POWERS \boldsymbol{X}^{N} IN TERMS OF MODIFIED CHEBYSHEV POLYNOMIALS

${ }^{1}$ J. López-Bonilla*, ${ }^{1}$ S. Barragán-Gómez, ${ }^{2}$ Bhadraman Tuladhar
${ }^{1}$ ESIME-Zacatenco, Instituto Politécnico Nacional, Anexo Edif. 3, Col. Lindavista, CP 07738 México D.F.
${ }^{2}$ Department of Natural Sciences (Mathematics), School of Science, Kathmandu University, P.O. Box 6250, Kathmandu, Nepal
*Corresponding author: jlopezb@ipn.mx
Received 25 January, 2009; Revised 11 May, 2010

Abstract

We exhibit two procedures to express x^{n} in terms of the shifted Chebyshev polynomials, which is useful to reduce the degree of a polynomial in the interval $[0,1]$.

Keywords: Chebyshev-Lanczos polynomials

INTRODUCTION

In numerical analysis may be necessary to reduce, with small error, the degree of a polynomial in the interval $[0,1]$, which is possible employing the Modified Chebyshev polynomials $\bar{T}_{r}(x)$ defined by [1]:

$$
\begin{equation*}
\bar{T}_{0}(x)=\frac{1}{2}, \quad \bar{T}_{k}(x)=T_{k}(2 x-1), \quad k=1,2, \ldots \tag{1}
\end{equation*}
$$

where the first-kind Chebyshev polynomials $\bar{T}_{r}(x)$ are given by the recurrence relation [2-6]:

$$
\begin{equation*}
T_{0}(x)=1, \quad T_{1}(x)=x, \quad T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x), \quad k=1,2, \ldots \tag{2}
\end{equation*}
$$

therefore

$$
\begin{array}{ll}
\bar{T}_{0}(x)=\frac{1}{2}, \quad \bar{T}_{1}(x)=2 x-1, & \bar{T}_{2}(x)=8 x^{2}-8 x+1, \tag{3}\\
\bar{T}_{3}(x)=32 x^{3}-48 x^{2}+18 x-1, & \bar{T}_{4}(x)=128 x^{4}-256 x^{3}-32 x+1, \quad \text { etc. }
\end{array}
$$

In the mentioned reduction process we need the powers x^{n} in terms of \bar{T}_{r}, then from (3):

$$
\begin{array}{ll}
x^{0}=2 \bar{T}_{0}, \quad x=\frac{1}{2}\left(2 \bar{T}_{0}+\bar{T}_{1}\right), & x^{2}=\frac{1}{8}\left(6 \bar{T}_{0}+4 \bar{T}_{1}+\bar{T}_{2}\right), \\
x^{3}=\frac{1}{32}\left(20 \bar{T}_{0}+15 \bar{T}_{1}+6 \bar{T}_{2}+\bar{T}_{3}\right), & x^{4}=\frac{1}{128}\left(70 \bar{T}_{0}+56 \bar{T}_{1}+28 \bar{T}_{2}+8 \bar{T}_{3}+\bar{T}_{4}\right), \quad \text { etc. } \tag{4}
\end{array}
$$

that is [1]:

$$
\begin{equation*}
\frac{1}{2}(4 x)^{n}=\sum_{r=0}^{n}\binom{2 n}{n-r} \bar{T}_{r}, \quad n=0,1, \ldots \tag{5}
\end{equation*}
$$

The next section exhibits an algorithm to obtain x^{j} in function of \bar{T}_{r} if we know the corresponding expansion of x^{j-1}, and also another procedure which employs to (5) as a Newton's binomial expression.

$\boldsymbol{x}^{\boldsymbol{n}}$ in terms of \bar{T}_{r}

We may write (5) in the form:

$$
\begin{array}{ccccccc}
& \bar{T}_{0} & \bar{T}_{1} & \bar{T}_{2} & \bar{T}_{3} & \bar{T}_{4} & \cdots \\
\frac{1}{2}(4 x)^{0} & 1 & 0 & 0 & 0 & 0 & \cdots \\
\frac{1}{2}(4 x)^{1} & 2 & 1 & 0 & 0 & 0 & \cdots \\
\frac{1}{2}(4 x)^{2} & 6 & 4 & 1 & 0 & 0 & \cdots \tag{6}\\
\frac{1}{2}(4 x)^{3} & 20 & 15 & 6 & 1 & 0 & \cdots \\
\frac{1}{2}(4 x)^{4} & 70 & 56 & 28 & 8 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}
$$

or in function of the columns vectors $\left(\frac{1}{2}(4 x)^{j}\right)$ and $\left(\bar{T}_{r}\right)$ for a given n :

