ON TRANS-SASAKIAN MANIFOLDS

Riddhi Jung Shah

Department of Mathematics & Astronomy University of Lucknow, Lucknow-226007 (India)

Corresponding address: shahrjgeo@gmail.com Received 02 January, 2011; Revised 29 December, 2011

ABSTRACT

In this paper we study the geometry of trans-Sasakian manifold when it is projective Ricci-semi-symmetric, pseudo-projectively flat and pseudo-projectively semi-symmetric.

MSC 2010: 53C15, 53C25, 55S10.

Keywords: Trans-Sasakian manifold, projective Ricci tensor, pseudo-projective curvature tensor, pseudo-projectively flat, pseudo-projectively semi-symmetric.

1. INTRODUCTION

In 1985, J. A. Oubina [9] introduced the notion of trans-Sasakian manifold. Many geometers studied this manifold some of them are [9, 7, 1]. Semi-symmetric manifold is studied by author [10], [11] and others. The conditions $R(X,Y).\tilde{P}=0$, $\bar{P}(X,Y)Z=0$ and $R(X,Y).\bar{P}=0$ are called projective Ricci-semi-symmetric, pseudo-projectively flat and pseudo-projectively semi-symmetric respectively, where R(X,Y) is considered as derivation of tensor algebra at each point of the manifold.

We note that trans-Sasakian structure of type (0,0), $(0,\beta)$ and $(\alpha,0)$ are called cosympletic, β – Kenmotsu and α – Sasakian manifold respectively. Thus trans-Sasakian structures are also provide a large class of generalized quasi-Sasakian structures.

An almost contact metric manifold $M^{2n+1}(\phi,\xi,\eta,g)$ is said to be trans-Sasakian manifold [1] if $(M \times \Box, J, G)$ belongs to the class ω_4 [8] of the Hermitian manifolds where J is the almost

complex structure on $M \times \square$ defined by

(1.1)
$$J\left(X, f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta\left(X\right)f\frac{d}{dt}\right),$$

for all vector fields on M and smooth function f on $M \times \square$ and G is the product metric on $M \times \square$. This may be stated by the condition [4]

$$(1.2) \qquad (\nabla_X \phi)(Y) = \alpha \{g(X,Y)\xi - \eta(Y)X\} + \beta \{g(\phi X,Y)\xi - \eta(Y)\phi X\},$$

for some smooth functions α and β on M and we say that trans-Sasakian structure is of type (α, β) .

In this paper we consider the trans-Sasakian manifold under the condition $\phi(\operatorname{grad}\alpha) = (2n-1)\operatorname{grad}\beta$ satisfying $R(X,Y).\tilde{P} = 0$, $\bar{P}(X,Y)Z = 0$ and $R(X,Y).\bar{P} = 0$, where \tilde{P} is the projective Ricci tensor introduced by the authors [6]. It is defined by

(1.3)
$$\tilde{P}(X,Y) = \frac{(2n+1)}{2n}S(X,Y) - \frac{r}{2n}g(X,Y),$$

where S and r are Ricci tensor and scalar curvature respectively. It is shown that in first condition the manifold is Einstein and its scalar curvature is $2n(2n+1)(\alpha^2-\beta^2)$.

Further, trans-Sasakian manifold $M^{2n+1}(\phi,\xi,\eta,g)$ with $\overline{P}(X,Y)Z=0$ and $R(X,Y).\overline{P}=0$, is considered, where \overline{P} is the pseudo-projective curvature tensor given by [2]

(1.4)
$$\overline{P}(X,Y)Z = aR(X,Y)Z + b\left[S(Y,Z)X - S(X,Z)Y\right] - \frac{r}{(2n+1)}\left\{\frac{a}{2n} + b\right\}\left[g(Y,Z)X - g(X,Z)Y\right],$$

where a,b are constants such that $a,b \neq 0,R,S,r$ are the curvature tensor, Ricci tensor and scalar curvature respectively.

