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ABSTRACT

The purpose of this paper is to prove a common fixed point theorem on fuzzy metric space using
the notion of semi compatibility, our result generalize the result of Som [8]. Also, we are giving
an example that make strong to our result.
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INTRODUCTION

It proved a turning point in the development of mathematics when the notion of fuzzy set was
introduced by Zadeh [10], which laid the foundation of fuzzy mathematics. Kramosil and
Michalek [4] introduced the concept of fuzzy metric space and modified by George and
Veeramani [2]. Also Grabiec [3] has proved some fixed point results for fuzzy metric space.
Sessa [6] proved some theorems of commutativity by weakening the condition to weakly
commutativity. Vasuki [9] defined the R- weak commutativity of mappings of Fuzzy metric space
and proved the fuzzy version of Pant’s [5] theorem. Cho, Sharma and Sahu [1] introduced the
concept of semi compatibility of mapps in D- metric space if condition (a) Sy = Ty implies that
STy =TSyand (b) {Tx,}—x, {Sxn}—x then {STxp}— Tx as n—oo hold. However (b) implies (a)
taking {x,}—yand x =Ty = Sy. So, here we define semi compatibility by condition (b) only. In
this paper we used the concept of semi compatible mappings to prove further resuts.

PRELIMINARIES AND DEFINITIONS
Definitions 2.1.[7] *: [0,1] < [0,1] - [0,1] is a continuous t- norm if it satisfies the
following conditions :
(i) = is associative and commutative,
(i) = is continuous,
(iii) a*xl=a VvV a€[01]
(iv) a=*b< cx*d whenever a<candb <d, for each
a, b,c,de [01].
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Definition 2.2.[4] The triplet ( X, M, =) is said to be Fuzzy metric space if X is an arbitrary
set, * is a continuous t-norm and M is a Fuzzy set on X x X x [0,00] — [0,1] satisfying the
following conditions : for all x,y, z € X and s, t>0.

(FM-1) M(x,y, 0) =0,

(FM-2) M(x,y,t)=1forallt>0ifand only if x =y,
(FM-3) M( X, y,t)=M(y, x, t)

(FM-4) M( X, y,t)*M(y,2,8)< M(x,zt+s),

(FM-5) M(X,Y,.):[0,0] - [0,1] is left continuous,
(FM-6) lim_, M(xyt)=1

Note that M( X, y, t) can be considered as the degree of nearness between x and y with
respect to t. We identify x = y with M( x, y, t) = 1 for all t > 0. The following example shows that
every metric space induces a Fuzzy metric space.

Example 2.1.[2] Let (X, d) be a metric space. Define a * b = min{a,b} and

M(x, y, t) = m forall x, ye Xand all t>0. Then ( X, M, *) is a Fuzzy metric space. It is

called the Fuzzy metric space induced by d.
Lemma 2.1. [3] For all x, y € X, M( X, Y, .) is a non decreasing function.

Definition 2.3.[3] A sequence {X,} in a Fuzzy metric space (X, M, *) is said to be a Cauchy
sequence if and only if for each >0, t> 0, there exists np € N such that M( Xn, Xm, t) > 1-
g foralln,m >ng.

The sequence {Xn}is said to converge to a point x in X if and only if foreach >0, t>0,
there exists ng € N such that M( x,, X, t) >1- ¢ forall n >n.

A Fuzzy metric space (X, M, * ) is said to be complete if every Cauchy sequence in it
converge to a point in it.

Definition 2.4.[5] Two self maps A and S of Fuzzy metric space (X, M, * ) are said to be weakly
commuting if

M(ASX, SAX, t) > M(Ax, Sx, t) for every x € X.
The notion of weak commutativity is extended to R-weak commutativity by Vasuki [9] as

Definition 2.5.[9] Two self maps A and S of Fuzzy metric space (X, M, =) are said to be R-
weakly commuting provided there exist some positive real number R such that

M(ASX, SAX, 1) = M(Ax, Sx, =) for all x € X.
The weak commutativity implies R-weak commutativity and converse is true for R <1.

Definition 2.6. A pair (A, S) of self mappings of a Fuzzy metric space is said to be Semi
compatible if M(ASX, Sx, t)—1 for all t > 0 whenever {x,} is a sequence in X such that Ax,,
Sxp— p for some p in X as n—o.

It follows that (A, S) is Semi compatible and Ay = Sy imply ASy = SAy by taking
{Xn}=yand x = Ay = Sy.