$$
\left(\begin{array}{c}
\frac{1}{2}(4 x)^{0} \tag{7}\\
\frac{1}{2}(4 x)^{1} \\
\vdots \\
\frac{1}{2}(4 x)^{n}
\end{array}\right)=\underset{\sim}{A} \cdot\left(\begin{array}{c}
\bar{T}_{0} \\
\bar{T}_{1} \\
\vdots \\
\bar{T}_{n}
\end{array}\right)
$$

where A is the $(n+1) \times(n+1)$ triangular matrix of coefficients appearing in (6):

$$
\underset{\sim}{A}=\left(a_{j r}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & \cdots \tag{8}\\
2 & 1 & 0 & 0 & 0 & \cdots \\
6 & 4 & 1 & 0 & 0 & \cdots \\
20 & 15 & 6 & 1 & 0 & \cdots \\
70 & 56 & 28 & 8 & 1 & \cdots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right), \quad j, r=0,1, \ldots n
$$

then $\left(\bar{T}_{r}\right)=\underset{\sim}{A^{-1}} \cdot\left(\frac{1}{2}(4 x)^{r}\right)$ reproduces (3).
The relations (5) and (7) imply that:

$$
\begin{equation*}
a_{j r}=\binom{2 n}{n-r}, \quad j, r=0,1, \ldots \tag{9}
\end{equation*}
$$

thus

$$
\begin{equation*}
a_{j j}=1, \quad a_{j r}=0, \quad r>j \tag{10}
\end{equation*}
$$

and we can prove the following properties not found explicitly in the literature:

$$
\begin{align*}
& a_{j+1,0}=2\left(a_{j 0}+a_{j 1}\right), \quad j=0,1,2, \ldots \\
& a_{j r}=a_{j-1, r-1}+2 a_{j-1, r}+a_{j-1, r+1}, \quad r, j=1,2,3, \ldots \tag{11}
\end{align*}
$$

The formulae (11) permit to construct the row j of A if we know its row $j-1$, and they represent an algorithm to express x^{n} in terms of $\left(\bar{T}_{r}\right)$ whose systematic use minimize the amount of arithmetical computations involved in (5).

On the other hand, the expansion (5) can be written as:

$$
\begin{equation*}
\frac{1}{2}(4 x)^{n}=\sum_{k=0}^{n}\binom{2 n}{k} \bar{T}_{n-k}=\sum_{k=0}^{2 n}\binom{2 n}{k} \bar{T}^{n-k} \tag{12}
\end{equation*}
$$

where we use the notation:

$$
\begin{equation*}
\bar{T}^{-j}=0, \quad j=1,2, \ldots, \quad \bar{T}^{r} \equiv \bar{T}_{r}, \quad r=0,1,2, \ldots \tag{13}
\end{equation*}
$$

very employed in Gregory-Newton and Stirling interpolations [7].

Thus (12) adopts the form of a Newton's binomial expression:

$$
\begin{equation*}
\frac{1}{2}(4 x)^{n}=\frac{1}{\bar{T}^{n}} \sum_{k=0}^{2 n}\binom{2 n}{k} \bar{T}^{2 n-k}=\frac{1}{\bar{T}^{n}}(1+\bar{T})^{2 n} \tag{14}
\end{equation*}
$$

which is a procedure alternative to (11) to obtain x^{n} in function of \bar{T}_{r}. For example:

$$
\begin{aligned}
& \frac{1}{2}(4 x)^{2}=\frac{1}{\bar{T}^{2}}(1+\bar{T})^{4}=\frac{1}{\bar{T}^{2}}\left(1+4 \bar{T}+6 \bar{T}^{2}+4 \bar{T}^{3}+\bar{T}^{4}\right), \\
& =\bar{T}^{-2}+4 \bar{T}^{-1}+6 \bar{T}^{0}+4 \bar{T}+\bar{T}^{2}=6 \bar{T}_{0}+4 \bar{T}_{1}+\bar{T}_{2}, \quad \text { etc. }
\end{aligned}
$$

in according with (6). The relation (14) may be easily manipulated by a computer via some symbolic language as MAPLE.

REFERENCES

1. Abramowitz, M. and I. A. Stegun, 1972. Handbook of mathematical functions, John Wiley and Sons Chap. 22.
2. Hochstadt, H., 1986. The functions of Mathematical Physics, Dover Chap.2.
3. Lanczos, C., 1952. Tables of Chebyshev polynomials, Nat. Bur. Std. Appl. Math. Series No.9.
4. Lanczos, C., 1997. Linear differential operators, Dover Chap. 1.
5. Lanczos, C., 1998. Applied analysis, Dover Chap.7.
6. Mason, J.C. and D. C. 2002. Handscomb, Chebyshev polynomials, Chapman \& Hall-CRC Press Chap. 1.
7. Scaife, B. K. P. 1986. Studies in numerical analysis, Academic Press Chap.2.
