a Lipschitz type contractive condition, which is independent of the known contractive 
definitions.  
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INTRODUCTION  
The study of common fixed point of mappings satisfying contractive type conditions has 
been a very active field of research activity during the last three decades. The most general of 
the common fixed point theorems pertain to four mappings, say A, B, S and T of a metric 
space (X, d), and use either a Banach type contractive condition of the form       

 d(Ax, By) ≤ h m(x, y), 0 ≤ h < 1,                                     (1) 
where m(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty), [d(Sx, By) + d(Ax, Ty)]/2}, 
or, a Meir-Keeler type (ε, δ)-contractive condition of the form  
given ε > 0 there exists a δ > 0 such that ε ≤  m(x, y) <  ε + δ  ⇒ d(Ax, By) < ε ,          (2) 
or, a φ-contractive condition of the form     d(Ax, By) ≤ φ (m(x, y)),           (3) 
involving a contractive gauge function φ: R+ → R+ is such that φ(t) < t for each t > 0.  
 
Clearly, condition (1) is a special case of both conditions (2) and (3). A φ-contractive 
condition (3) does not guarantee the existence of a fixed point unless some additional 
condition is assumed. Therefore, to ensure the existence of common fixed point under the 
contractive condition (3), the following conditions on the function φ have been introduced 
and used by various authors. 
(I)    φ(t) is non decreasing and t / (t - φ(t)) is non increasing (Carbone et al. [2]), 
(II)  φ(t) is non decreasing and limn φn(t) = 0 for each t > 0 ( Jachymski [3]), 
(III)  φ is upper semi continuous (Boyd and Wong [1], Jachymski [3], Maiti and Pal [11], 

Pant [14]) or equivalently, 
(IV)  φ is non decreasing and continuous from right  (Park and Rhoades [20]). 

 
It is now known (e.g., Jachymski [3], Pant et al. [15]) that if any of the conditions (I), 

(II), (III) or (IV) is assumed on φ, then a φ-contractive condition (3) implies an analogous (ε, 
δ)-contractive condition (2) and both the contractive conditions hold simultaneously. 
Similarly, a Meir- Keeler type (ε, δ)-contractive condition does not ensure the existence of a 
fixed point. The following example illustrates that an (ε, δ)-contractive condition of type (2) 
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neither ensures the existence of a fixed point nor implies an analogous φ-contractive 
condition (3). 
 
Example 1. (Pant et al [15])  Let X = [0, 2] and d be the Euclidean metric on X. Define f : X 
→ X by  fx = (1+ x) /2 if x < 1;    fx = 0 if x ≥ 1. Then, it satisfies contractive condition  
           ε ≤ max {d(x, y), d(x, fx), d(y, fy), [d(x, fy) + d(y, fx)]/2}  < ε  +  δ  ⇒  d(fx, fy) < ε, 
with δ (ε) = 1 for ε ≥ 1 and δ (ε) = 1 - ε for ε < 1 but f does not have a fixed point. Also f does 
not satisfy the contractive condition   
 d(fx, fy) ≤ φ(max {d(x, y), d(x, fx), d(y, fy), [d(x, fy) + d(y, fx)]/2}), 
since the desired function φ(t) cannot be defined at t = 1.   
 
Hence, the two types of contractive conditions (2) and (3) are independent of each other. 
Thus, to ensure the existence of common fixed point under the contractive condition (2), the 
following conditions on the function δ have been introduced and used by various authors 

(V) δ is non decreasing (Pant [13, 14] ) 
(VI) δ is lower semi continuous (Jungck [8], Jungck et al.[9]).  

 
Jachymski [3] has shown that the (ε, δ)-contractive condition (2) with a non decreasing δ  
implies a φ-contractive condition (3). Also, Pant et al.[15] have shown that the (ε, δ)-
contractive condition (2) with a lower semi continuous δ, implies a φ-contractive condition 
(3). Thus, we see that if additional conditions are assumed on δ then the (ε, δ)-contractive 
condition (2) implies an analogous φ-contractive condition (3) and both the contractive 
conditions hold simultaneously. 
 
It is thus clear that contractive conditions (2) and (3) hold simultaneously whenever (2) or (3) 
is assumed with additional condition on δ or φ respectively. It follows, therefore, that the 
known common fixed point theorems can be extended and generalized if instead of assuming 
one of the contractive condition (2) or (3) with additional conditions on δ and φ, we assume 
contractive condition weaker than the condition (2) together with the following Lipschitz type 
condition of the form  
            d(Ax, By)  < k [d(Sx, Ty) + d(Ax, Sx) + d(By, Ty) + d(Sx, By) + d(Ax, Ty)],   
                                                                                                                       for 0 ≤ k ≤ 1/3.  
 