Remark 2.1. Let (A,S) be a pair of self mappings of a Fuzzy metric space (X, M, = ). Then (A,S)
is R-weakly commuting implies (A, S) is Semi compatible but the converse is not true.
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Using R-weak commutativity, Som [8] proved some results. Here we generalized the
result of Som [8] by replacing the assumption of R-weakly commuting maps to Semi
compatible maps.

t

Example 2.2. Let X =[0, 2] and a * b = min {a, b}. Let M(x, y, t) =

t+d(xy)
be the standard Fuzzy metric space induced by d, where d(x, y) = | x — y| for all X, y € X, define
” { 2, xe [01] S0 21 XXE_[Ci’l)
AX) = X X) = ’ -
> x € (1,2] x+3, x€e (12]
Now for 1< x <2 we have
Ax=2 | Sx= X*3 and  ASx=X*2 = gsax = X°
2 5 10 10
then M(ASX, SAX, t) = —
‘ "ot
M(AX, Sx, E) T 10t+3(2- )R’

We observe that M(ASx, SAX, t) = M(Ax, Sx, —) which gives R > (fo)

Therefore we get there no R for x € (1, 2] in X.

Hence (A,S) is not R-weakly commuting.
Now we have S1)=2=A1), and S2)=1=A2)

also SA(1)=AS(1) and AS(2)=2=AS(2)

Let x,= 2- %

Hence Ax,—1, Sxp—1 and ASx,—2

Therefore M(ASx,, Sy, t) = (2, 2, t) = 1.

Hence (A, S) is Semi compatible but not R-weakly commuting.

MAIN RESULTS
Theorem 3.1. Let S and T be two continuous self mappings of a complete Fuzzy metric space
(X, M, x) such that a * b =min (a, b) for all a, b in X. Let A be a self mapping of X satisfying
the following conditions:

(1) A(X) c S(X) NT(X),

(2) (A,S)and (A,T) are semi compatible,

(3) M(AX, Ay, t) >r min{M(Sx, Ty, t), M(Sx, Ax, t), M(Sx, Ay, t), M (Ty, Ay, t)}

forall x,y € X and t>0, wherer : [0, 1] — [0, 1] is a continuous function such that
(4) r@)>t,foreach0< t<1.
Then A, S, T have a unique common fixed point in X.

Proof: Let Xo € X be any arbitrary point.
Since A(X) < S(X) then there must exists a point x; € X such that Axy = Sx;.

Also, since A(X) c T(X), there exists another point x; € X such that Ax; = Tx.
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In general, we get a sequence {y,} recursively as

Yon = SXon+1 = AXan and Yons1= TXons2 = AXone1, N € N U {03.

Let Man = M (Yan+1, Yo, 1) = M (AXans1, AXon, ). Then, M (Axans2, AXonet, 1) = Mapaa.
Using inequality (3), we get
Mzns1 > r MIN{M(SXan+2, TX2n+1, 1), M(SXan+2, AXons2, t), M(SXan+2, AXonsa, t),
M(TXzn+1, AXonsa, 1)}
= r min{M(AXzn+1, AXan, 1), M(AXons1, AXonsz, t), M(AXans1, AXons1, 1),
M(AXzn, AXon+1, 1)}
=1 min(Mzn, M2n+1, M2n) (3.1)
If Man > Mans1, then by definition of r we have
Mon+1 > r(Man+1) > Mons1, @ contradiction.  So, Maps1> Map.
Thus, from (3.1), we get Man+1 > (M) > Map. (3.2)

Hence {M,} where 0 <n <oo is an increasing sequence of positive numbers in [0, 1] and
therefore, tends to a limit L < 1.

We claim that L = 1. If L < 1, then on taking limit n — o in (3.2), we get
L>r(L)>L;

i.e. r(L) =L, which contradicts the fact that L < 1.

Hence, L =1.

Now for any positive integer p,
M(AXq, AXnsp, 1) = M(Axn, AXne1, é) *M(AXns1, AXnsz, | é) S *M(AXnp1, AXnsp, ,é)

>A-g)x(1-€)*...x(1-¢)(p-times) =1-e.

Thus, M(AXn, AXnp, 1) > 1-¢, V1> 0.
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Hence {Ax,} is a Cauchy sequence in X. Since X is complete {Ax,} — z € X. Hence the
subsequences {Sx,} and {Tx,} of {Ax,} also tends to the same limit.

Case I. Since S is continuous. In this case we have
SAX, — Sz, SSx, — Sz
Also (A, S) is semi compatible, we have ASx, — Sz
Step I. Let Xx=Sxp, y =X, in (3)we get
M( ASXn, A Xp, t) ) > 1 min{M(SSxp, TXy, t), M SSXn, ASXy, t), M(SSXn, AXp, 1),
M(TXn, AXp, 1)}.
Taking limit as n — oo,
M(Sz, z, t) > r min{M(Sz, z, t), M(Sz, Sz, t), M(Sz, z, t), M(z, z, t)}.
> r M(Sz, z, t),
> M(Sz, z, t).
So, we get Sz = z.
Step Il. By puttingx =z, y = X, we get Az = z.
Hence, Az=1z=Sz.
Case Il. Since T is continuous. In this case we have TTx, — Tz, TAX, — Tz.
also (A, T) is semi compatible ATx, — Tz.
Step I. Let X =X,, y=Tx, in (3) we get
M(AXn, ATXq, t) > r Min{M(SXn, TTXy, t), M(SXn, AXn, t), M(SXn, ATXq, 1),
M(TTx,, ATX,, t)}

M(z, Tz, t) > rmin{M(z, Tz, t), M(z, z, t), M(z, Tz, t), M(Tz, Tz, t)}.