2. PRELIMINARIES

Let M be a (2n+1)-dimensional almost contact metric manifold [3] with an almost contact metric structure (ϕ, ξ, η, g) , where ϕ is a (1,1) tensor field, ξ is a vector field, η is a 1-form and g is the associated Riemannian metric such that

$$(2.1) \qquad \phi^2(X) = -X + \eta(X)\xi,$$

(2.2)
$$\eta(\xi) = g(\xi, \xi) = 1, \ \phi \xi = 0,$$

(2.3)
$$\eta(\phi X) = 0, \quad \eta \circ \phi = 0,$$

$$(2.4) g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), g(X, \xi) = \eta(X),$$

(2.5)
$$d\eta(X,Y) = g(X,\phi Y) = -g(\phi X,Y), \text{ for all } X,Y \in TM.$$

From (1.2) it follows that

(2.6)
$$\nabla_{X} \xi = -\alpha \phi X + \beta \{ X - \eta (X) \xi \},$$

(2.7)
$$(\nabla_X \eta)(Y) = -\alpha g(\phi X, Y) + \beta g(\phi X, \phi Y).$$

Further, on a trans-Sasakian manifold the following relations hold [7], [5]:

(2.8)
$$R(X,Y)\xi = (\alpha^{2} - \beta^{2})[\eta(Y)X - \eta(X)Y] - (X\alpha)\phi Y - (X\beta)\phi^{2}Y + 2\alpha\beta[\eta(Y)\phi X - \eta(X)\phi Y] + (Y\alpha)\phi X + (Y\beta)\phi^{2}X,$$

(2.9)
$$R(\xi, X)\xi = (\alpha^2 - \beta^2 - \xi\beta) [\eta(X)\xi - X],$$

$$(2.10) 2\alpha\beta + (\xi\alpha) = 0,$$

$$(2.11) S(X,\xi) = \left[2n(\alpha^2 - \beta^2) - (\xi\beta)\right] \eta(X) - (\phi X)\alpha - (2n-1)(X\beta),$$

(2.12)
$$Q\xi = \left[2n(\alpha^2 - \beta^2) - (\xi\beta)\right]\xi + \phi(grad\alpha) - (2n-1)grad\beta,$$

when $\phi(grad\alpha) = (2n-1)grad\beta$, then the relations (2.11) and (2.12) reduce to

$$(2.13) S(X,\xi) = 2n(\alpha^2 - \beta^2)\eta(X),$$

$$(2.14) Q\xi = 2n(\alpha^2 - \beta^2)\xi,$$

$$(2.15) S(\xi,\xi) = 2n(\alpha^2 - \beta^2).$$

3. RESULTS AND DISCUSSION

Theorem 3.1: If in a trans-Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$, the relation $R(X,Y).\tilde{P}=0$ holds, then the manifold is Einstein.

Proof: Consider a trans-Sasakian manifold $M^{2n+1}(\phi,\xi,\eta,g)$ which satisfies the condition

$$(3.1) R(X,Y).\tilde{P} = 0$$

where \tilde{P} is the projective Ricci Tensor defined in (1.3). Now,

(3.2)
$$\left(R(X,Y).\tilde{P}\right)(U,V) = -\tilde{P}\left(R(X,Y)U,V\right) - \tilde{P}\left(U,R(X,Y)V\right).$$

From (3.1) and (3.2), we get

(3.3)
$$\tilde{P}(R(X,Y)U,V) + \tilde{P}(U,R(X,Y)V) = 0.$$

Putting $X = \xi$ and using (2.8) in (3.3) we have

(3.4)
$$\frac{\left(\alpha^{2} - \beta^{2}\right)\left[g\left(Y,U\right)\tilde{P}\left(\xi,V\right) - \eta\left(U\right)\tilde{P}\left(Y,U\right) + g\left(Y,U\right)\tilde{P}\left(\xi,U\right) - \eta\left(V\right)\tilde{P}\left(U,Y\right)\right]}{-2\alpha\beta\left[\eta\left(U\right)\tilde{P}\left(\phi Y,V\right) + \eta\left(V\right)\tilde{P}\left(\phi Y,U\right)\right] - \left(\xi\alpha\right)\left[\tilde{P}\left(\phi Y,V\right) + \tilde{P}\left(\phi Y,U\right)\right] = 0}$$