We prove a common fixed point theorem for four mappings adopting this approach in this 
paper. This gives a new approach of ensuring the existence of fixed points under an (ε, δ)-
contractive condition consists of assuming additional conditions which are independent of the 
φ-contractive condition implied by (V) and (VI). As the fixed point theorem is established 
removing the assumption of continuity, relaxing the compatibility to the weak compatibility 
property and also replacing the completeness of the space, this result generalizes and 
improves various other similar results of fixed points. 
 
Two self-mappings A and S of a metric space (X, d) are called compatible  (see Jungck [8]) 
if, limn→∞ d(ASxn, SAxn) = 0, whenever {xn} is a sequence in X such that  
limn→∞ Axn = limn→∞ Sxn = t for some t in X. It is easy to see that compatible maps commute 
at their coincidence points. 
 
Two self mappings A and S of a metric space (X, d) are called weakly compatible (see 
Jungck and Rhoades [5]) if, they commute at coincidence points. That is, if Ax = Sx implies 
that  ASx = SAx  for x in X. 
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It is noted that a compatible maps are weakly compatible but weakly compatible maps need 
not be compatible (Singh and Mishra [24]). 
 
To prove our theorem, we shall use the following Lemma of Jachymski [3]: 
 
LEMMA (2.2 of Jachymski [3]):  Let A, B, S and T be self mappings of a metric space (X, 
d) such that AX ⊂ TX, BX ⊂ SX.  Assume further that  
 given ε > 0 there exists δ > 0 such that for all x, y in X 

 ε < M(x, y) < ε + δ  ⇒ d(Ax, By) ≤  ε,                                                                    (4) 
and   d(Ax, By) <  M(x, y) ,  whenever  M(x, y) > 0                                                         (5) 
where   M(x, y) = max {d(Sx, Ty), d(Ax, Sx), d(By, Ty), [d(Sx, By) + d(Ax, Ty)]/2}. 
Then for each x0 in X, the sequence {yn} in X defined by the rule 
                  y2n = Ax2n = Tx2n+1 ; y2n+1 = Bx2n+1 = Sx2n+2 is a Cauchy sequence. 
 
Jachymski [3] has shown that contractive condition (2) implies (4) but contractive condition 
(4)  does not imply the contractive condition (2). 
 
1. The Main Result 
Theorem 1.  Let A, B, S and T be self mappings of a  metric space (X, d) such that  

(i) AX ⊂ TX, BX ⊂ SX ,  
(ii) given ε > 0 there exists a δ > 0 such that for all x, y in X, 
                           ε   <  M(x, y) < ε + δ  ⇒ d(Ax, By)  ≤ ε,  and  
(iii) d(Ax, By)  < k [d(Sx, Ty) + d(Ax, Sx) + d(By, Ty) + d(Sx, By) + d(Ax, Ty)],   

for 0 ≤ k  ≤ 1/ 3. If one of AX, BX, SX and TX is complete subspace of X and if the pairs (A, 
S) and (B, T) are weakly compatible, then A, B, S and  T have unique common fixed point.  
 
Proof.  Let x0 be an arbitrary point in X. Define sequences {xn} and {yn} in X given by the 
rule 
           y2n = Ax2n = Tx2n+1 ; y2n+1 = Bx2n+1 = Sx2n+2.       (6)                                    
This can be done by virtue of (i). Since the contractive condition (ii) of this theorem implies 
the contractive conditions (4) and (5) of LEMMA( 2.2 of Jachymski [3]), so using this 
LEMMA, we conclude that  {yn} is a Cauchy sequence in X. 
Suppose that TX is a complete subspace of X, then the subsequence y2n = Tx2n+1 is a Cauchy 
sequence in TX and hence has a limit u. Let v ∈ T -1u, then Tv = u. Since y2n is convergent, 
so yn is convergent to u and hence y2n+1 also converges to u. Now, setting x = x2n and y = v in 
(iii) we have  
 d(Ax2n, Bv) < k [d(Sx2n, Tv) + d(Ax2n, Sx2n) + d(Bv, Tv) + 

