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ABSTRACT 
The purpose of this paper is to prove a common fixed point theorem on fuzzy metric space using 
the notion of semi compatibility, our result generalize the result of Som [8]. Also, we are giving 
an example that make strong to our result. 
 

Keywords :  Common fixed point, Fuzzy metric space, R- weakly  commuting , Semi compatible 
maps. 

AMS Subject Classification :  47H10 , 54H25. 

INTRODUCTION 
 It proved a turning point in the development of mathematics when the notion of fuzzy set was 
introduced by Zadeh [10], which laid the foundation of fuzzy mathematics. Kramosil and 
Michalek [4] introduced the concept of fuzzy metric space and modified by George and 
Veeramani [2]. Also Grabiec [3]   has proved some fixed point results for fuzzy metric space. 
Sessa [6] proved some theorems of commutativity by weakening the condition to weakly  
commutativity. Vasuki [9] defined the R- weak commutativity of mappings of Fuzzy metric space 
and proved the fuzzy version of  Pant’s [5] theorem. Cho, Sharma and Sahu [1] introduced the 
concept of semi compatibility of mapps in D- metric space if condition (a) Sy = Ty implies that 
STy = TSy and (b) {Txn}→x, {Sxn}→x then {STxn}→ Tx as n→∞ hold. However (b) implies (a) 
taking  {xn}→y and  x = Ty = Sy. So, here we define semi compatibility by condition (b) only. In 
this paper we used the concept of semi compatible mappings to prove further resuts. 
 
PRELIMINARIES AND DEFINITIONS 
Definitions 2.1.[7] ∗ : [0,1] × [0,1] → [0,1] is a continuous t- norm if it satisfies  the   
                                  following conditions : 
                    (i)     ∗ is associative and commutative, 

 (ii)     ∗ is continuous, 
(iii)    ܽ ∗ 1 = ܽ    ∀    ܽ ∈ [0,1] 
(iv)     ܽ ∗ b ≤  ܿ ∗ ݀  whenever  a ≤ c and b ≤ d, for each                         
           a, b, c, d ∈  [0,1]. 
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Definition 2.2.[4]  The triplet ( X, M, ∗ )  is said to be Fuzzy metric space if X is an arbitrary  
set, ∗ is a continuous t-norm and M is a Fuzzy set on  X × X × [0, ∞] → [0,1] satisfying  the 
following conditions :  for all x, y, z ∈ X and s, t > 0. 
(FM-1)   M( x, y, 0) = 0, 
(FM-2)   M( x, y, t ) = 1 for all t > 0 if and only if x = y, 
(FM-3)   M( x, y, t ) = M( y, x, t ) 
(FM-4)  M( x, y, t ) ∗ M( y, z, s ) ≤  M( x, z, t + s ), 
(FM-5)            M( x, y, . ) : [0, ∞] → [0,1] is left continuous, 
(FM-6)    lim௧→ஶ  M( x, y, t ) = 1. 
              Note that M( x, y, t ) can be considered as the degree of nearness between x and y with 
respect to t. We identify x = y with M( x, y, t ) = 1 for all t > 0. The following example shows that 
every metric space induces a Fuzzy metric space. 
Example 2.1.[2] Let (X, d) be a metric space. Define a  ∗ b = min{a,b} and               
M(x, y, t) = ௧

௧ ାௗ(௫,   ௬)
  for all x, y ∈ X and all t > 0. Then ( X, M, ∗ ) is a  Fuzzy metric space. It is 

called the Fuzzy metric space induced by d. 
Lemma 2.1. [3] For all x, y ∈ X, M( x, y, . ) is a non decreasing function. 
 
Definition 2.3.[3] A sequence {xn} in a  Fuzzy metric space (X, M, ∗ ) is said to be a Cauchy 
sequence if and only if  for each ε > 0, t > 0 , there exists n0 ∈ N such that          M( xn, xm, t) > 1- 
ε  for all n, m  ≥ n0. 
          The sequence {xn}is said to converge to a point x in X if and only if for each ε > 0,  t > 0 , 
there exists n0 ∈ N such that  M( xn, x, t) > 1- ε  for all   n  ≥ n0. 
          A Fuzzy metric space (X, M, ∗ ) is said to be complete if every Cauchy sequence in it 
converge to a point in it.  
 
Definition 2.4.[5] Two self maps A and S of Fuzzy metric space (X, M, ∗ ) are said to be weakly  
commuting if  
               M(ASx, SAx, t) ≥ M(Ax, Sx, t) for every  x ∈ X. 
 The notion of weak commutativity is extended to R-weak commutativity by Vasuki [9] as 
 
Definition 2.5.[9] Two self maps A and S of Fuzzy metric space (X, M, ∗ ) are said to be R-
weakly  commuting provided there exist some positive real number R such that 
                       M(ASx, SAx, t) ≥ M(Ax, Sx,  ௧

ோ
 ) for all x ∈ X. 