Putting V = U in (3.4), we get

$$(3.5) \quad (\alpha^2 - \beta^2) \left[g(Y, U) \tilde{P}(\xi, U) - \eta(U) \tilde{P}(Y, U) \right] - \tilde{P}(\phi Y, U) \left[2\alpha \beta \eta(U) + (\xi \alpha) \right] = 0.$$

Under condition $2\alpha\beta\eta(U) + \xi\alpha = 0$ if $\eta(U) = 1$, using (3) and (2.13) in (3.5), we get

$$(3.6) S(U,Y) = 2n(\alpha^2 - \beta^2)g(U,Y).$$

This implies that the manifold is an Einstein manifold. This completes the proof of the theorem.

Let $\{e_i: i=1,2,...,2n+1\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $U=Y=e_i$ in (3.6) and taking summation over i, $1 \le i \le 2n+1$, we get

(3.7)
$$r = 2n(2n+1)(\alpha^2 - \beta^2).$$

Hence we can state:

Corollary 3.1: A projective Ricci-semi-symmetric trans-Sasakian manfold $M^{2n+1}(\phi,\xi,\eta,g)$, is the manifold of constant scalar curvature $2n(2n+1)(\alpha^2-\beta^2)$.

Theorem 3.2: A pseudo-projectively flat trans-Sasakian manfold $M^{2n+1}(\phi, \xi, \eta, g)$ is an η -Einsten manifold provided that $a, b \neq 0$.

Proof: The pseudo-projective curvature tensor is given by the relation (4). Suppose $\overline{P}(X,Y)Z = 0$, then from (1.4), we get

$$(3.2.1) aR(X,Y)Z+b\left[S(Y,Z)X-S(X,Z)Y\right] - \frac{r}{(2n+1)}\left\{\frac{a}{2n}+b\right\}\left[g(Y,Z)X-g(X,Z)Y\right]=0$$

Taking inner product on both sides of (3.2.1) by ξ , we get

(3.2.2)
$$a\eta(R(X,Y)Z) + b[S(Y,Z)\eta(X) - S(X,Z)\eta(Y)] - \frac{r(a+2nb)}{2n(2n+1)}[g(Y,Z)\eta(X) - g(X,Z)\eta(Y)] = 0$$

Putting $X = \xi$ and using (2.4),(2.8) and (2.13), in (3.2.2), we get

$$a\Big[\left(\alpha^{2}-\beta^{2}\right)\Big\{g\left(Y,Z\right)-\eta\left(Y\right)\eta\left(Z\right)\Big\}\Big]+b\Big[S\left(Y,Z\right)-2n\left(\alpha^{2}-\beta^{2}\right)\eta\left(Y\right)\eta\left(Z\right)\Big]$$
$$-\left\{\frac{r(a+2nb)}{2n(2n+1)}\right\}\Big[g\left(Y,Z\right)-\eta\left(Y\right)\eta\left(Z\right)\Big]=0$$

which yields on further calculation

(3.2.3)
$$S(Y,Z) = \left[\frac{1}{b} \left\{ \frac{(a+2nb)r}{2n(2n+1)} - a(\alpha^2 - \beta^2) \right\} \right] g(Y,Z) + \left[\frac{(a+2nb)}{b} \left\{ (\alpha^2 - \beta^2) - \frac{r}{2n(2n+1)} \right\} \right] \eta(Y) \eta(Z).$$

Thus the theorem is proved.

Let $\{e_i : i = 1, 2, ..., 2n+1\}$ be an orthonormal basis of the tangent space at any point of the manifold. Putting $Y = Z = e_i$ in (3.2.3) and taking summation over i, $1 \le i \le 2n+1$, we get (3.2.4) $r = 2n(2n+1)(\alpha^2 - \beta^2).$

Hence we can state:

Corollary 3.2: A pseudo-projectively flat trans-Sasakian manifold of dimension (2n+1) is of manifold of constant scalar curvature $2n(2n+1)(\alpha^2-\beta^2)$.