                                   d(Sx2n, Bv) + d(Ax2n, Tv)]. 
Letting n → ∞, we have d(u, Bv) ≤ 2k d(u, Bv), which implies that Bv = u. Also, since BX ⊂ 
SX, so u = Bv implies that u ∈ SX. Let w ∈ S -1u, then Sw = u. Setting x = w and y = x2n+1 in 
(iii), we get 

 d(Aw, Bx2n+1) < k [d(Sw, Tx2n+1) + d(Aw, Sw) + d(Bx2n+1, Tx2n+1) + 
     d(Sw, Bx2n+1) + d(Tx2n+1, Aw)] 

and letting n tend to infinity, we get d(Aw, u) ≤ 2k d(u, Aw) which implies that u = Aw. This 
means that  u = Tv = Bv = Aw = Sw.       (7) 
 
Now, since u = Tv = Bv, so by the weak compatibility of (B, T), it follows that BTv = TBv 
and so we get Bu = BTv = TBv = Tu. 
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Also, since u = Sw = Aw, so by the weak compatibility of (A, S), it follows that ASw = SAw 
and so we have Au = ASw = SAw = Su. 
 
Thus, from (iii), we have  

d(Aw, Bu) < k [d(Sw, Tu) + d(Sw, Aw) + d(Tu, Bu) + d(Sw, Bu) + d(Tu, Aw)]; 
that is, d(u, Bu) < 3k d(u, Bu) which  is a contradiction for 0 ≤ k < 1/3. This implies that u = 
Bu. Similarly, using (iii), one can show that Au = u. Therefore, we have u = Bu = Tu = Au = 
Su. Hence, the point u is a common fixed point of A, B, S, T.  
 
If we assume SX is complete, then the argument analogue to the previous completeness 
argument proves the theorem. If AX is complete, then u ∈ AX ⊂ TX. Similarly, if BX is 
complete, then u ∈ BX ⊂ SX. So, the theorem is established. The uniqueness of the common 
fixed point follows easily from condition (iii).  

 This completely establishes the theorem. 
 

We now give an example to illustrate the above theorem.  
 
Example 2. Let X = [2, 20] and d be the usual metric on X. Define A, B, S, T : X → X as 
follows:  Ax = 2 for each x; 
    Sx = x if   x ≤ 8 ,         Sx = 8 if 8 < x < 14,            Sx = (x +10)/3  if 14 ≤ x ≤ 17 

 and             Sx = (x+7)/3 if x >17; 
    Tx = 2 if x = 2 or > 6,     Tx = 12 + x if 2 < x< 4,      Tx = 9 + x if 4 ≤ x < 5 

 and            Tx = 8 if 5 ≤ x ≤ 6; 
    Bx = 2 if x < 4 or x > 6,  Bx = 3 + x if 4 ≤ x < 5,        Bx = 2 + x if 5 ≤ x ≤ 6 . 
 
Then A, B, S and T satisfy all the conditions of the above theorem and have a unique 
common fixed point x = 2. Being compatible mappings, all A, B, S and T are weakly 
compatible mappings. It can be seen in this example that A, B, S and T satisfy the condition 
(4) when δ(ε) = 14 - ε if ε ≥ 6 and δ(ε) = 6 - ε if ε < 6. It may also be noted that the mappings 
A, B, S and T do not satisfy the contractive condition (2). To see this, we can take x >17 and 
5 ≤ y ≤ 6, then we have 5 ≤ d(Ax, By) ≤ 6 whereas 6 < M(x, y) < 8. Thus the contractive 
condition (4) is satisfied but not (2) when x >17 and 5 ≤ y ≤ 6. Also we see that δ(ε) is neither 
non decreasing nor lower semi continuous. However, A, B, S and T do not satisfy the 
contractive condition d(Ax, By) ≤ φ(M(x, y)) since the required condition φ does not satisfy 
φ(t) < t at t = 6. To verify this, we can take 8 < x ≤ 17 and 4 ≤ y < 5 then M(x, y) = 6 and 
d(Ax, By) → 6 as y → 5. Hence we see that the present example does not satisfy the 
condition of any previously known common fixed point theorem for continuous mappings 
since neither the mappings satisfy a φ-contractive condition nor δ is lower semi neither 
continuous nor non-decreasing. 
 
Remarks: Pant [18] has shown that condition (iii) of the above Theorem 1 is independent of 
φ-contractive conditions. Our result extends the results of Jha et al. [5, 6], Jha and Pant [7], 
Pant and Jha [17] and Pant [18] and gives a new generalization of Meir-Keeler type common 
fixed point theorem. Further, as various assumptions either on φ or on δ have been considered 
to ensure the existence of common fixed points under contractive conditions, so this Theorem 
1 improves the results of Popa [21], Vats [25] and also generalizes all other similar results of 
fixed points. 
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