The weak  commutativity implies R-weak commutativity and converse is true for R ≤ 1. 
 
Definition 2.6. A pair (A, S) of self mappings of a Fuzzy metric space is said to be Semi 
compatible   if  M(ASxn, Sx, t)→1 for all t > 0 whenever {xn} is a sequence in X such that Axn, 
Sxn → p for some p in X as n→∞. 
             It follows that (A, S) is Semi compatible and Ay = Sy imply ASy = SAy by taking     
{xn}= y and x = Ay = Sy. 
 
Remark 2.1. Let (A,S) be a pair of self mappings of a Fuzzy metric space (X, M, ∗ ). Then (A,S) 
is R-weakly  commuting implies (A, S) is Semi compatible but the converse is not true. 
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             Using R-weak commutativity, Som [8] proved some results. Here we generalized the 
result   of  Som [8] by replacing the assumption of R-weakly  commuting maps to Semi 
compatible maps. 

Example 2.2. Let X = [0, 2] and ܽ ∗ b = min {a, b}. Let  M(x, y, t) =   ௧
௧ ାௗ( ୶,௬)

 
be the standard Fuzzy metric space induced by d, where d(x, y) = | x −  for all x, y ∈ X, define |ݕ

A(x) = ቊ  
  2,    x ∈    [0,1] 
   ୶
ଶ

,  x ∈   (1,2]                S(x) =  ቐ
     1,      x ∈  [0,1)

2,         x = 1
        ୶ାଷ

ହ
,  x ∈   (1,2]

 

Now for 1< x ≤ 2 we have  
             Ax =  ୶

ଶ
  ,         Sx =   ୶ ା ଷ

ହ
            and       ASx =  ୶ ା ଷ

ଵ଴
    ,       SAx  =   ୶ା଺

ଵ଴
   

               then     M(ASx, SAx, t) = ଵ଴୲
ଵ଴୲ ା ଷ

 

                        M(Ax, Sx,  ௧
ோ

 ) = ଵ଴௧
ଵ଴௧ାଷ(ଶି ୶)ோ

. 

We observe that M(ASx, SAx, t) ≥ M(Ax, Sx,  ௧
ோ

 ) which gives R  ≥  ଵ
(ଶି ୶)

 
Therefore we get there no R for x ∈ (1, 2] in X.  
Hence (A,S) is not R-weakly  commuting. 
            Now we have               S(1) = 2 = A(1),     and        S(2) = 1 = A(2) 
                                        also   SA(1) = AS(1)       and     AS(2) = 2 = AS(2) 
            Let xn = 2- ଵ

  ଶ௡
 

 Hence       Axn→1,  Sxn→1 and ASxn→2 
Therefore M(ASxn, Sy, t) = (2, 2, t) = 1. 
Hence (A, S) is Semi compatible but not R-weakly commuting. 
 
MAIN RESULTS 
Theorem 3.1. Let S and T be two continuous self mappings of a complete Fuzzy metric space  
(X, M, ∗ ) such that   ܽ ∗ b = min (a, b) for all a, b in X. Let A be a self mapping of X satisfying 
the following conditions: 
(1)  A(X) ⊂ S(X) ∩T(X), 
(2)  (A,S) and (A,T) are semi compatible,  
(3)   M(Ax, Ay, t) ≥ r min{M(Sx, Ty, t), M(Sx, Ax, t), M(Sx, Ay, t), M (Ty, Ay, t)}         

  for all x, y ∈ X and t > 0, where r : [0, 1] → [0, 1] is a continuous  function such that 
(4)    r(t) > t , for each 0 <  t < 1. 

        Then A, S, T have a unique common fixed point in X. 

Proof: Let x0 ∈ X be any arbitrary point.  

Since A(X) ⊂ S(X) then there must exists a point x1 ∈ X such that Ax0 = Sx1.  

Also, since A(X) ⊂ T(X), there exists another point x2 ∈ X such that  Ax1 = Tx2.  
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In general, we get a sequence {yn} recursively as  

              y2n = Sx2n+1 = Ax2n and y2n+1= Tx2n+2 = Ax2n+1, n ∈ N  {0}.  

Let M2n = M (y2n+1, y2n, t) = M (Ax2n+1, Ax2n, t). Then, M (Ax2n+2, Ax2n+1, t) = M2n+1.  