Using the relation (3.2.4) in (3.2.3), we get

$$(3.2.5) S(Y,Z) = 2n(\alpha^2 - \beta^2)g(Y,Z).$$

This leads to the following:

Theorem 3.3: If a trans-Sasakian manifold $M^{2n+1}(\phi, \xi, \eta, g)$ is pseudo-projectively flat then it is Einstein one & its scalar curvature is given by (3.2.4).

Theorem 3.4: A pseudo-projectively semi-symmetric trans-Sasakian manifold $M^{2n+1}(\phi,\xi,\eta,g)$ is an η -Einstein manifold.

Proof: Let us suppose that a (2n+1)-dimensional trans-Sasakian manifold satisfies the condition

(3.4.1)
$$R(X,Y).\overline{P} = 0.$$

where \overline{P} is the pseudo-projective curvature tensor given in (1.4). Using (2.4) and (2.8) in (1.4), we get

$$(3.4.2) \quad \eta(\overline{P}(U,V)W) = \left\{ a(\alpha^2 - \beta^2) - \frac{r(a+2nb)}{2n(2n+1)} \right\} \left[g(U,V)\eta(U) - g(U,W)\eta(V) \right] + b \left[S(V,W)\eta(U) - S(U,W)\eta(V) \right].$$

Taking $U = \xi$ in (3.4.2) and using (2.2), (2.4) and (2.13), we get

(3.4.3)
$$\eta\left(\overline{P}(\xi,V)W\right) = bS(V,W)\left\{a\left(\alpha^{2} - \beta^{2}\right) - \frac{(a+2nb)r}{2n(2n+1)}\right\}g(V,W) + \left[(a+2nb)\left\{\frac{r}{2n(2n+1)} - \left(\alpha^{2} - \beta^{2}\right)\right\}\right]\eta(V)\eta(W).$$

Putting $W = \xi$ in (3.4.2) and using (2.8) and (2.13), we obtain

(3.4.4)
$$\eta(\bar{P}(U,V)\xi) = 0.$$

Now,

$$(3.4.5) \quad \left(R(X,Y).\overline{P}\right)(U,V)W = R(X,Y)\overline{P}(U,V)W - \overline{P}(R(X,Y)U,V)W - \overline{P}(U,R(X,Y)V)W - \overline{P}(U,V)R(X,Y)W.$$

From the relations (5.1) and (5.5), we have

(3.4.6)
$$R(X,Y)\bar{P}(U,V)W - \bar{P}(R(X,Y)U,V)W - \bar{P}(U,R(X,Y)V)W - \bar{P}(U,V)R(X,Y)W = 0.$$

Putting $X = \xi$ and taking inner product on both sides of (3.4.6) by ξ , we get

(3.4.7)
$$\eta \Big(R(\xi, Y) \overline{P}(U, V) W \Big) - \eta \Big(\overline{P} \Big(R(\xi, Y) U, V \Big) W \Big) - \eta \Big(\overline{P} \Big(U, R(\xi, Y) V \Big) W \Big) - \eta \Big(\overline{P} \Big(U, V \Big) R(\xi, Y) W \Big) = 0.$$

From this it follows that (3.4.8)

$$\begin{split} & \bar{P}(U,V,W,Y) - \eta(Y)\eta(\bar{P}(U,V)W) - g(Y,U)\eta(\bar{P}(\xi,V)W) + \eta(U)\eta(\bar{P}(Y,V)W) \\ & + \eta(W)\eta(\bar{P}(U,V)Y) - g(Y,V)\eta(\bar{P}(U,\xi)W) + \eta(V)\eta(\bar{P}(U,Y)W) = 0, \\ & \text{where } \bar{P}(U,V,W,Y) = g(\bar{P}(U,V)W,Y). \end{split}$$

Putting Y = U in (3.4.8), we get

$$(3.4.9) \qquad \begin{array}{l} \overline{P}(U,V,W,U) - g(U,U)\eta(\overline{P}(\xi,V)W) - g(U,V)\eta(\overline{P}(U,\xi)W) \\ + \eta(V)\eta(\overline{P}(U,U)W) + \eta(W)\eta(\overline{P}(U,V)U) = 0. \end{array}$$