Y

r M(z, Tz, t),

> M(z, Tz, t).
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So, we get Tz=2z. Thus, we have Az=Sz=Tz=z.
Hence z is a common fixed point of A, Sand T.
Uniqueness : Let u be another common fixed point of A, Sand T, Then
Au=Su=Tu=u.
Putx=2z,y=uin (3), we get
M( Az, Au, t) ) >r min{M(Sz, Tu, t), M (Sz, Az, t), M(Sz, Au, t), M(Tu, Au, t)}.
Therefore
M(z, u, t) ) > r min{M(z, u, t), M (z, z, t), M(z, u, t), M(u, u, t)}.
>r min{M(z, u, t), 1, M(z, u, t),1 }.
>1rM(z, u, t),
> M(z, u, t)
which gives z = u.

Therefore z is a unique common fixed point of A, S and T.
If we take T = S then we get following corollary

Corollary 3.2. let S be a continuous mapping of a complete Fuzzy metric space X, M, %)
such that a = b = min (a, b) for all a4, b in X. Let A be a self mapping of X satisfying the

following conditions:
(1) AX) = S(X),
(2) (A, S) is semi compatible,
(3) M(AX, Sy, t) >r min{M(Sx, Sy, t), M(Sx, Ax, t), M(Sx, Ay, t), M (Sy, Ay, t)}
forall x, y € X and t >0, where r : [0, 1] — [0, 1] is a continuous function such that
(4) r()>t,foreachO<t<l1.
Then A and S have a common fixed point in X.
Theorem 3.2. Let S and T be two continuous self mappings of a complete Fuzzy metric space (X,
M, %) such that a * b = min (a, b) for all a, b in X. Let A and B be two self mappings of X
satisfying the following conditions:
1) AMX)uB(X) c S(X) NT(X),
(2) (AT T)and (B, S) are semi compatible pairs,
(3) aM (Tx, Sy, t) + bM(Tx, Ax, t) + ¢ M(Sy, By, 1)
+ max{M(AXx, Sy, t), M( By, Tx, t)} < q M(Ax, By, 1)
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forall x, y € X, wherea,b,c>0withg<(a+b+c)<Ll
Then A,B, Sand T have a uniqgue common fixed point in X.

Proof: Let Xo € X be any arbitrary point.
Since A(X) < S(X) then there must exists a point x; € X such that Axy = Sx;.
Also since A(X) c T(X), there exists another point x, € X such that Ax; = Txa.

In general, we get a sequence {y,} recursively as

Yon = SXon+1 = AXon and Yone1= TXons2 = AXone1, N € N U {0}

Using inequality (3), we get similarly as som [9] that for Z—J:'C’ > 1 a Cauchy sequence in X.

Hence, the sequence {AXan }{BXan+1},{SXan+1} and {Txon+2} are Cauchy and converge to same
limit, say z.

Case 1. Since T is continuous. In this case we have
TAX, —» Tz, TTX, —>Tz

Also (A, T) is semi compatible, we have ATx, — Tz
Step I. Let X =Txy, y =X, in (3), we get

aM (TTXp, SXp, t) + bDM(TXq, ATXp, t) + ¢ M(SX,, BXy, 1)

+ Max{M(ATX,, Sxp, t), M( BXn, TTXy, )} < gM(ATXn, Bxn, t)

Taking limit as n — o, we get

aM (Tz, z,t) + bM(z, Tz, t) + c M(z, z, 1)

+ max{M(Tz, z,t), M(2,Tz,t) < gM(Tz z,t)

.e., aM (Tz, z, t) + bM(z, Tz, t) + ¢+ M(Tz, z, t) < gM(Tz, z,t)
.e., c< (q—a-b-1)M(Tz z1t)
ie., M(Tz,z,t) > ——— >1

q-a—-b-1
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which gives Tz = z.
Step Il. Putting x=zandy= X, in (3) we get
aM(Tz, Sxy, t) + bM(Tz,Az, t) + cM(SXn,BXn, t)
+ max{M(Az, Sxn, 1),M(Bxn, Tz, )} < gM(Az,Bxy, t)
Taking limit as n — o, we get
aM(z, z, t) + bM(z,Az, t) + ctM(z, z, t)

+ max{M(Az, z, 1), M(z, z, )} < gM(Az, z, 1)

le. a+ bM(z, Az, t) + c + max{M(Az, z, t), 1} < gqM(Az, z, 1)
i.e. atc+1 < (q—b) M(Az, z, 1)
i.e M(Az, z,t) > %>l

which gives Az = z.
Hence, Az=z=Tz.

Case Il. Similarly since S is continuous and (B, S) is semi compatible
we get Bz=z = Sz.
Thus we have Az=Bz=Tz=Sz=1z.
Hence z is a common fixed point of A, B, Sand T, and easily we can prove that it is a
unique common fixed point of A, B, Sand T.
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