Using inequality (3), we get  

M2n+1  ≥  r min{M(Sx2n+2, Tx2n+1, t), M(Sx2n+2, Ax2n+2, t), M(Sx2n+2, Ax2n+1, t),              

                            M(Tx2n+1, Ax2n+1, t)}  

                     = r min{M(Ax2n+1, Ax2n, t), M(Ax2n+1, Ax2n+2, t), M(Ax2n+1, Ax2n+1, t),                    

                                  M(Ax2n, Ax2n+1, t)} 

                      = r min(M2n, M2n+1, M2n)                                                                      (3.1)  

              If  M2n > M2n+1, then by definition of r we have  

          M2n+1  ≥  r(M2n+1) > M2n+1, a contradiction.   So, M2n+1 ≥  M2n.  

Thus, from (3.1), we get  M2n+1  ≥  r(M2n)  ≥  M2n.    (3.2)  

Hence {M2n} where 0 ≤ n ≤ ∞  is an increasing sequence of positive numbers in [0, 1] and 
therefore, tends to a limit L ≤ 1.  

We claim that L = 1. If L < 1, then on taking limit n → ∞ in (3.2), we get  

                 L ≥ r(L) ≥ L;  

i.e.   r(L) = L, which contradicts the fact that L < 1.  

Hence,  L = 1.  

Now for any positive integer p, 

M(Axn, Axn+p, t) ≥ M(Axn, Axn+1, 
௧
௣
) ∗M(Axn+1, Axn+2, , 

௧
௣

 ) ∗ .........∗M(Axn+p-1, Axn+p, ,
௧
௣
)  

                          > (1 - ε) ∗ (1 - ε) ∗ ... ∗ (1 - ε) (p-times) = 1 - ε.  

Thus, M(Axn, Axn+p, t) > 1 - ε,  ∀ t > 0.  
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Hence {Axn} is a Cauchy sequence in X. Since X is complete {Axn} → z ∈ X. Hence the 
subsequences {Sxn} and {Txn} of {Axn} also tends to the same limit.  

Case I. Since S is continuous. In this case we have 

SAxn  →  Sz ,      SSxn  →  Sz       

Also (A, S) is semi compatible, we have   ASxn  →  Sz  

Step I.  Let  x = Sxn , y = xn  in (3) we get  

          M( ASxn, A xn, t) ) ≥ r min{M(SSxn, Txn, t), M SSxn, ASxn, t), M(SSxn, Axn, t),  

                                                    M(Txn, Axn, t)}.  

Taking limit as n → ∞,      

          M(Sz, z, t) ≥  r min{M(Sz, z, t), M(Sz, Sz, t), M(Sz, z, t), M(z, z, t)}. 

                                       ≥  r M(Sz, z, t),                         

                 > M(Sz, z, t). 

              So, we get Sz = z. 

Step II. By putting x = z , y = xn  we get Az = z. 

                  Hence ,  Az = z = Sz. 

Case II. Since T is continuous. In this case we have     TTxn  → Tz,    TAxn  → Tz.  

               also (A, T) is semi compatible  ATxn  → Tz.    

 Step I. Let   x = xn , y = Txn  in (3) we get  

                  M(Axn, ATxn, t) ≥  r Min{M(Sxn, TTxn, t), M(Sxn, Axn, t), M(Sxn, ATxn, t),  

                                                     M(TTxn, ATxn, t)} 

            M(z, Tz, t)   ≥  r min{M(z, Tz, t), M(z, z, t), M(z, Tz, t), M(Tz, Tz, t)}. 

                                                ≥  r M(z, Tz, t),                         

                     > M(z, Tz, t). 
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 So, we get  Tz = z. Thus, we have  Az = Sz = Tz = z. 

Hence z is a common fixed point of A, S and T. 

Uniqueness : Let u be another common fixed point of A, S and T, Then                          

                    Au = Su = Tu = u. 

        Put x = z, y = u in (3), we get 

         M( Az, Au, t) ) ≥ r min{M(Sz, Tu, t), M (Sz, Az, t), M(Sz, Au, t), M(Tu, Au, t)}.  

Therefore 

               M(z, u, t) ) ≥ r min{M(z, u, t), M (z, z, t), M(z, u, t), M(u, u, t)}.  

                       ≥ r min{M(z, u, t), 1, M(z, u, t),1 }.  

              ≥ r M(z, u, t), 

              > M(z, u, t) 

which gives z = u. 