Let $\{e_i : i = 1, 2, ..., 2n + 1\}$ be an orthonormal basis of the tangent space at any point of the manifold. Then the sum for $1 \le i \le 2n + 1$ of the relation (3.4.9) for $U = e_i$, yields

(3.4.10)
$$\eta\left(\overline{P}(\xi,V)W\right) = \left(\frac{a+2nb}{2n}\right)S(V,W) - \frac{(a+2nb)r}{2n(2n+1)}g(V,W) + \left[(a-b)\left\{\frac{r}{2n(2n+1)} - (\alpha^2 - \beta^2)\right\}\right]\eta(V)\eta(W).$$

From (3.4.3) and (3.4.10), we get

(3.4.11)

$$S(V,W) = 2n(\alpha^2 - \beta^2)g(V,W) + \left[\frac{b}{a}\left\{r - 2n(2n+1)(\alpha^2 - \beta^2)\right\}\right]\eta(V)\eta(Z).$$

This implies that the manifold is an η -Einstein manifold. Hence the theorem is proved. Again, taking $W = \xi$ in (3.4.11) and using (2.13), we get

(3.4.12)
$$r = 2n(2n+1)(\alpha^2 - \beta^2).$$

Using (3.4.12) in (3.4.11), we obtain

$$(3.4.13) S(V,W) = 2n(\alpha^2 - \beta^2)g(V,W).$$

This leads to the following:

Theorem 3.5: A trans-Sasakian manifold satisfying the relation $R(X,Y).\overline{P} = 0$ is an Einstein manifold and also is a manifold of constant scalar curvature $2n(2n+1)(\alpha^2 - \beta^2)$.

Now, using (3.4.2), (3.4.3), (3.4.12) and (3.4.13) in (3.4.8), we obtain

$$\overline{P}(U,V,W,Y) = g(\overline{P}(U,V)W,Y) = 0,$$

which yields

$$(3.4.14) \overline{P}(U,V)W = 0.$$

Therefore the trans-Sasakian manifold under consideration is pseudo-projectively flat. Hence we can state the next theorem:

Theorem 3.6: If in a trans-Sasakian manifold M of dimension (2n+1), n > 0, the relation $R(X,Y).\overline{P} = 0$ holds, then the manifold is pseudo-projectively flat.

REFERENCES

- [1] Bagewadi, C S & Girish Kumar E, Note on Trans-Sasakian Manifolds, *Tensor* (N.S.), 65(1) (2004) 80.
- [2] Bhagawath, P, A pseudo-projective curvature tensor on Riemannian manifold. *Bull. of Cal. Math. Soc.*, 94(3) (2002) 163.
- [3] Blair, D E, Contact Manifolds in Riemannian Geometry, Lecture notes in Mathematics, 509, Springer-verlag, Berlin 1976.
- [4] Blair, D E & Oubina, J A, Conformal and related changes of metric on the product of two almost contact manifolds, *Publ. Mathematiques*, 34 (1990) 199.
- [5] De, U C & Shaikh, A A, Complex Manifold and Contact Manifolds, *Narosa Pub. House Pvt. Ltd.* (2009).
- [6] De, U C & Tarafdar D, On a type of new tensor in a Riemannian manifold and its relativistic significance, *Ranchi Univ. Math. J.*, 24 (1993) 17.
- [7] De, U C & Tripathi, M M, Ricci tensor in 3-dimensional trans-Sasakian manifol-

- ds, Kyungpook Math. J., 2 (2003) 247.
- [8] Gray, A & Harvella, L M, The sixteen classes of Almost Hermitian Manifolds and their Linear invariants, *Ann. Mat. Pura Appl.*, 123 (4) (1980) 35.
- [9] Oubina, J A, New classes of Almost Contact Metric Structures, *Publ. Math. Debre cen*, 32, (1985) 187.
- [10] Szabo, Z I, Structure Theorems on Riemannian spaces satisfying R(X,Y).R = 0, I, the local version, J. Diff. Geo., 17(1980) 531.
- [11] Szabo, Z I, Classification and construction of complete hyper-surfaces satisfying R(X,Y).R = 0, Acta. Sci. Math., 7 (1984) 321.