Therefore z is a unique common fixed point of A, S and T. 
If we take T = S then we get following corollary 
 
Corollary 3.2. let S be a continuous mapping of a complete Fuzzy metric space             (X, M, ∗ ) 
such that   ܽ  b = min (a, b) for all a, b in X. Let A be a self mapping of X satisfying the 
following conditions:  

(1)   A(X) ⊂ S(X),  
(2)   (A, S) is semi compatible,  
(3)   M(Ax, Sy, t) ≥ r min{M(Sx, Sy, t), M(Sx, Ax, t), M(Sx, Ay, t),  M (Sy, Ay, t)}           

  for all x, y ∈ X and t >0, where r : [0, 1] → [0, 1] is a continuous function such that 
     (4)    r(t) > t , for each 0 < t < 1. 

              Then A and S  have a common fixed point in X. 
Theorem 3.2. Let S and T be two continuous self mappings of a complete Fuzzy metric space (X, 
M, ∗ ) such that   ܽ ∗ b = min (a, b) for all a, b in X. Let A and B be two self mappings of X 
satisfying the following conditions: 
(1)     A(X) ∪ B(X) ⊂ S(X) ∩T(X), 
(2)     (A,T) and (B, S) are semi compatible pairs, 
(3)     aM (Tx, Sy, t) + bM(Tx, Ax, t) + c M(Sy, By, t)  

                                 +  max{M(Ax, Sy, t), M( By, Tx, t)} ≤  q M(Ax, By, t)  
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             for all x, y ∈ X, where a, b, c ≥ 0 with q < (a + b + c) < 1. 
 Then A,B, S and  T have a unique common fixed point in X. 

Proof: Let x0 ∈ X be any arbitrary point.  

Since A(X) ⊂ S(X) then there must exists a point x1 ∈ X such that Ax0 = Sx1.  

Also since A(X) ⊂ T(X), there exists another point x2 ∈ X such that Ax1 = Tx2.  

In general, we get a sequence {yn} recursively as  

                y2n = Sx2n+1 = Ax2n and y2n+1= Tx2n+2 = Ax2n+1,  n ∈ N  {0}.  

Using inequality (3), we get similarly as som [9] that for ௔  ା  ௕
௤  ି  ௖

 > 1 a Cauchy sequence          in X. 
Hence, the sequence {Ax2n,},{Bx2n+1},{Sx2n+1} and {Tx2n+2} are Cauchy and converge to same 
limit, say z. 

Case I. Since T is continuous. In this case we have 

                  TAxn  → Tz ,      TTxn  → Tz       

Also (A, T) is semi compatible, we have   ATxn  →  Tz  

Step I. Let  x = Txn , y = xn  in (3), we get  

aM (TTxn, Sxn, t) + bM(Txn, ATxn, t) + c M(Sxn, Bxn, t)  
 
                                   + max{M(ATxn, Sxn, t), M( Bxn, TTxn, t)} ≤   qM(ATxn, Bxn, t)  

Taking limit as n → ∞, we get     

aM (Tz, z, t) + bM(z, Tz, t) + c M(z, z, t)  
 
                              +  max{M(Tz, z, t), M( z,Tz, t)  ≤   qM(Tz, z, t)  
           
    i.e.,          aM (Tz, z, t) + bM(z, Tz, t) + c + M(Tz, z, t)  ≤   qM(Tz, z, t) 
 
    i.e.,           c  ≤   (q – a – b – 1) M(Tz, z, t) 
         
     i.e.,          M(Tz, z, t)  ≥  ௖

௤ –௔ି௕ିଵ
  > 1 
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which gives Tz = z.  

Step II. Putting   x = z and y = xn  in (3) we get  

                    aM(Tz, Sxn, t) + bM(Tz,Az, t) + cM(Sxn,Bxn, t)                                                                                           

                                           +   max{M(Az, Sxn, t),M(Bxn, Tz, t)}   ≤  qM(Az,Bxn, t) 

Taking limit as n → ∞, we get     

                 aM(z, z, t) + bM(z,Az, t) + cM(z, z, t)  
 
                                               +  max{M(Az, z, t), M(z, z, t)}  ≤  qM(Az, z, t) 
 
i.e.                         a + bM(z, Az, t) + c + max{M(Az, z, t), 1} ≤  qM(Az, z, t) 
                                        
 i.e.                                                                              a + c + 1  ≤  (q − b) M(Az, z, t) 
i.e                     M(Az, z, t)   ≥    ௔ା௖ାଵ    

௤ି௕
 > 1                                            

which gives Az = z.  

Hence,   Az = z = Tz. 

Case II. Similarly since S is continuous and (B, S) is semi compatible  
                we get Bz = z = Sz. 
               Thus we have Az = Bz = Tz = Sz = z. 
          Hence z is a common fixed point of A, B, S and T, and easily we can prove that it is a 
unique common fixed point of  A, B, S and T. 
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